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Abstract

Introduction

Phenotype-driven rare disease gene prioritization relies on high quality curated resources

containing disease, gene and phenotype annotations. However, the effectiveness of gene

prioritization tools is constrained by the incomplete coverage of rare disease, phenotype

and gene annotations in such curated resources.

Methods

We extracted rare disease correlation pairs involving diseases, phenotypes and genes from

MEDLINE abstracts and used the information propagation algorithm GCAS to build an asso-

ciation network. We built a tool called PRIORI-T for rare disease gene prioritization that

uses this network for phenotype-driven rare disease gene prioritization. The quality of dis-

ease-gene associations in PRIORI-T was compared with resources such as DisGeNET and

Open Targets in the context of rare diseases. The gene prioritization performance of PRI-

ORI-T was evaluated using phenotype descriptions of 230 real-world rare disease clinical

cases collated from recent publications, as well as compared to other gene prioritization

tools such as HANRD and Orphamizer.

Results

PRIORI-T contains qualitatively better associations than DisGeNET and Open Targets. Fur-

thermore, the causal genes were captured within Top-50 for more than 40% of the real-

world clinical cases and within Top-300 for more than 72% of the cases when PRIORI-T

was used for gene prioritization. It outperformed other gene prioritization tools such as

HANRD and Orphamizer that primarily rely on curated resources.

Conclusions

PRIORI-T exhibited improved gene prioritization performance without requiring high quality

curated data. Thus, it holds great promise in phenotype-driven gene prioritization for rare

disease studies.
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1 Introduction

One of the major challenges in genomic medicine, especially for rare diseases, is the identifica-

tion of causal genomic variants by establishing their relationship to the observed clinical phe-

notypes of patients [1]. Known associations between various biomedical entities such as genes,

diseases and phenotypes from curated resources such as Orphanet [2] are crucial for discover-

ing novel phenotype-genotype and for disease gene prioritization. However, structured

resources suffer from low coverage and from not being up to date, often because the curation

effort is both time and labor-intensive [3, 4]. A significant fraction of known associations is

mentioned only in unstructured biomedical literature [5], implying a need for gene prioritiza-

tion tools that make use of associations extracted using text-mining.

Computational deep phenotyping is now considered an important aid in the analysis of

genomic data for personalized genomic medicine. Tools such as Phenomizer [6], Orphamizer

(a version of Phenomizer that uses Orphanet) [6] and HANRD [7] use a list of phenotype

terms as input to find potential candidate diseases and their corresponding causal genes. These

tools use associations from curated resources such as Orphanet, HPO [8] and OMIM [9],

amongst others. Tools such as Beegle [10] extract disease-gene associations from MEDLINE

for disease-gene prioritization. Such tools focus mainly on extracting disease-gene associations

from literature. However, Beegle is broad-based and lacks focus on rare disease associations.

Previous studies have suggested that use of a rare disease-centric corpus as well as specialized

search are better than more generic databases and search tools in rare disease diagnosis [11,

12]. The potential of using text-mining of disease-phenotype associations from clinical case

reports as a means of improving the performance of phenotype-driven differential-diagnosis

systems for rare diseases has been reported [13].

We try to address these challenges by building a rare disease gene prioritization tool called

PRIORI-T. PRIORI-T uses a comprehensive set of correlation pairs such as disease-gene, phe-

notype-phenotype and phenotype-disease extracted from a corpus of rare disease MEDLINE

abstracts for gene prioritization. We have previously described TPX, a web-based text-mining

tool that supports real-time entity assisted search and navigation of the MEDLINE repository

whilst continuing to use PubMed as the underlying search engine [14]. The dictionary-based

named entity recognition (NER) module of TPX was repurposed and used in PRIORI-T for

identifying entities such as rare diseases, phenotypes and genes in MEDLINE abstracts. Pairwise

correlations were computed between these co-occurring entities using Pearson correlation coef-

ficient and an initial correlation network (ICN) was constructed using these correlations.

However, such a network is bereft of indirect associations that could link nodes not directly

connected to each other. We used the information propagation algorithm GCAS (Graph Con-
volution-based Association Scoring) [7] to propagate information across the correlation pairs in

the ICN to infer indirect associations. The ICN was augmented with these inferred associations

and the resulting network is referred to as association network (ASN). The ASN was used by

PRIORI-T’s Gene Prioritization module for rare disease gene prioritization. The input to

PRIORI-T is a list of phenotypes obtained from a clinical case and the output a ranked list of

genes that could possibly contain the causal gene(s). PRIORI-T was evaluated using the

curated disease data from Orphanet using the associated causal gene information, as well as

text-mining based resources such as BeFree [5] and Open Targets [15]. It was also evaluated

on 230 real-world clinical cases collated from recent publications [16, 17, 18, 19].

