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Abstract: Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed
in several cancers, including oral squamous cell carcinoma (OSCC). OSCC is a highly aggressive
cancer and the most common oral malignancy. ANO1 has been proposed as a potential candidate
for targeted anticancer therapy. In this study, we performed a cell-based screening to identify novel
regulators leading to the downregulation of ANO1, and discovered cinobufagin, which downregu-
lated ANO1 expression in oral squamous cell carcinoma CAL-27 cells. ANO1 protein levels were
significantly reduced by cinobufagin in a dose-dependent manner with an IC50 value of ~26 nM.
Unlike previous ANO1 inhibitors, short-term (≤10 min) exposure to cinobufagin did not alter ANO1
chloride channel activity and ANO1-dependent intestinal smooth muscle contraction, whereas long-
term (24 h) exposure to cinobufagin significantly reduced phosphorylation of STAT3 and mRNA
expression of ANO1 in CAL-27 cells. Notably, cinobufagin inhibited cell proliferation of CAL-27 cells
expressing high levels of ANO1 more potently than that of ANO1 knockout CAL-27 cells. In addition,
cinobufagin significantly reduced cell migration and induced caspase-3 activation and PARP cleavage
in CAL-27 cells. These results suggest that downregulation of ANO1 by cinobufagin is a potential
mechanism for the anticancer effect of cinobufagin in OSCC.
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1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common head and neck
cancers, accounting for 90% of all oral cancer types found in the mouth, tongue and lips [1].
According to GLOBOCAN 2020 reports, OSCC ranks sixth in overall cancer mortality and
has a higher age-standardized mortality rate than pancreatic cancer [2]. Several topical
and systemic treatments have been proposed to manage OSCC, but clinical results are
poor [3]. To date, several anticancer targets for OSCC have been proposed. For example,
HDAC8 is overexpressed in OSCC tissues and mainly localized in the cytoplasm. Down-
regulation of HDAC8 by siRNA in OSCC cell lines, YD-8, YD-10B and SNU-1076, inhibited
cell proliferation and led to apoptotic cell death induction through caspase activation and
pro-survival autophagy [4]. In OSCC cell lines, HN22 and HSC4, a reduction in speci-
ficity protein 1 (Sp1) expression by 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242) showed
anti-proliferative effects [5]. GAP SH3 Binding Protein 1 (G3BP1) is highly expressed in
metastatic OSCC, and downregulation of G3BP1 by siRNA significantly increased pro-
grammed cell death in the late stage p53-mutant OSCC [6]. GRB2 and IGF1 have identified
as novel anticancer targets for OSCC using a series of bioinformatic approaches, including
microarray analysis, network analysis and virtual screening [7]. However, due to the lack
of effective drug targets for the treatment of OSCC, new potential drug targets for OSCC
are needed.
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Anoctamin1 (ANO1), also called transmembrane member 16A (TMEM16A), is known
as a calcium-activated chloride channel [8–10]. It is expressed highly throughout the gas-
trointestinal tract and regulates various physiological activities by expression in smooth
muscle, epithelial cells, small sensory neurons and olfactory sustentacular cells [11–14].
The ANO1 gene resides within the chromosome 11q13 region, which is frequently amplified
in human cancers, and is associated with a poor prognosis [15–18]. ANO1 is involved in
epithelial tumor formation and is highly amplified and expressed in OSCC [19], head and
neck squamous cell carcinoma [20], prostate cancer [21], breast cancer [22] and esophageal
cancer [23]. In particular, there is a very strong correlation between the amplification and
expression of ANO1, and the overall survival rate of head and neck squamous cell carci-
noma patients with high ANO1 protein expression is poor [24]. Notably, downregulation
of ANO1 potently reduced the cell proliferation, metastasis and invasion in several cancer
cells [25]. Previous studies revealed that inhibition of ANO1 can induce apoptosis through
multiple signaling pathways including the NF-κB [26], TGF-β [27], CaMKII/MAPK [22]
and EGFR/MAPK signaling pathway in cancer cells expressing ANO1 [28].

In previous studies, we identified several potent inhibitors of ANO1, such as Ani9,
Ani9-5f, Ani-D2, luteolin and idebenone, which potently inhibited the chloride channel
activity of ANO1, and Ani9-5f, Ani-D2, luteolin and idebenone significantly reduced cell
proliferation and migration and induced apoptosis in several cancer cells highly expressing
ANO1 [29–33]. However, all of these inhibitors and other previous ANO1 inhibitors
strongly block the chloride channel activity of ANO1, which plays a pivotal role in normal
physiological function. For example, fast inhibition of ANO1 chloride channel activity
leads to a rapid decrease in blood pressure through the relaxation of vascular smooth
muscle and a rapid decrease in gastrointestinal motility via the inhibition of pacemaker
activity in interstitial cells of Cajal (ICC) [34–37]. These results suggest that the slow
downregulation of ANO1 may be more beneficial in the treatment of cancer patients
because it may exhibit anticancer activity without significant changes in blood pressure
and gastrointestinal motility by providing sufficient time to compensate for the decreased
ANO1 channel activity.

