

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Bis\{\mu-N-[(E)-4-benzyloxy-2-oxido$ benzvlidene1-4-nitrobenzenecarbohydrazidato}bis[diaguanickel(II)] dimethylformamide tetrasolvate

Bibitha Joseph,^a M. Sithambaresan,^b* M. R. Prathapachandra Kurup^a and Seik Weng Ng^{c,d}

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, ^bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: eesans@yahoo.com

Received 15 April 2014; accepted 5 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.138; data-to-parameter ratio = 17.7.

The molecule of the title complex, $[Ni_2(C_{21}H_{15}N_3O_5)_2]$ (H₂O)₄]·4C₃H₇NO, is located on an inversion centre. This results in a dimeric Ni^{II} complex, with the two Ni^{II} atoms bridged by phenolate O atoms. The tridentate ligand is chelated to each Ni^{II} atom via one N and two O atoms of the iminolate form of the hydrazide moiety, which has the same conformation as the free ligand. The coordination geometry around each Ni^{II} ion is slightly distorted octahedral. A supramolecular three-dimensional architecture is created by dominant intermolecular O-H···N, O-H···O and C-H···O hydrogen-bonding interactions. These are augmented by two C-H··· π interactions and a π - π interaction with a centroid-centroid distance of 3.681 (2) Å.

Related literature

For biological applications of hydrazinecarboxamide and its derivatives, see: Lakshmi et al. (2011); Prasanna & Kumar (2013); Singh et al. (2007); Naseema et al. (2010). For the synthesis of related compounds, see: Joseph et al. (2013). For related structures, see: Joseph et al. (2012); Raj & Kurup (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

[Ni₂(C₂₁H₁₅N₃O₅)₂(H₂O)₄]--4C₃H₇NO $M_{*} = 1260.55$ Triclinic, $P\overline{1}$ a = 8.4939 (3) Å b = 12.5451 (6) Å c = 14.6717 (6) Å $\alpha = 81.662 \ (2)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2004) $T_{\rm min}=0.763,\;T_{\rm max}=0.870$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 383 parameters $wR(F^2) = 0.138$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$ 6785 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cal	a mad	C-5	~ ~ ~	4 h a	aamtuaida	~f	4 h a	C^1	CG	a mad	CO	C14			a a atire	~ l++
0.94	ana	(9)	are	ine.	centrolos	01	ine	U .I-	-0.0	ana	1.9-	-1.14	rings	rest	Decitive	erv
~~ .		~~~			eener orao	~		~ -	~~		~	· · · ·			peecre	•••

	ם ח	TT 4	D 4	
$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - H \cdots A$
O1W-H11O6	0.84	2.00	2.702 (4)	140
$O1W-H12\cdots O7$	0.84	1.98	2.674 (4)	139
$O2W-H21\cdots O1W^{i}$	0.84	2.40	2.862 (2)	115
$O2W - H22 \cdot \cdot \cdot N2^{ii}$	0.84	2.43	2.908 (3)	117
$C2-H2\cdots O3^{i}$	0.93	2.36	3.217 (3)	153
C18−H18···O7 ⁱⁱⁱ	0.93	2.43	3.257 (6)	147
$C26-H26B\cdots O5^{iv}$	0.96	2.56	3.320 (8)	136
$C22-H22A\cdots Cg4$	0.93	2.95	3.440 (5)	115
$C23-H23B\cdots Cg5^{v}$	0.96	2.94	3.89 (8)	172

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows

 $\beta = 75.613 \ (1)^{\circ}$

 $\gamma = 79.442 (1)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.72 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.025$

Z = 1

V = 1480.56 (11) Å³

 $0.40 \times 0.25 \times 0.20 \text{ mm}$

11081 measured reflections

6571 independent reflections 6785

4713 reflections with $I > 2\sigma(I)$

(Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

BJ is grateful to the Council for Scientific and Industrial Research. New Delhi. India. for the award of a Senior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/ HIR/MOHE/SC/12) for supporting this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2672).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1421-o1422.
- Joseph, B., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1160-o1161.
- Lakshmi, B., Avaji, P. G., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507-1515.
- Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741-748.

Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24-29.

Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Singh, B., Narang, K. K. & Srivastava, R. (2007). Synth. React. Inorg. Met. Org. Chem. 33, 1025-1036.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, m211-m212 [doi:10.1107/S1600536814010150]

Bis{*µ*-*N*-[(*E*)-4-benzyloxy-2-oxidobenzylidene]-4-nitrobenzenecarbohydrazidato}bis[diaquanickel(II)] dimethylformamide tetrasolvate

Bibitha Joseph, M. Sithambaresan, M. R. Prathapachandra Kurup and Seik Weng Ng

1. Comment

Hydrazones and their nickel complexes have been shown to possess a diverse range of biological activities (Lakshmi *et al.*, 2011; Prasanna & Kumar, 2013). In most cases, the metal complexes show more antibacterial activity compared to their parent ligands (Singh *et al.*, 2007). They also have applications in chemical processes like non-linear optics, sensors *etc* (Naseema *et al.*, 2010).

The title complex $[C_{42}H_{38}N_6Ni_2O_{14}]\cdot 4(C_3H_7NO)$ has a dimeric structure. This is generated by the unique part of the Ni^{II} complex (Fig. 1) bridging two Ni atoms through phenolate O atoms. The molecule adopts an *E* configuration with respect to C7=N1 bond and the tridentate ligand has its coordinating entities disposed in a *cis* fashion to each other. The Ni atom in the complex is N,O,O' chelated by the iminolate form of the hydrazide ligand. The C7=N1 [1.272 (3) Å] and C15–O3 [1.282 (3) Å] bond distances are very close to the formal C=N and C–O bond lengths (Allen *et al.*, 1987) respectively confirming the azomethine bond formation and the coordination *via* iminolate form. The coordinated to each Ni atom *via* iminolate form of the hydrazide moiety of the free ligand is coordinated to each Ni atom *via* iminolate form of the hydrazide moiety without changing its configuration (Joseph *et al.*, 2012; Raj & Kurup, 2007; Joseph *et al.*, 2013).

There are seven O–H···N, O–H···O and C–H···O intermolecular (classical and non-classical) hydrogen bonding interactions (Table 1), which interconnect the neighbouring complex and the solvent DMF molecules with D···A distances of 2.702 (4), 2.674 (4), 2.862 (3), 2.908 (3), 3.217 (3), 3.257 (6) and 3.320 (8) Å (Fig. 2). Two C–H··· π interactions with H···*Cg* distances of 3.440 (5) and 3.894 (7) Å progressing along *c* axis and a π ··· π interaction (Fig. 3) with a *Cg*···*Cg* distance of 3.681 (2) Å progressing along *b* axis also support the dominant intermolecular hydrogen bonding interactions to establish a supramolecular three-dimensional network in the crystal system. Fig. 4 shows the packing diagram of the title compound along *b* axis.

2. Experimental

The title complex was prepared by adapting a reported procedure (Joseph *et al.*, 2013) by mixing hot methanolic solutions of N'-[(*E*)-4-benzyloxy-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate (0.464 g, 1 mmol) and Ni(OAc)₂·4H₂O (0.248 g, 1 mmol) for 4 h. On cooling, brown colored product formed were collected, washed with few drops of methanol and dried over P₄O₁₀ *in vacuo*. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from a mixture of methanol and dimethylformamide (1:1 *v/v*). The compound was obtained in 65% yield (0.857 g).

3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93–0.97 Å. H atoms were assigned $U_{iso}(H)$ values of 1.2Ueq(carrier). Omitted owing to bad disagreement was reflections (0 - 1 1), (0 1 1), (0 0 1) and (0 1 0).

Figure 1

ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Figure 2

Graphical representation showing hydrogen bonding interactions in the crystal structure of $[C_{42}H_{38}N_6Ni_2O_{14}]\cdot 4(C_3H_7NO)$.

Figure 3

C–H··· π and π ··· π interactions found in the title compound.

Figure 4

A view of the unit cell along b axis.

$Bis\{\mu-N-[(E)-4-benzyloxy-2-oxidobenzylidene]-4-nitrobenzenecarbohydrazidato\}bis[diaquanickel(II)]$ dimethylformamide tetrasolvate

Z = 1

F(000) = 660 $D_{\rm x} = 1.414 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.9 - 26.1^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 293 KBlock, brown

 $R_{\rm int} = 0.025$

 $h = -11 \rightarrow 6$

 $k = -16 \rightarrow 16$

 $l = -19 \rightarrow 16$

 $0.40 \times 0.25 \times 0.20$ mm

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

11081 measured reflections

6571 independent reflections

4713 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3205 reflections

Crystal data

$[Ni_2(C_{21}H_{15}N_3O_5)_2(H_2O)_4]$ ·4C ₃ H ₇ NO
$M_r = 1260.55$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 8.4939 (3) Å
b = 12.5451 (6) Å
c = 14.6717 (6) Å
$\alpha = 81.662 \ (2)^{\circ}$
$\beta = 75.613 (1)^{\circ}$
$\gamma = 79.442 (1)^{\circ}$
$V = 1480.56 (11) \text{ Å}^3$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm⁻¹ ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.763, T_{\rm max} = 0.870$