2 Materials and methods

In this section, we first describe the modules of PRIORI-T (Fig 1): (a) Rare Disease Dictionary

Curation module, which creates rare disease specific dictionaries from resources such as HPO,
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Orphanet and HGNC; (b) Rare Disease Annotator to identify entities relevant to rare diseases

using the above dictionaries; (c) Rare Disease MEDLINE Processor, where MEDLINE

abstracts pertinent to rare diseases were processed and annotated for diseases, phenotypes and

genes; (d) Network Creation module, which uses the Correlation Extraction (CE) module to

construct an initial correlation network (ICN), and further augments this ICN using the infer-

ence algorithm GCAS to construct the final association network (ASN); and (e) Gene Prioriti-

zation module, which performs phenotype driven gene prioritization using the ASN. Modules

(a)-(d) described above are part of the precomputation phase, while (e) is the gene prioritiza-

tion phase.

We then evaluate the quality of associations in PRIORI-T against data from curated and

text-mining resources. Finally, we performed gene prioritization using PRIORI-T on a dataset

of 230 solved rare disease clinical cases compiled from four recent publications.

2.1 Modules of PRIORI-T

a) Rare disease dictionary curation. We created human rare disease domain-specific dic-

tionaries using HPO [8], Orphanet [2] and HGNC [20] as the main data resources. We aug-

mented the dictionaries using text patterns as well as MeSH mappings provided by Orphanet

and HPO. The dictionaries for phenotypes, rare diseases and genes were created using HPO

(accessed May 7, 2019), Orphanet (accessed June 27, 2019) and HGNC (accessed May 7, 2019)

respectively. The terms from Orphanet and HPO were also augmented by corresponding

MeSH terms obtained using their MeSH mappings. Manual inspection yielded some missing

synonyms that were then added to the dictionary.

We observed issues of overlaps, ambiguity and coverage, both within a particular dictionary

type and across dictionary types [Table 1]. To address these issues, we used a semi-automated

dictionary curation process to build individual dictionaries [21].

Overlaps within a dictionary were disambiguated in a semi-automated manner, while enti-

ties that overlapped across dictionaries were manually disambiguated. The remaining entities

were left as-is in the dictionaries and resolved using the Rare Disease Conflict Resolver module

described later below. Furthermore, noisy acronyms and high-level entities were removed

after analyzing the frequencies of their occurrences across MEDLINE. The term counts of dis-

ease, phenotype and gene dictionaries before and after the curation are shown in [Table 2].

b) Rare disease MEDLINE processor. The rare disease MEDLINE processor first fetches

all MEDLINE abstracts (29 million abstracts). In order to consider only those MEDLINE

abstracts that were relevant to rare diseases, it then filters out abstracts that did not contain at

least one Orphanet rare disease term. It obtained 2.4 million abstracts containing at least one

rare disease term which were considered for analysis. This acts as a means of using only those

abstracts that have a rare disease context.

c) Rare disease annotator. The Rare Disease Annotator comprises of 1) NER module that

annotates rare disease abstracts, from the MEDLINE processor using the rare disease dictio-

naries, and 2) Conflict Resolver (CR) module that performs entity disambiguation by resolving

conflicts between multiple annotations. These modules were repurposed from the TPX text-

mining framework.

The NER module from TPX was repurposed to identify phenotype, rare disease and gene

term mentions in the text using the curated rare disease dictionaries described above. To sepa-

rately handle each rare disease entity type, individual NER modules were developed. For

instance, rare disease terms in the text are tokenized and matched differently compared to

gene terms. Additionally, the NER module uses separate entity specific stop word lists for

removing stop words corresponding to each dictionary type. The CR module then resolves the
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conflicts due to overlapping entity annotations. The CR uses a simple entity disambiguation

rule—”Phenotype wins over Disease wins over Gene” to resolve conflicts across these entity

types. We found that 95.5% of the conflicts across entity types resolved by CR were phenotype-

disease while 2.2% and 2.3% were phenotype-gene and disease-gene conflicts respectively. The

Rare Disease Annotator identified 6282 diseases, 8043 phenotypes and 14,430 genes in these

2.4 million abstracts.

d) Construction of initial correlation network (ICN) and association network (ASN).