In this study, we identified a novel natural product, cinobufagin, which induces
downregulation of ANO1 without alteration of ANO1 channel activity, and investigated
the anticancer effects of cinobufagin on the human OSCC cell line CAL-27.

2. Results
2.1. Identification of Novel Compounds That Downregulate ANO1

Natural products have been a productive source for producing lead compounds
and therapeutic agents, and some natural products potently and directly block ANO
activity [32,33,38,39]. Therefore, we performed a cell-based screening using a natural
product library containing 730 natural products to identify novel compounds inducing
downregulation of ANO1. CAL-27 cells endogenously and highly expressing ANO1 were
stably transfected with iodide-sensitive YFP-F46L/H148Q/I152L. The CAL-27 cells were
treated with 20 µM test compounds for 24 h and washed with PBS, then the effects of
the natural products on ANO1 channel activity were measured using YFP fluorescence
quenching assay (Figure 1A). As shown in Figure 1B, some active compounds significantly
inhibited the YFP fluorescence decrease via I- uptake through the activated ANO1 chloride
channels by 100 µM ATP. We identified 22 hit compounds that reduced ANO1 channel
activity >70% at 20 µM. Of the 22 hits, only cinobufagin, fangchinoline and lanatoside C
reduced the expression of ANO1 without inhibiting ANO1 ion channel activity. As shown
in Figure 1C, cinobufagin, fangchinoline and lanatoside C did not alter the ANO1 channel
activity, which was completely blocked by Ani9-5f, a potent and selective ANO1 inhibitor.
The chemical structures of hit compounds are shown in Figure 1D. The protein expression
levels of ANO1 significantly reduced by Ani9-5f, cinobufagin, fangchinoline and lanatoside
C in CAL-27 cells, and cinobufagin most strongly reduced ANO1 protein level. Thus,
we performed further studies on ANO1 downregulation by cinobufagin.
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Figure 1. Identification of novel compounds that downregulate ANO in CAL-27 cells. (A) Principle of high-throughput 
screening assay. (B) Representative YFP fluorescence traces. YFP fluorescence monitored in CAL-27 cells treated with 20 
μM test compounds for 24 h. (right) Dot plot of primary screening results for 730 natural products. (C) Representative YFP 
fluorescence traces showing the effect of short-term (10 min) exposure of 20 μM cinobufagin, fangchinoline and lanatoside 
C on ANO1 channel activity in CAL-27 cells. (D) Chemical structures of cinobufagin, fangchinoline and lanatoside C. (E) 
Effects of Ani9-5f, cinobufagin, fangchinoline and lanatoside C on ANO1 protein expression levels were assessed by West-
ern blot analysis. CAL-27 cells were treated with 10 μM of the test compounds for 24 h. 
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expression levels, Western blot analysis was performed in CAL-27. As shown in Figure 
2A,B, cinobufagin reduced ANO1 protein expression levels in a dose-dependent manner. 
ANO1 protein expression levels were reduced by 12.7%, 45.5%, 66.8% and 67.2% by 10, 
30, 100 and 300 nM of cinobufagin, respectively. 

In order to determine whether ANO1 protein expression level is selectively reduced 
by cinobufagin, we investigated the effect of cinobufagin on the protein expression level 
of another chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR). 
FTR cells expressing CFTR were treated with different concentrations of cinobufagin for 
24 h, and then Western blot analysis was performed to evaluate the effect of cinobufagin 
on the protein expression level of CFTR. Notably, high concentrations of cinobufagin did 
not alter the protein expression levels of CFTR (Figure 2C,D). These results suggest that 
cinobufagin may selectively reduce the protein expression level of ANO1. 

Figure 1. Identification of novel compounds that downregulate ANO in CAL-27 cells. (A) Principle of high-throughput
screening assay. (B) Representative YFP fluorescence traces. YFP fluorescence monitored in CAL-27 cells treated with 20 µM
test compounds for 24 h. (right) Dot plot of primary screening results for 730 natural products. (C) Representative YFP
fluorescence traces showing the effect of short-term (10 min) exposure of 20 µM cinobufagin, fangchinoline and lanatoside
C on ANO1 channel activity in CAL-27 cells. (D) Chemical structures of cinobufagin, fangchinoline and lanatoside C.
(E) Effects of Ani9-5f, cinobufagin, fangchinoline and lanatoside C on ANO1 protein expression levels were assessed by
Western blot analysis. CAL-27 cells were treated with 10 µM of the test compounds for 24 h.