Re

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.02	H-atom parameters constrained
6785 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 + 0.2776P]$
383 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.32132 (3)	0.56165 (3)	0.52457 (2)	0.03177 (13)
01	0.47991 (19)	0.48838 (15)	0.41614 (12)	0.0316 (4)

O2	0.6760 (3)	0.3770 (3)	0.10470 (16)	0.0811 (10)
O3	0.1376 (2)	0.64291 (17)	0.61866 (14)	0.0427 (5)
O4	-0.5294 (5)	0.9447 (4)	0.8836 (3)	0.1297 (16)
05	-0.6793 (4)	0.9197 (3)	0.7950 (3)	0.1240 (15)
O6	0.3857 (4)	0.7887 (3)	0.2882 (2)	0.0846 (9)
07	0.3202 (5)	0.8970 (3)	0.5412 (3)	0.1077 (12)
O1W	0.4206 (2)	0.70844 (16)	0.46434 (15)	0.0427 (5)
H11	0.4496	0.7089	0.4052	0.064*
H12	0.3486	0.7627	0.4783	0.064*
O2W	0.2508 (2)	0.40630 (17)	0.58160 (14)	0.0418 (5)
H21	0.3131	0.3740	0.6167	0.063*
H22	0.2585	0.3688	0.5372	0.063*
N1	0.1453 (2)	0.59582 (18)	0.45394 (15)	0.0317 (5)
N2	-0.0044 (2)	0.65070 (19)	0.50159 (16)	0.0342 (5)
N3	-0.5476 (4)	0.9086 (3)	0.8164 (3)	0.0864 (12)
N4	0.4309 (4)	0.7733 (3)	0.1324 (2)	0.0737 (9)
N5	0.1458 (6)	1.0356 (3)	0.6066 (3)	0.1009 (15)
C1	0.4525 (3)	0.4821 (2)	0.33231 (18)	0.0318 (6)
C2	0.5816 (3)	0.4342 (3)	0.2632 (2)	0.0423 (7)
H2	0.6845	0.4099	0.2766	0.051*
C3	0.5579 (4)	0.4229 (3)	0.1763(2)	0.0557(10)
C4	0.4067 (4)	0.4603(3)	0.1528(2)	0.0636 (11)
H4	0 3913	0.4531	0.0935	0.076*
C5	0.2821(4)	0.5078 (3)	0.2195(2)	0.078
Н5	0.1808	0.5328	0.2043	0.064*
П5 Сб	0.2981(3)	0.5520	0.30952 (19)	0.0353 (6)
C7	0.2501(3) 0.1548(3)	0.5210(2) 0.5754(2)	0.30932(19)	0.0355(0)
С7 H7	0.0612	0.5976	0.3460	0.043*
C8	0.8333(4)	0.3326(4)	0.1248 (3)	0.045
H8A	0.8215	0.2755	0.1248 (3)	0.092*
HSB	0.8215	0.3890	0.1418	0.092
C9	0.0017 0.9403 (4)	0.3870(4)	0.1410 0.0367(3)	0.0756(13)
C10	1,0033(5)	0.2870(4) 0.1770(4)	0.0307(3)	0.0736(13)
U10	0.0775	0.1770 (4)	0.0401 (3)	0.0030 (14)
C11	1 1050 (5)	0.1317 0.1345(5)	-0.0403(4)	0.100°
	1.1050 (5)	0.1343 (3)	-0.0388	0.1038 (19)
C12	1.1470	0.0007	-0.1226(4)	0.125°
	1.1420 (3)	0.2034 (0)	-0.1220 (4)	0.117(2)
П12А С12	1.2100	0.1/4/	-0.1762	0.141°
U13	1.0815 (0)	0.3122(0)	-0.1277(3)	0.119 (2)
П15	1.1004	0.3509	-0.1840	0.143°
U14	0.9792 (5)	0.3550 (5)	-0.0451(5)	0.107 (2)
H14	0.9385	0.4291	-0.0463	0.128*
	0.0093(3)	0.6707(2)	0.5845(2)	0.0341(6)
C16	-0.1380(3)	0.7329 (3)	0.6438(2)	0.0400 (7)
	-0.2891 (4)	0.7343 (3)	0.0213 (3)	0.0036 (11)
HI/	-0.3014	0.7294	0.56/2	0.0750 (12)
	-0.4227 (4)	0.8118 (4)	0.0775 (3)	0.0750 (13)
HIS	-0.5244	0.8258	0.0015	0.090*
C19	-0.4044 (4)	0.8476 (3)	0.7558 (2)	0.0592 (10)