The Correlation Extraction module uses the Pearson correlation coefficient to compute pair-

wise correlations between entities identified by the Annotator. To compute the pair-wise cor-

relation for the pair (a, b), we used the standard Pearson correlation expression

ra;b ¼
Pða; bÞ � PðaÞPðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðaÞPðbÞð1 � PðaÞÞð1 � PðbÞÞ

p

where P(a, b) denotes the joint probability of co-occurrence of entities a and b. Terms P(a)

and P(b) denote the marginal probabilities of occurrences of entities a and b respectively.

These probability values are estimated from the corpus.

We computed pair-wise correlations both at the sentence level and at the abstract level.

Based on our evaluations, we decided to include only the correlations computed at the abstract

level to build the initial correlation network. The network built using these pairwise correla-

tions constitutes the Initial Correlation Network (ICN). The entities are the nodes of this

Fig 1. PRIORI-modules: (a) Rare Disease Dictionary Curation module, (b) Rare Disease Annotator (c) Rare Disease

MEDLINE Processor (d) Network Creation module (e) Gene Prioritization module.

https://doi.org/10.1371/journal.pone.0231728.g001

Table 1. Examples of overlaps within and across dictionaries.

Overlap Type Entity ID1 ID2

HGNC cox2 HGNC:7421 HGNC:9605

nat3 HGNC:14679 HGNC:15908

Orphanet-HPO submucosal cleft palate ORPHA:155878 HP:0000176

fulminant hepatic failure ORPHA:90062 HP:0004448

HGNC-HPO Paroxysmal nocturnal hemoglobinuria HGNC:8957 HP:0004818

Warts HGNC:6514 HP:0200043

HGNC-Orphanet cayman ataxia HGNC:779 ORPHA:94122

spg71 HGNC:17277 ORPHA:401840

https://doi.org/10.1371/journal.pone.0231728.t001
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network and the pair-wise correlations are represented using undirected weighted edges

where the edge weight corresponds to the correlation strength.

Relying only on these direct associations in the ICN can be a limiting factor for tasks such

as gene prioritization. Hence, we used the information propagation algorithm GCAS (Graph
Convolution-based Association Scoring) [7] that uses graph convolution to propagate informa-

tion between unconnected entities in a network in order to mine indirect associations between

these entities.

GCAS uses graph convolution to propagate information between entity pairs in a network

and uses this propagated information to assign association scores between entity pairs which

are not connected by direct links. Information propagation on a network consisting of n nodes

is viewed as propagation of an n-dimensional signal x on the network corresponding to the

graph G, which in turn corresponds to convolving the signal x with a filter g. Using methods

from graph signal processing and spectral graph theory [22], this can be expressed as a point-

wise multiplication of the graph Fourier transforms of the signal and the filter computed with

respect to the given graph G. The goal then to design a filter g that achieves the desired signal

propagation on G. GCAS uses first-order approximation of the convolution with a reduced

parameter space. Suitable choices for the parameters are computed based on its performance

on random sub-networks. Under this simplified model, the information propagated to the t-th

order neighbor of a node is obtained by t consecutive application of the one-step convolution.

The ICN augmented with the inferred associations computed using GCAS is referred to as

the Association Network (ASN).

e) Gene prioritization module. The ASN is used by the gene prioritization module of

PRIORI-T for rare disease gene prioritization. The input to this module is a list of phenotypes

from a clinical case. These are used to search the ASN and come up with an output list of

ranked genes.

2.2 Quality evaluation of PRIORI-T associations

A pragmatic way to assess the quality of associations in PRIORI-T is to compare it against

curated [5] as well as text-mining resources. PRIORI-T was compared with the curated Orpha-

net disease-gene associations as follows: For each disease in Orphanet, the ROC (Receiver

Operating Characteristic) curve and its AUC (Area Under the Curve) score [23] were com-

puted by looking at the ranks of the known genes associated with the disease amongst all its

gene neighbors in PRIORI-T. Gene neighbors are the direct neighbors of the disease in the

PRIORI-T network (ASN). In AUCN, the ROC curve is computed with respect to the relative

ordering of all the true gene neighbors and the first N false neighbors within the given order-

ing. AUCN essentially corresponds to the probability that, in a given ordering, a randomly

picked true neighbor appear before a randomly picked false neighbor from among the first N

false neighbors in the ordering. As a consequence, AUCN< = AUCOverall for all N. The average

AUCOverall and AUCN scores for PRIORI-T were plotted. We also evaluated the ICN and ASN

associations by comparing with Orphanet associations. Additionally, we compared the correla-

tions derived from a sentence with those derived from the entire abstract.