2.2. Effect of Cinobufagin on Protein Expression Levels of ANO1 and CFTR

To investigate the effect of different concentrations of cinobufagin on ANO1 protein ex-
pression levels, Western blot analysis was performed in CAL-27. As shown in Figure 2A,B,
cinobufagin reduced ANO1 protein expression levels in a dose-dependent manner. ANO1
protein expression levels were reduced by 12.7%, 45.5%, 66.8% and 67.2% by 10, 30, 100
and 300 nM of cinobufagin, respectively.

In order to determine whether ANO1 protein expression level is selectively reduced
by cinobufagin, we investigated the effect of cinobufagin on the protein expression level
of another chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR).
FTR cells expressing CFTR were treated with different concentrations of cinobufagin for
24 h, and then Western blot analysis was performed to evaluate the effect of cinobufagin
on the protein expression level of CFTR. Notably, high concentrations of cinobufagin did
not alter the protein expression levels of CFTR (Figure 2C,D). These results suggest that
cinobufagin may selectively reduce the protein expression level of ANO1.
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Figure 2. Effect of cinobufagin on protein expression level of ANO1 and CFTR. (A) Representative 
immunoblot analysis of ANO1 in cinobufagin-treated CAL-27 cells. Cinobufagin-treated cells at the 
indicated concentration for 24 h. CRISPR/Cas9 technique was used to generate CAL-27 ANO1 
knockout (KO) cells. (B) ANO1 protein intensities were normalized to those of β-actin (mean ± S.D., 
n = 4). * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Representative immunoblot blot analysis of CFTR in 
cinobufagin-treated FRT cells expressing human CFTR. Cinobufagin-treated cells at the indicated 
concentration for 24 h. (D) CFTR protein intensities were normalized to those of β-actin (mean ± 
S.D., n = 3). 
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Previous potent and selective ANO1 inhibitors, such as Ani9-5f, strongly block the 

chloride channel activity of ANO1 [29,30]. Rapid inhibition of ANO1 chloride channel 
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cle in the development of anticancer therapies targeting ANO1. An electrophysiological 
study was performed to more precisely investigate the effect of cinobufagin on ANO1 
channel activity. Apical membrane currents of ANO1 were measured by Ussing chamber 
technique in FRT cells expressing wild-type human ANO1. As shown in Figure 3A, short-
term (10 min) pretreatment with cinobufagin had no inhibitory effect on ANO1 chloride 
channel activity, even at high concentrations, but Ani9-5f completely blocked ANO1 chlo-
ride channel activity. 

To determine whether cinobufagin affects smooth muscle contraction, the effect of 
cinobufagin on intestinal smooth muscle contraction was measured using mouse ileum. 
As shown in Figure 3B, cinobufagin did not significantly reduce the spontaneous contrac-
tion of mouse ileum, but a potent ANO1 inhibitor, Ani9-5f, strongly and almost com-
pletely reduced intestinal smooth muscle contraction, as expected. 

Figure 2. Effect of cinobufagin on protein expression level of ANO1 and CFTR. (A) Representative
immunoblot analysis of ANO1 in cinobufagin-treated CAL-27 cells. Cinobufagin-treated cells at
the indicated concentration for 24 h. CRISPR/Cas9 technique was used to generate CAL-27 ANO1
knockout (KO) cells. (B) ANO1 protein intensities were normalized to those of β-actin (mean ± S.D.,
n = 4). * p < 0.05, ** p < 0.01, *** p < 0.001. (C) Representative immunoblot blot analysis of CFTR in
cinobufagin-treated FRT cells expressing human CFTR. Cinobufagin-treated cells at the indicated
concentration for 24 h. (D) CFTR protein intensities were normalized to those of β-actin (mean± S.D.,
n = 3).

2.3. Effect of Cinobufagin on ANO1 Acitivy and Intestinal Smooth Muscle Contration

Previous potent and selective ANO1 inhibitors, such as Ani9-5f, strongly block the
chloride channel activity of ANO1 [29,30]. Rapid inhibition of ANO1 chloride channel
activity leads to decreased blood pressure and gastrointestinal motility through induction
of smooth muscle relaxation and inhibition of pacemaker activity of ICC [34–37]. Therefore,
these physiological actions of previous ANO1 inhibitors are likely to act as an obstacle in
the development of anticancer therapies targeting ANO1. An electrophysiological study
was performed to more precisely investigate the effect of cinobufagin on ANO1 channel
activity. Apical membrane currents of ANO1 were measured by Ussing chamber technique
in FRT cells expressing wild-type human ANO1. As shown in Figure 3A, short-term
(10 min) pretreatment with cinobufagin had no inhibitory effect on ANO1 chloride channel
activity, even at high concentrations, but Ani9-5f completely blocked ANO1 chloride
channel activity.