C20	-0.2586 (5)	0.8284 (4)	0.7814 (3)	0.0735 (12)	
H20	-0.2484	0.8538	0.8358	0.088*	
C21	-0.1248 (4)	0.7701 (3)	0.7250 (2)	0.0640 (11)	
H21A	-0.0242	0.7558	0.7422	0.077*	
C22	0.4572 (5)	0.7448 (4)	0.2167 (3)	0.0716 (11)	
H22A	0.5382	0.6853	0.2235	0.086*	
C23	0.3069 (8)	0.8619 (6)	0.1161 (4)	0.140 (3)	
H23A	0.2534	0.8919	0.1745	0.209*	
H23B	0.2276	0.8364	0.0914	0.209*	
H23C	0.3560	0.9170	0.0714	0.209*	
C24	0.5236 (7)	0.7171 (5)	0.0517 (3)	0.1112 (18)	
H24A	0.5928	0.6536	0.0726	0.167*	
H24B	0.5903	0.7649	0.0082	0.167*	
H24C	0.4490	0.6955	0.0208	0.167*	
C25	0.1844 (8)	0.9403 (5)	0.5711 (5)	0.117 (2)	
H25	0.0983	0.9047	0.5696	0.140*	
C26	0.2699 (10)	1.0969 (5)	0.6094 (5)	0.154 (3)	
H26A	0.3686	1.0741	0.5638	0.231*	
H26B	0.2919	1.0848	0.6715	0.231*	
H26C	0.2327	1.1731	0.5948	0.231*	
C27	-0.0180 (10)	1.0771 (7)	0.6473 (7)	0.231 (6)	
H27A	-0.0907	1.0479	0.6201	0.347*	
H27B	-0.0347	1.1551	0.6353	0.347*	
H27C	-0.0405	1.0565	0.7143	0.347*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01855 (17)	0.0461 (2)	0.0311 (2)	0.00660 (13)	-0.00672 (12)	-0.01827 (16)
01	0.0220 (8)	0.0457 (11)	0.0290 (9)	0.0055 (7)	-0.0087 (7)	-0.0184 (8)
O2	0.0481 (13)	0.146 (3)	0.0468 (14)	0.0433 (15)	-0.0216 (11)	-0.0589 (16)
O3	0.0269 (9)	0.0638 (14)	0.0375 (11)	0.0146 (9)	-0.0110 (8)	-0.0266 (10)
O4	0.112 (3)	0.172 (4)	0.078 (2)	0.064 (3)	0.000 (2)	-0.070 (3)
O5	0.0563 (18)	0.172 (4)	0.112 (3)	0.052 (2)	0.0070 (18)	-0.047 (3)
O6	0.102 (2)	0.088 (2)	0.0554 (17)	-0.0048 (17)	-0.0103 (16)	-0.0082 (16)
O7	0.107 (3)	0.082 (2)	0.141 (3)	0.0190 (19)	-0.040(2)	-0.057 (2)
O1W	0.0339 (9)	0.0425 (12)	0.0517 (13)	0.0051 (8)	-0.0118 (9)	-0.0151 (10)
O2W	0.0310 (9)	0.0549 (13)	0.0406 (11)	-0.0009 (9)	-0.0097 (8)	-0.0127 (10)
N1	0.0199 (9)	0.0416 (13)	0.0329 (12)	0.0058 (9)	-0.0055 (8)	-0.0154 (10)
N2	0.0183 (9)	0.0465 (14)	0.0357 (13)	0.0085 (9)	-0.0059 (9)	-0.0154 (11)
N3	0.068 (2)	0.098 (3)	0.063 (2)	0.040 (2)	0.0104 (18)	-0.018 (2)
N4	0.077 (2)	0.086 (3)	0.059 (2)	-0.0139 (19)	-0.0130 (17)	-0.0139 (19)
N5	0.122 (3)	0.056 (2)	0.092 (3)	0.019 (2)	0.013 (3)	-0.009(2)
C1	0.0273 (12)	0.0396 (16)	0.0297 (14)	0.0007 (11)	-0.0080 (10)	-0.0129 (12)
C2	0.0291 (13)	0.062 (2)	0.0350 (15)	0.0114 (13)	-0.0103 (11)	-0.0213 (14)
C3	0.0397 (16)	0.090 (3)	0.0365 (17)	0.0191 (16)	-0.0108 (13)	-0.0355 (18)
C4	0.0478 (17)	0.105 (3)	0.0419 (18)	0.0241 (18)	-0.0237 (14)	-0.041 (2)
C5	0.0361 (15)	0.085 (3)	0.0425 (18)	0.0159 (15)	-0.0205 (13)	-0.0292 (18)
C6	0.0293 (12)	0.0473 (17)	0.0312 (14)	0.0022 (11)	-0.0098 (11)	-0.0154 (13)
C7	0.0231 (12)	0.0492 (18)	0.0375 (15)	0.0063 (11)	-0.0126 (11)	-0.0153 (13)