Table 2. Dictionary term counts before and after curation.

Dictionary Main Resource Additional Resource(s) Before Curation After Curation

Disease 22,546 20,294 42,840 45,856

Phenotype 30,812 17,915 48,727 55,183

Gene 80,832 5 80,832 82,387

https://doi.org/10.1371/journal.pone.0231728.t002
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We also evaluated DisGeNET and Open Targets data, where, for each disease term, the

gene(s) from these datasets are compared against Orphanet. Towards this, the ROC score was

computed by looking at the ranks of the genes associated with each Orphanet disease amongst

all its gene neighbors in DisGeNETBeFree and Open TargetsLiterature respectively. DisGeNETBe-

Free refers to the rare disease related DisGeNET associations extracted using the BeFree tool,

and Open TargetsLiterature refers to the rare disease related text-mining-derived Open Targets

associations. The AUCN value of the ROC curve of DisGeNETBeFree and Open TargetsLiterature

were plotted against Orphanet disease-gene associations. Additionally, we included all rare-

disease related disease-gene associations from DisGeNET and Open Targets instead of only

the text-mining associations and plotted the AUCN value of the ROC curve.

2.3 Gene prioritization using PRIORI-T

PRIORI-T was used for rare disease gene prioritization on a dataset of 230 solved rare disease

real-world clinical cases compiled from four recent publications [16, 17, 18, 19]. This dataset

(S1 File) had a list of clinical phenotype terms for each case, the diagnosed disease(s) and the

identified causal gene(s), amongst other fields. We used the Rare Disease Annotator to assign

HPO codes to the clinical phenotype terms. However, for those clinical phenotype terms

which couldn’t be coded by our annotator, we manually assigned appropriate HPO codes. We

corroborated all the HPO codes before using them in the gene prioritization module. For each

case, the input query to PRIORI-T gene prioritization module was its HPO IDs representing

the clinical phenotype and the output is a ranked list of genes associated with the input. To

avoid any bias, we excluded the four publications and their associated 329 citations from the

corpus of MEDLINE abstracts used in PRIORI-T. The percentage of input cases where the

causal gene appeared within a Top-k of this ranked list of genes was computed.

We additionally compared the Top-k ranks for these 230 clinical cases against other gene

prioritization tools such as HANRD and Orphamizer. The percentage of input cases where the

causal gene appeared within a Top-k of this ranked list of genes was computed for each of

these tools. Furthermore, we included two additional variants of PRIORI-T to study the impact

of curated associations and inferred associations in the gene prioritization task. The first is a

hybrid network of curated associations from HANRD along with the ICN. In this network, we

considered the association score as-is if the association exists in either one but not in the other.

We also considered the score of the curated association from HANRD if there is an overlap of

edges. GCAS was run on this hybrid network to infer associations and the PRIORI-T

(HANRDINITIAL+ICN) instance created. Gene prioritization was performed using PRIORI-T

(HANRDINITIAL+ICN) and Top-k ranks were computed. The second PRIORI-T variant net-

work consisted of only the ICN in PRIORI-T to create a PRIORI-TICN instance and the Top-k
ranks were computed. This was done to assess the significance of the inferred associations.

3 Results

A total of 3.45 million (3,452,672) correlated pairs were computed from the 2.36 million

(2,35,9264) MEDLINE abstracts. Negatively correlated pairs were excluded from this, resulting

in a total of 2.9 million (2,937,220) correlated pairs. The ICN is built using these correlation

pairs, where each edge corresponds to a correlated pair and the edge weight is the Pearson

score. S1 File shows the counts of the different correlation pair types in the ICN. S1 File shows

the counts of the different correlation pair types in the ASN. The ASN is the default network

used by PRIORI-T in this study.
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3.1 Quality evaluation of PRIORI-T associations

Fig 2A shows the AUCN comparison of PRIORI-T against Orphanet disease-gene associations.

For each disease in Orphanet, the ROC score was computed by looking at the ranks of the

linked genes associated with the disease amongst all its gene neighbors in PRIORI-T. As seen

in the figure, PRIORI-T achieved an AUC score of 87% in Top-50, and an overall AUC of

more than 94% respectively. Thus, PRIORI-T exhibited better AUC when compared against

Orphanet. Fig 2A also shows the AUCN value for DisGeNETBeFree and Open TargetsLiterature in

comparison to Orphanet disease-gene associations. As seen in the figure, PRIORI-T had better

AUC score when compared DisGeNETBeFree and Open TargetsLiterature. Similarly, Fig 2B

shows the AUCN value of the ROC curve of rare disease specific DisGeNET and Open Targets

when compared to Orphanet disease-gene associations. As seen, PRIORI-T had improved

AUC scores when compared to the text-mining specific DisGeNET and Open Targets as well

as the complete DisGeNET and Open Targets associations.