To determine whether cinobufagin affects smooth muscle contraction, the effect of
cinobufagin on intestinal smooth muscle contraction was measured using mouse ileum.
As shown in Figure 3B, cinobufagin did not significantly reduce the spontaneous contrac-
tion of mouse ileum, but a potent ANO1 inhibitor, Ani9-5f, strongly and almost completely
reduced intestinal smooth muscle contraction, as expected.
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for 10 min. ANO1 chloride channel was activated by 100 μM ATP. (B) Representative smooth mus-
cle contraction traces from 4 independent experiments with mouse ileal segments. Indicated con-
centrations of cinobufagin and 10 μM Ani9-5f applied to mouse ileal segments. 

2.4. Cinobufagin Reduced the Phosphorylation of STAT3 and ANO1 Gene Transcription 
Cinobufagin potently reduced ANO1 protein expression in a dose-dependent man-

ner (Figure 2A). To confirm whether this phenomenon of cinobufagin was achieved 
through the regulation of ANO1 mRNA expression, real-time PCR was performed. Inter-
estingly, cinobufagin significantly reduced the mRNA expression level of ANO1 in a 
dose-dependent manner in CAL-27 cells. ANO1 mRNA expression levels were reduced 
by 8.6, 37.9, 47.8, 69.4 and 82.1% by 10, 30, 100, 300 and 1000 nM of cinobufagin, respec-
tively. 

Recent studies suggest that ANO1 gene transcription regulated by signal transducer 
and activator of transcription (STAT) transcription factors, including STAT3 [40]. In addi-
tion, STAT3 is recognized as an oncogene, and its activity is increased by ~50% in various 
cancers, including OSCC [41–44]. To investigate whether cinobufagin affects ANO1 ex-
pression via regulation of STAT3 activity, Western blot analysis was performed in CAL-
27 cells. Interestingly, cinobufagin significantly blocked STAT3 phosphorylation in a 
dose-dependent manner. The phosphorylation of STAT3 reduced by 3.9, 25.5, 49 and 
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Figure 3. Effect of cinobufagin on ANO1 chloride channel activity and intestinal smooth muscle
contraction. (A) Representative apical membrane currents from 3 independent experiments in FRT
cells expressing ANO1. Indicated concentrations of cinobufagin and 10 µM Ani9-5f were pretreated
for 10 min. ANO1 chloride channel was activated by 100 µM ATP. (B) Representative smooth
muscle contraction traces from 4 independent experiments with mouse ileal segments. Indicated
concentrations of cinobufagin and 10 µM Ani9-5f applied to mouse ileal segments.

2.4. Cinobufagin Reduced the Phosphorylation of STAT3 and ANO1 Gene Transcription

Cinobufagin potently reduced ANO1 protein expression in a dose-dependent manner
(Figure 2A). To confirm whether this phenomenon of cinobufagin was achieved through
the regulation of ANO1 mRNA expression, real-time PCR was performed. Interestingly,
cinobufagin significantly reduced the mRNA expression level of ANO1 in a dose-dependent
manner in CAL-27 cells. ANO1 mRNA expression levels were reduced by 8.6, 37.9, 47.8,
69.4 and 82.1% by 10, 30, 100, 300 and 1000 nM of cinobufagin, respectively.

Recent studies suggest that ANO1 gene transcription regulated by signal transducer
and activator of transcription (STAT) transcription factors, including STAT3 [40]. In ad-
dition, STAT3 is recognized as an oncogene, and its activity is increased by ~50% in
various cancers, including OSCC [41–44]. To investigate whether cinobufagin affects
ANO1 expression via regulation of STAT3 activity, Western blot analysis was performed in
CAL-27 cells. Interestingly, cinobufagin significantly blocked STAT3 phosphorylation in a
dose-dependent manner. The phosphorylation of STAT3 reduced by 3.9, 25.5, 49 and 78.5%
by 10, 30, 100 and 300 nM of cinobufagin (Figure 4B). Western blot analysis was performed
in CAL-27 cells treated with niclosamide, an inhibitor of STAT3, to observe whether inhibi-
tion of STAT3 reduced ANO1 expression. As expected, niclosamide significantly reduced
STAT3 phosphorylation (Figure 4D,E) and mRNA expression levels of ANO1 (Figure 4F) in
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CAL-27 cells. These results suggest that cinobufagin may reduce mRNA expression levels
of ANO1 via inhibition of STAT3 pathway.
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ing ANO1, cell viability was significantly reduced by 24.2, 44.0, 56.7 and 69.0% by 30, 100, 
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Figure 4. Effects of cinobufagin on mRNA expression level of ANO1 and phosphorylation of STAT3 in CAL-27 cells.
(A) mRNA expression levels of ANO1 were measured using real-time PCR in CAL-27 cells. Indicated concentrations of
cinobufagin were treated for 24 h (mean ± S.E., n = 3). (B) Representative immunoblot analysis of pSTAT3 in CAL-27 cells
treated with cinobufagin for 24 h. (C) Phosphorylated STAT3 (pSTAT3) levels were normalized against total STAT3 levels
(mean ± S.E., n = 3). (D) Representative immunoblot analysis of pSTAT3 in CAL-27 cells treated with niclosamide at
indicated concentrations for 24 h. (E) pSTAT3 levels were normalized against total STAT3 levels (mean ± S.E., n = 3).
(F) mRNA expression levels of ANO1 were measured in CAL-27 cells treated with niclosamide at indicated concentrations
for 24 h (mean ± S.E., n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001.