C8	0.0428 (18)	0.128 (4)	0.055 (2)	0.037 (2)	-0.0175 (16)	-0.050 (2)
C9	0.0441 (18)	0.130 (4)	0.052 (2)	0.030 (2)	-0.0181 (16)	-0.050 (2)
C10	0.052 (2)	0.113 (4)	0.084 (3)	0.016 (2)	-0.007(2)	-0.054 (3)
C11	0.062 (3)	0.133 (5)	0.117 (4)	0.017 (3)	-0.006 (3)	-0.081 (4)
C12	0.055 (3)	0.209 (7)	0.091 (4)	0.021 (3)	-0.006 (3)	-0.098 (5)
C13	0.076 (3)	0.200 (7)	0.067 (3)	0.041 (4)	-0.012 (2)	-0.052 (4)
C14	0.075 (3)	0.167 (5)	0.064 (3)	0.054 (3)	-0.020 (2)	-0.049 (3)
C15	0.0235 (12)	0.0398 (16)	0.0362 (15)	0.0016 (11)	-0.0006 (11)	-0.0135 (12)
C16	0.0293 (13)	0.0493 (18)	0.0359 (16)	0.0061 (12)	-0.0020 (11)	-0.0111 (14)
C17	0.0347 (15)	0.094 (3)	0.060 (2)	0.0211 (17)	-0.0116 (15)	-0.040 (2)
C18	0.0344 (16)	0.109 (3)	0.073 (3)	0.0261 (19)	-0.0099 (16)	-0.034 (2)
C19	0.0442 (17)	0.068 (2)	0.047 (2)	0.0218 (16)	0.0072 (15)	-0.0148 (18)
C20	0.067 (2)	0.096 (3)	0.049 (2)	0.025 (2)	-0.0089 (18)	-0.036 (2)
C21	0.0402 (17)	0.093 (3)	0.054 (2)	0.0248 (17)	-0.0123 (15)	-0.032 (2)
C22	0.073 (3)	0.071 (3)	0.069 (3)	-0.016 (2)	-0.012 (2)	-0.001 (2)
C23	0.138 (5)	0.181 (7)	0.083 (4)	0.036 (5)	-0.040 (4)	-0.012 (4)
C24	0.130 (4)	0.131 (5)	0.070 (3)	-0.017 (4)	-0.006 (3)	-0.035 (3)
C25	0.102 (4)	0.094 (4)	0.150 (6)	0.002 (3)	-0.032 (4)	-0.015 (4)
C26	0.242 (9)	0.095 (5)	0.125 (6)	-0.042 (5)	-0.029 (6)	-0.015 (4)
C27	0.173 (8)	0.199 (9)	0.211 (10)	0.069 (7)	0.072 (7)	0.010 (7)

Geometric parameters (Å, °)

Ni1—N1	1.974 (2)	С8—С9	1.505 (4)
Ni1—O1	2.0237 (16)	C8—H8A	0.9700
Ni1—O3	2.0335 (17)	C8—H8B	0.9700
Ni1—O1 ⁱ	2.0456 (16)	C9—C14	1.374 (7)
Ni1—O2W	2.136 (2)	C9—C10	1.383 (6)
Nil—O1W	2.147 (2)	C10—C11	1.389 (6)
01—C1	1.323 (3)	C10—H10	0.9300
O1—Ni1 ⁱ	2.0456 (16)	C11—C12	1.383 (8)
O2—C3	1.372 (3)	C11—H11A	0.9300
O2—C8	1.434 (4)	C12—C13	1.366 (8)
O3—C15	1.282 (3)	C12—H12A	0.9300
O4—N3	1.197 (5)	C13—C14	1.416 (6)
O5—N3	1.215 (5)	C13—H13	0.9300
O6—C22	1.225 (5)	C14—H14	0.9300
O7—C25	1.186 (6)	C15—C16	1.494 (3)
O1W—H11	0.8400	C16—C17	1.373 (4)
O1W—H12	0.8400	C16—C21	1.377 (5)
O2W—H21	0.8400	C17—C18	1.377 (4)
O2W—H22	0.8400	C17—H17	0.9300
N1—C7	1.272 (3)	C18—C19	1.345 (5)
N1—N2	1.399 (3)	C18—H18	0.9300
N2-C15	1.311 (3)	C19—C20	1.352 (5)
N3—C19	1.474 (4)	C20—C21	1.384 (4)
N4—C22	1.299 (5)	C20—H20	0.9300
N4—C23	1.421 (6)	C21—H21A	0.9300
N4—C24	1.447 (5)	C22—H22A	0.9300
N5—C25	1.326 (7)	C23—H23A	0.9600

N5—C27	1.405 (7)	С23—Н23В	0.9600
N5—C26	1.426 (8)	С23—Н23С	0.9600
C1—C2	1.405 (3)	C24—H24A	0.9600
C1—C6	1.417 (3)	C24—H24B	0.9600
C2—C3	1.369 (4)	C24—H24C	0.9600
С2—Н2	0.9300	С25—Н25	0.9300
C3—C4	1.393 (4)	C26—H26A	0.9600
C4—C5	1.363 (4)	C26—H26B	0.9600
C4—H4	0.9300	C26—H26C	0.9600
C5—C6	1.396 (4)	С27—Н27А	0.9600
С5—Н5	0.9300	С27—Н27В	0.9600
С6—С7	1.440 (3)	С27—Н27С	0.9600
С7—Н7	0.9300		
N1—Ni1—O1	91.70 (8)	С10—С9—С8	119.3 (4)
N1—Ni1—O3	79.10 (8)	C9—C10—C11	119.8 (5)
O1—Ni1—O3	170.70 (7)	С9—С10—Н10	120.1
N1—Ni1—O1 ⁱ	171.98 (7)	C11—C10—H10	120.1
O1—Ni1—O1 ⁱ	80.54 (7)	C12—C11—C10	119.1 (5)
O3—Ni1—O1 ⁱ	108.71 (7)	C12—C11—H11A	120.4
N1—Ni1—O2W	91.81 (9)	C10—C11—H11A	120.4
O1—Ni1—O2W	88.30 (7)	C13—C12—C11	122.2 (4)
03—Ni1—02W	93.27 (8)	C13—C12—H12A	118.9
01^{i} Ni1 $-02W$	85 99 (7)	C11—C12—H12A	118.9
N1—Ni1—O1W	92 89 (9)	C12 - C13 - C14	118.3 (6)
01—Ni1— $01W$	87.03 (8)	C12 - C13 - H13	120.9
03—Ni1— $01W$	92 07 (8)	C12 - C13 - H13	120.9
$O1^{i}$ Ni1 $O1W$	88 74 (7)	$C_{14} = C_{13} = C_{13}$	120.9 120.0(5)
02W - Ni1 - 01W	173 47 (7)	$C_{P} = C_{14} = C_{15}$	120.0 (3)
C1 = O1 = Ni1	175.47 (7)	C_{13} C_{14} H_{14}	120.0
$C1 O1 Ni1^{i}$	120.05(14) 133.85(14)	$O_3 C_{15} N_2$	120.0 126.2(2)
$N_{i1} O_{i1} N_{i1}$	133.83(14) 99.46(7)	03 - 015 - 016	120.2(2) 1160(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.40(7)	$N_2 = C_{15} = C_{16}$	110.9(2) 116.0(2)
$C_{3} = 0_{2} = 0_{8}$	117.0(2) 100.58(16)	12-15-10	110.9(2) 117.7(2)
N:1 01W 111	109.58 (10)	C17 - C16 - C21	117.7(3)
NII—OIW—HII	109.5	C1/-C10-C13	122.0(3)
$\frac{111}{100} = 01 \text{ W} = 112$	109.5	$C_{21} = C_{10} = C_{13}$	119.7(2)
HII—OIW—HI2	109.5	C16 - C17 - C18	121.3 (3)
N11 = O2W = H21	109.5	C16—C1/—H1/	119.4
N11 - O2W - H22	109.5	C18—C17—H17	119.4
H21—O2W—H22	109.5		119.2 (3)
C/—N1—N2	117.2 (2)	С19—С18—Н18	120.4
C/—NI—Nil	127.20 (16)	C17—C18—H18	120.4
N2—N1—N11	115.54 (16)	C18—C19—C20	122.0 (3)
C15—N2—N1	109.52 (19)	C18—C19—N3	119.2 (3)
04—N3—O5	123.2 (3)	C20—C19—N3	118.8 (4)
O4—N3—C19	119.1 (4)	C19—C20—C21	118.6 (4)
O5—N3—C19	117.7 (4)	С19—С20—Н20	120.7
C22—N4—C23	120.6 (4)	C21—C20—H20	120.7
C22—N4—C24	122.3 (4)	C16—C21—C20	121.2 (3)