2.5. Cinobufagin Reduced Cell Proliferation and Migration in CAL-27 Cells

To investigate the effect of the cinobufagin-induced downregulation of ANO1 on cell
viability, the ANO1 knockout CAL-27 cell line was established by CRISPR-Cas9. Of interest,
cinobufagin more potently reduced cell viability of ANO1 expressing CAL-27 cells com-
pared with ANO1 knockout CAL-27 cells (Figure 5A). In CAL-27 cells highly expressing
ANO1, cell viability was significantly reduced by 24.2, 44.0, 56.7 and 69.0% by 30, 100,
300 and 1000 nM of cinobufagin, respectively. However, in ANO1 knockout CAL-27 cells,
cinobufagin much less potently reduced cell viability by 19.4, 30.3, 44.4 and 57.7% by 30,
100, 300 and 1000 nM of cinobufagin, respectively (Figure 5A).

To determine whether cinobufagin reduces cell migration, a scratch wound assay was
performed on CAL-27 cells expressing high levels of ANO1. As shown in Figure 5B,C, cell
migration was strongly reduced by cinobufagin in a dose-dependent manner.
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for 48 h, and MTS assay was performed to estimate cell viability (mean ± S.E., n = 5). (B,C) Scratch wound healing assay 
was conducted in CAL-27 cells expressing high levels of ANO1. Cells were treated with cinobufagin at the indicated 
concentration, and time-lapse images were acquired every 2 h after wound generation (mean ± S.E., n = 3). Scale bars 
represent 300 μm. * p < 0.05, *** p < 0.001. 
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ANO1 induces apoptosis in various cancer cell lines [32,33,45–47]. Here, we explore 
whether cinobufagin induces apoptosis in CAL-27 cells highly expressing ANO1. As 
shown in Figure 6A,B, cinobufagin treatment significantly increased caspase-3-positive 
cells compared with control. The cinobufagin-induced increase in caspase-3-positive cells 
was almost completely inhibited by Ac-DEVD-CHO, a caspase-3 inhibitor. In addition, 
cinobufagin treatment induced a significant increase in cleaved PARP-1, considered a 
marker of apoptosis, in a dose-dependent manner in CAL-27 cells (Figure 6C,D). 

Figure 5. Effect of cinobufagin on cell viability and migration in CAL-27 cells. (A) Effect of cinobufagin on cell viability in
CAL-27, and ANO1 knockout (KO) CAL-27 cells. These cells were treated with cinobufagin at the indicated concentrations
for 48 h, and MTS assay was performed to estimate cell viability (mean ± S.E., n = 5). (B,C) Scratch wound healing assay
was conducted in CAL-27 cells expressing high levels of ANO1. Cells were treated with cinobufagin at the indicated
concentration, and time-lapse images were acquired every 2 h after wound generation (mean ± S.E., n = 3). Scale bars
represent 300 µm. * p < 0.05, *** p < 0.001.

2.6. Cinobufagin-Induced Activation of Caspase-3 and Cleavage of PARP

A number of previous studies have shown that inhibition or downregulation of ANO1
induces apoptosis in various cancer cell lines [32,33,45–47]. Here, we explore whether
cinobufagin induces apoptosis in CAL-27 cells highly expressing ANO1. As shown in
Figure 6A,B, cinobufagin treatment significantly increased caspase-3-positive cells com-
pared with control. The cinobufagin-induced increase in caspase-3-positive cells was
almost completely inhibited by Ac-DEVD-CHO, a caspase-3 inhibitor. In addition, cinob-
ufagin treatment induced a significant increase in cleaved PARP-1, considered a marker of
apoptosis, in a dose-dependent manner in CAL-27 cells (Figure 6C,D).
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Figure 6. Effect of cinobufagin on caspase-3 activation and induction of PARP cleavage in CAL-27 cells. (A) Images were 
taken 24 h after application of 300 nM cinobufagin. Cells were incubated with caspase-3 substrate (green) and Hoechst 
33342 (blue) 20 min prior to image acquisition. Scale bars represent 200 μm. (B) CAL-27 cells were treated with the indi-
cated concentrations of cinobufagin in the presence or absence of 10 μM of Ac-DEVD-CHO for 24 h, then the cells were 
treated with 2 μM of caspase-3 substrate for 20 min to estimate caspase-3 activity (mean ± S.E., n = 3). (C) Representative 
immunoblot analysis of PARP and cleaved PARP(C-PARP). Cells were treated with the indicated concentrations of cino-
bufagin for 24 h. (D) Cleaved PARP protein intensities were normalized to those of β-actin (mean ± S.D., n = 3). * p < 0.05, 
** p < 0.01, *** p < 0.001. 
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Figure 6. Effect of cinobufagin on caspase-3 activation and induction of PARP cleavage in CAL-27 cells. (A) Images were
taken 24 h after application of 300 nM cinobufagin. Cells were incubated with caspase-3 substrate (green) and Hoechst
33342 (blue) 20 min prior to image acquisition. Scale bars represent 200 µm. (B) CAL-27 cells were treated with the indicated
concentrations of cinobufagin in the presence or absence of 10 µM of Ac-DEVD-CHO for 24 h, then the cells were treated with
2 µM of caspase-3 substrate for 20 min to estimate caspase-3 activity (mean ± S.E., n = 3). (C) Representative immunoblot
analysis of PARP and cleaved PARP(C-PARP). Cells were treated with the indicated concentrations of cinobufagin for
24 h. (D) Cleaved PARP protein intensities were normalized to those of β-actin (mean ± S.D., n = 3). * p < 0.05, ** p < 0.01,
*** p < 0.001.