C23—N4—C24	117.1 (4)	C16—C21—H21A	119.4
C25—N5—C27	121.3 (7)	C20—C21—H21A	119.4
C25—N5—C26	121.2 (5)	O6-C22-N4	126.3 (4)
C27—N5—C26	117.5 (6)	O6—C22—H22A	116.8
O1—C1—C2	118.7 (2)	N4—C22—H22A	116.8
O1—C1—C6	122.7 (2)	N4—C23—H23A	109.5
C2—C1—C6	118.6 (2)	N4—C23—H23B	109.5
C3—C2—C1	120.8 (2)	H23A—C23—H23B	109.5
С3—С2—Н2	119.6	N4—C23—H23C	109.5
C1—C2—H2	119.6	H23A—C23—H23C	109.5
C2—C3—O2	125.0 (3)	H23B—C23—H23C	109.5
C2—C3—C4	121.4 (3)	N4—C24—H24A	109.5
O2—C3—C4	113.7 (3)	N4—C24—H24B	109.5
C5—C4—C3	117.8 (3)	H24A—C24—H24B	109.5
C5—C4—H4	121.1	N4—C24—H24C	109.5
C3—C4—H4	121.1	H24A—C24—H24C	109.5
C4—C5—C6	123.6 (3)	H24B—C24—H24C	109.5
C4—C5—H5	118.2	O7—C25—N5	125.0 (6)
С6—С5—Н5	118.2	O7—C25—H25	117.5
C5—C6—C1	117.8 (2)	N5—C25—H25	117.5
C5—C6—C7	116.1 (2)	N5—C26—H26A	109.5
C1—C6—C7	126.0 (2)	N5—C26—H26B	109.5
N1—C7—C6	125.6 (2)	H26A—C26—H26B	109.5
N1—C7—H7	117.2	N5—C26—H26C	109.5
С6—С7—Н7	117.2	H26A—C26—H26C	109.5
O2—C8—C9	107.1 (3)	H26B—C26—H26C	109.5
O2—C8—H8A	110.3	N5—C27—H27A	109.5
С9—С8—Н8А	110.3	N5—C27—H27B	109.5
O2—C8—H8B	110.3	H27A—C27—H27B	109.5
С9—С8—Н8В	110.3	N5—C27—H27C	109.5
H8A—C8—H8B	108.5	H27A—C27—H27C	109.5
C14—C9—C10	120.6 (4)	H27B—C27—H27C	109.5
C14—C9—C8	120.0 (4)		
N1—Ni1—O1—C1	3.8 (2)	N2—N1—C7—C6	179.3 (3)
O1 ⁱ —Ni1—O1—C1	-178.2 (3)	Ni1—N1—C7—C6	0.9 (4)
O2W—Ni1—O1—C1	95.6 (2)	C5-C6-C7-N1	-179.4 (3)
O1W—Ni1—O1—C1	-89.0 (2)	C1—C6—C7—N1	-0.7 (5)
N1—Ni1—O1—Ni1 ⁱ	-177.97 (9)	C3—O2—C8—C9	179.7 (4)
O1 ⁱ —Ni1—O1—Ni1 ⁱ	0.0	O2—C8—C9—C14	62.8 (5)
O2W-Ni1-O1-Ni1 ⁱ	-86.21 (8)	O2—C8—C9—C10	-119.4 (4)
O1W-Ni1-O1-Ni1 ⁱ	89.22 (8)	C14—C9—C10—C11	-0.9 (7)
N1—Ni1—O3—C15	0.94 (19)	C8—C9—C10—C11	-178.6 (4)
O1 ⁱ —Ni1—O3—C15	-177.14 (18)	C9—C10—C11—C12	0.2 (7)
O2W—Ni1—O3—C15	-90.27 (19)	C10-C11-C12-C13	-0.3 (8)
O1W—Ni1—O3—C15	93.49 (19)	C11—C12—C13—C14	1.0 (8)
O1—Ni1—N1—C7	-2.0 (3)	C10-C9-C14-C13	1.6 (7)
O3—Ni1—N1—C7	176.7 (3)	C8—C9—C14—C13	179.3 (4)
O2W—Ni1—N1—C7	-90.3 (3)	C12—C13—C14—C9	-1.6 (8)