3. Discussion

Recent studies have suggested ANO1 as a potential therapeutic target for several
cancers, including OSCC [19–23]. To date, several ANO1 inhibitors have been developed
through the efforts of many researchers. However, it has not yet led to the development of
a therapeutic agent. Natural products have been an efficient and productive source of lead
compound generation in drug discovery [38]. In the present study, we have identified a
novel and potent natural product, cinobufagin, as a potential therapeutic agent for OSCC
which may have anticancer effects on other cancers that target ANO1. Cinobufagin is
one of the main components of Chansu, a traditional Chinese medicine obtained from
the secreted substance of Bufo bufo gargarizans (a toad) [48]. Interestingly, cinobufagin
reduced the ANO1 protein expression level by ~45% at 30 nM and significantly inhibited
the cell viability of the OSCC cell line CAL-27 at >30 nM (Figures 2B and 5A). In general,
natural products act on the target proteins in the micromolar range, and the effect is rarely
seen at less than 1 µM [49].

Previous studies have shown that cinobufagin reduced the expression of LEF1 and
Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell
lines [50], and cinobufagin treatment reduced the expression of p-AKTT308 and p-AKTS473



Int. J. Mol. Sci. 2021, 22, 12037 9 of 14

and inhibited the AKT/mTOR signaling pathway in human non-small cell lung cancer
(NSCLC) cells [51]. In addition, cinobufagin effectively induced apoptosis in A549 cells
by triggering caspase activation through both intrinsic and extrinsic pathways [52]. In col-
orectal cancer, cinobufagin inhibited proliferation, migration, invasion and promoted
apoptosis of HCT116, RKO and SW480 cells. This is the result of cinobufagin inhibiting
the epithelial-mesenchymal transition in colorectal cancer by inhibiting the STAT3 path-
way [53]. In breast cancer, anti-proliferative and pro-apoptotic effects of punicalagin were
confirmed in MCF-7 cells [54]. These results show that several mechanisms have been
proposed for the anticancer effect of cinobufagin. However, in Figure 5A, we showed
that high concentrations of cinobufagin also reduced the cell viability of ANO1 knockout
CAL-27 cells, and ANO1-dependent reduction in cell viability was further significantly
reduced in CAL-27 cells highly expressing ANO1. These results suggest that the pathway
that reduces ANO1 expression by cinobufagin is involved, at least in part, in the mecha-
nism of its anticancer activity. In addition, ANO1 is highly expressed in HCT116, SW480
and MCF-7 cancer cells [47,55], where cinobufagin showed anticancer activity in previous
studies. Anticancer effects such as decreased cell viability due to downregulation of ANO1
are shown in these cancer cells [47,55]. Therefore, it is possible that the downregulation of
ANO1 by cinobufagin acted as an important anticancer mechanism in these cancer cells.

Since ANO1 is a calcium-activated chloride channel that plays a pivotal role in the
regulation of important physiological functions, other physiological functions of ANO1
should also be considered in the development of anticancer drugs targeting ANO1. Previ-
ous small molecule inhibitors of ANO1 rapidly and potently block ANO1 chloride channel
activity, although they show anticancer activity, including a reduction in cell proliferation,
metastasis and invasion [21,31,39,45–47,50]. However, when these ANO1 inhibitors are
used in patients, there is a risk of side effects such as a drop in the patient’s blood pressure
or inhibition of intestinal motility due to the rapid inhibition of ANO1 chloride channel
activity [34–37]. One way to reduce these side effects is to slowly decrease the chloride
channel activity of ANO1, providing sufficient time to compensate for the decreased ANO1
chloride channel activity. Cinobufagin, unlike other ANO1 inhibitors, does not directly
alter the chloride channel activity of ANO1 (Figure 3A) and gradually reduces the expres-
sion level of ANO1 (Figures 2A and 4A). Thus, it has the potential to be developed as an
anticancer agent that can reduce side effects and exhibit anticancer effects.

Our study showed an efficient method for screening modulators that downregulate
ANO1 without affecting the chloride channel activity of ANO1 and suggested that the
downregulation of ANO1 by small molecule modulator is useful for the development of
ANO1 targeting anticancer agents.

4. Materials and Methods
4.1. Material and Solutions

The compound collections used for HTS included 730 natural products from Target
Molecule Corp. (Wellesley Hills, MA, USA). Cinobufagin was purchased from MedChem
Express (Monmouth Junction, NJ, USA). Lanatoside C and fangchinoline were purchased
from Sigma-Aldrich (St. Louis, MO, USA). HEPES buffer solution contains 140 mM NaCl,
5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 10 mM D-glucose and 10 mM HEPES (pH 7.4) The
HCO3

−-buffered solution contains 140 mM NaCl, 5 mM KCl, 1 mM MgCl2,1 mM CaCl2,
10 mM D-glucose, 2.5 mM HEPES and 25 mM NaHCO3 (pH 7.4).

4.2. Cell Culture

CAL-27 were cultured in Dulbecco’s modified Eagle medium (DMEM). DMEM was
supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. FRT cell
lines stably expressing CFTR and ANO1 were provided by Alan Verkman (University of
California, Los Angeles, CA, USA) and cultured in F-12 Modified Coon’s medium with
10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin and 2 mM
L-glutamine. All cells were grown at 37 ◦C, 5% CO2 and 95% humidity.
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4.3. Cell Based YFP Fluorescence Quenching Assay

CAL-27 cells stably expressing halide sensor YFP-F46L/H148Q/I152L were seeded
in 96-well microplates at a confluence of ~80% per well and incubated for 24 h. Test
compounds were treated in each well at a concentration of 20 µM, and then incubated for
24 h. Then, each well of the 96-well plate was washed twice with PBS and incubated with
100 µL of HEPES buffer solution for 10 min at 37 ◦C. After incubation, YFP fluorescence
in each well was monitored for 10 s and recorded every 0.4 s with the FLUOstar Omega
microplate reader (BMG Labtech, Ortenberg, Germany), and baseline fluorescence was
measured for the first 0.8 s. Then, at 1 s, iodide HEPES buffer solution (NaI replacing
NaCl) containing 100 µM ATP was applied using a syringe pump to measure iodide influx-
related ANO1 activity. The effect of ANO1-mediated iodide influx by test compounds was
measured by the initial slope value of YFP fluorescence.

4.4. Apical Membrane Circuit Measurement

FRT cells stably expressing ANO1 were seeded at a confluence of 3 × 105 cells/cm2 on
snapwell inserts (1.12 cm2 surface area) and cultured until confluent. Snapwell inserts were
mounted in Ussing chambers (Physiologic Instruments, San Diego, CA, USA). Basolateral
was bathed with HCO3

−-buffered solution and apical was bathed with half chloride
HCO3

−-buffered solution (70 mM Na gluconate replacing 70 mM NaCl). Cells were
stabilized for 40 min, bathing in a buffered solution aerated with 95% O2, 5% CO2 at
37 ◦C. Cinobufagin was treated with both apical and basolateral bath solutions 10 min
before ANO1 activation. Then, 100 µM of ATP was loaded to the apical bathing solution to
activate ANO1. Apical membrane and short-circuit currents were measured with a Power
Lab 4/35 (AD Instruments, Castle Hill, Australia) and EVC4000Multi-Channel V/I Clamp
(World Precision Instruments, Sarasota, FL, USA). Data were evaluated using Lab chart
Pro 7 (AD Instruments, Castle Hill, Australia). The sampling rate was 4 Hz.

4.5. Immunoblot Analysis

Protein sample preparation protocol was described previously [33]. Protein samples
were separated using 4–12% Tris Glycine Precast Gel (KOMA BIOTECH, Seoul, Korea).
Then, separated proteins were transferred to polyvinylidene fluoride (PVDF) membranes.
Blocking was carried out using Tris-buffered saline with 0.1% Tween 20 (TBST) containing
5% nonfat skim milk or 5% BSA at room temperature for 1 h. Then, the membranes were
incubated with primary antibodies, including anti-TMEM16A antibody [SP31] (Abcam,
Cambridge, UK), CFTR [M3A7] (Sigma-Aldrich, St. Louis, MO, USA), phospho-STAT3
[EP2147Y] (Abcam, Cambridge, UK), STAT3 [#9139] (cell signaling), anti-cleaved PARP (BD
Biosciences) and anti-β-actin (Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4 ◦C.
Subsequently, the membranes were washed out with TBST 3 times at 5 min intervals and
incubated with HRP-conjugated anti-secondary IgG antibodies (Santa Cruz Biotechnology,
Dallas, TX, USA) for 1 h at room temperature. Finally, visualization was carried out with
the SuperSignal™ Western Blot Substrate (Thermo Fisher Scientific, Waltham, MA, USA)