O1W—Ni1—N1—C7	85.2 (3)	Ni1—O3—C15—N2	0.0 (4)
O1—Ni1—N1—N2	179.60 (17)	Ni1-03-C15-C16	-179.2 (2)
O3—Ni1—N1—N2	-1.74 (17)	N1—N2—C15—O3	-1.5 (4)
O2W—Ni1—N1—N2	91.25 (18)	N1—N2—C15—C16	177.8 (2)
O1W—Ni1—N1—N2	-93.29 (18)	O3—C15—C16—C17	-170.8 (3)
C7—N1—N2—C15	-176.4 (3)	N2-C15-C16-C17	9.9 (5)
Ni1—N1—N2—C15	2.2 (3)	O3—C15—C16—C21	8.6 (5)
Ni1-01-C1-C2	175.7 (2)	N2-C15-C16-C21	-170.7 (3)
Ni1 ⁱ —O1—C1—C2	-1.8 (4)	C21—C16—C17—C18	0.6 (6)
Ni1-01-C1-C6	-4.7 (4)	C15—C16—C17—C18	-180.0 (3)
Ni1 ⁱ —O1—C1—C6	177.80 (19)	C16—C17—C18—C19	0.0 (7)
O1—C1—C2—C3	178.1 (3)	C17—C18—C19—C20	-0.2 (7)
C6—C1—C2—C3	-1.6 (5)	C17-C18-C19-N3	-179.6 (4)
C1—C2—C3—O2	-179.7 (3)	O4—N3—C19—C18	-176.6 (5)
C1—C2—C3—C4	1.3 (6)	O5—N3—C19—C18	3.4 (6)
C8—O2—C3—C2	3.4 (6)	O4—N3—C19—C20	4.0 (7)
C8—O2—C3—C4	-177.6 (4)	O5—N3—C19—C20	-176.0 (4)
C2—C3—C4—C5	-0.6 (6)	C18—C19—C20—C21	0.0 (7)
O2—C3—C4—C5	-179.6 (4)	N3—C19—C20—C21	179.3 (4)
C3—C4—C5—C6	0.1 (6)	C17—C16—C21—C20	-0.9 (6)
C4—C5—C6—C1	-0.4 (5)	C15—C16—C21—C20	179.7 (3)
C4—C5—C6—C7	178.5 (4)	C19—C20—C21—C16	0.6 (7)
O1—C1—C6—C5	-178.6 (3)	C23—N4—C22—O6	-1.4 (8)
C2-C1-C6-C5	1.1 (4)	C24—N4—C22—O6	179.2 (4)
O1—C1—C6—C7	2.7 (5)	C27—N5—C25—O7	-175.0 (7)
<u>C2C1C6C7</u>	-177.6 (3)	C26—N5—C25—O7	1.6 (10)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H11…O6	0.84	2.00	2.702 (4)	140
O1 <i>W</i> —H12···O7	0.84	1.98	2.674 (4)	139
$O2W$ —H21···O1 W^{i}	0.84	2.40	2.862 (2)	115
O2 <i>W</i> —H22…N2 ⁱⁱ	0.84	2.43	2.908 (3)	117
C2—H2···O3 ⁱ	0.93	2.36	3.217 (3)	153
C18—H18…O7 ⁱⁱⁱ	0.93	2.43	3.257 (6)	147
C26—H26 <i>B</i> ····O5 ^{iv}	0.96	2.56	3.320 (8)	136
C22—H22 <i>A</i> ··· <i>Cg</i> 4	0.93	2.95	3.440 (5)	115
C23—H23 B ···Cg5 ^v	0.96	2.94	3.89 (8)	172

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z.