4.6. Real-Time RT-PCR Analysis

TRIzol solution (Invitrogen, Carlsbad, CA, USA) was used to extract total mRNA.
Total mRNA was reverse transcribed using an oligo (dT) primer, random hexamer primers
and SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Thunderbird
SYBR qPCR mix (Toyobo, Osaka, Japan) and StepOnePlus Real-Time PCR System (Applied
Biosystems, Waltham, MA, USA) were used for quantitative RT PCR. The thermal cycling
conditions consisted of 95 ◦C for 5 min, 40 cycles of 95 ◦C for 10 s, 60 ◦C for 20 s and 72 ◦C
for 10 s. The ANO1 sense primer sequence is 5′-GGAGAAGCAGCATCTATTTG-3′ and the
ANO1 antisense primer sequence is 5′-GATCTCATAGACAATCGTGC-3′. The size of the
ANO1 PCR product is 82 base pairs.
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4.7. Cell Viability Assay

Cell Titer 96® AQueous One Solution Assay kit (MTS) (Promega, Madison, WI, USA)
was used for performing cell viability assay. CAL-27 cells were cultured in 96-well plates
with growth medium supplemented with 10% FBS for 24 h. When cell density reached
~ 40%, dimethyl sulfoxide solution (vehicle) and cinobufagin were treated in medium,
exchanged freshly every 12 h. After 48 h treatment, the medium was washed out and
MTS assay was conducted by the supplier’s instructions. The absorbance was measured
by Infinite M200 microplate reader (Tecan, Männedorf, Switzerland) at a wavelength of
490 nm.

4.8. Wound Healing Assay

CAL-27 cells were cultured with approximately 100% confluence to form a monolayer
in a 96-well plate. Wound area was formed by using 96-Well Wound Maker (Essen Bio-
Science, Ann Arbor, MI, USA). Then, cells were washed out twice with PBS and incubated
with 200 µL of growth medium containing 1% FBS with cinobufagin or vehicle (DMSO).
Images of the wound area were taken using IncuCyte ZOOM (Essen BioScience, Ann Arbor,
MI, USA), and the percentage of wound closure was analyzed using IncuCyte software.

4.9. Caspase-3 Activity Assay

CAL-27 cells were cultured in 96-well plates at a density of ~40%. Then, each well was
treated with cinobufagin and a caspase-3 inhibitor, Ac-DEVD-CHO, for 24 h. Then, each
well was washed out twice with 100 µL PBS and incubated for 30 min in 100 µL of PBS with
1 µM of caspase-3 substrate, NucView 488, at room temperature. After incubation, 1 µM
Hoechst 33342 was added to stain the cells. FLUOstar Omega microplate reader (BMG
Labtech, Ortenberg, Germany) was used to measure the fluorescence of Hoechst 33342,
and NucView 488 and Lionheart FX Automated Microscope (BioTek, Winooski, VT, USA)
were used to capture multicolor images.

4.10. Intestinal Smooth Muscle Contraction

C57BL/6 mice were killed by CO2 euthanasia at age 8–10 weeks. The animal study
protocols were approved by the Institutional Animal Ethics Committee of Yonsei Univer-
sity. The harvested ileum was washed with cold HCO3

- buffer solution. Then, the ileal
segments were fixed to the silk string, connected to the force transducer and stabilized
until the tension reached ~1 mN in 60 min. The bathing solution was changed at 15 min in-
tervals. Tension was determined with a fixed-range precision force transducer (TSD, 125 C;
Biopac, Goleta, CA, USA) connected to a differential amplifier (DA 100B; Biopac). MP100
and Biopac digital acquisition system were used to recording data and Acknowledge
3.5.7 software (Biopac) was used to analyze data.

4.11. Statistical Analysis

All experiments were performed independently for a minimum of three times. Sta-
tistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software Inc.,
San Diego, CA, USA). The results for multiple trials are presented as the mean ± standard
deviation (S.D.). Student’s t-test or analysis of variance was used performing statistical
analysis. Statistical significance was set at p values less than 0.05.
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Abbreviations

ANO1 Anoctamin1
OSCC Oral squamous cell carcinoma
HPB242 2,4-bis (p-hydroxyphenyl)-2-butenal
Sp1 Specificity protein 1
G3BP1 GAP SH3 Binding Protein 1
TMEM16A Transmembrane member 16A
CFTR Cystic fibrosis transmembrane conductance regulator
HNSCC Head and neck squamous cell carcinoma
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