3.2 Rare disease gene prioritization using PRIORI-T

PRIORI-T was used for rare disease gene prioritization on a dataset of 230 real-world rare dis-

ease clinical cases compiled from four recent publications. Fig 3 shows the Top-k distribution

of the causal genes on the 230 rare disease clinical cases from these publications. As seen here,

PRIORI-T captured causal gene(s) for more than 40% of the cases in Top-50 and more than

72% of the cases in Top-300. In comparison, HANRD captured 30% and 62% respectively.

Thus, PRIORI-T ranks the known causal gene for most of the cases higher than HANRD,

despite HANRD having the benefit of curated associations from Orphanet. Both PRIORI-T

and HANRD performed better than Orphamizer. Gene prioritization was also performed on

the combined network PRIORI-T(HANRDINITIAL+ICN) constructed using the curated associ-

ations of HANRD and the ICN. As seen in the figure, there is no significant improvement in

the performance of the combined approach over PRIORI-T because ICN itself accounted for

most of the curated associations. This shows that correlation networks can provide competing

performance when compared to high quality curated resources. Furthermore, using PRIORI-T

on the default ASN identified causal gene(s) for 8 more cases than PRIORI-TICN, indicating an

improved recall when inferred associations are included. Thus, PRIORI-T on the default ASN

achieved a performance which was comparable to that of PRIORI-T(HANRDINITIAL+ICN)

without using any curated data resources. Thus, PRIORI-T, containing only textual correla-

tions and inferred associations suffices for the task of gene prioritization.

To explore the effect of inferred associations on recall, MEDLINE abstracts published until

1994, 2004 and 2018 (as of June 1st, 2018) respectively were used to create three datasets of

abstracts. We performed the prioritization task by using PRIORI-T on the ICN and ASN and

plotted the results (Fig 4). We observed that the inferred associations of ASN contributed to a

significant improvement in Top-k recall after Top-100 for the 1994 and 2004 datasets. How-

ever, the inferred associations of ASN had lesser effect on recall for the 2018 dataset. The 1994

and 2004 datasets had relatively smaller number of abstracts related to these 230 cases than the

2018 dataset and therefore the ICN had lower number of relevant correlation pairs. Thus,

inferred associations are able to improve the overall prioritization performance when the cor-

relation pairs from the published literature are limited.

4 Discussion

We built the PRIORI-T tool for phenotype-driven rare disease gene prioritization which uses

an input list of phenotypes that describe a clinical case. The modules of PRIORI-T included a

Rare Disease Dictionary Curation module, a Rare Disease Annotator for rare disease-related
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entity annotation, the Rare Disease MEDLINE Processor, a Network Creation module to build

the ASN network combining the correlations extracted by the Correlation Extraction module

and GCAS inferred associations, and finally the Gene Prioritization module where genes are

prioritized using the ASN.

The Rare Disease Dictionary Curation module required novel rare disease-specific dictio-

naries to be built. Conflicts and overlaps amongst these dictionaries had to be resolved before

they could be used for NER in the Rare Disease Annotator module. This module identifies rare

disease-specific term mentions in the entire MEDLINE corpus. It has been shown that special-

ized query terms are required to identify such rare disease mentions in MEDLINE [24]. Aug-

menting the dictionaries with such specialized terms might improve the NER module

coverage. Another approach could be to use machine learning or deep learning based NER

techniques to better identify such disease term mentions [25].

MEDLINE abstracts relevant to rare diseases were identified by the Rare Disease MEDLINE

Processor module using terms from the disease dictionary. Given that the mention of a rare

Fig 2. (a) Comparison of the quality of associations of PRIORI-T with DisGeNETBeFree and Open TargetsLiterature using Orphanet associations. (b) Comparison of the

quality of associations of PRIORI-T with rare-disease related DisGeNET and Open Targets using Orphanet associations.

https://doi.org/10.1371/journal.pone.0231728.g002

Fig 3. The cumulative percentage of causal genes found in Top-k when gene prioritization was performed on 230

real-world rare disease clinical cases using HANRD, PRIORI-T, PRIORI-T(HANRDINITIAL+ICN) and

Orphamizer.

https://doi.org/10.1371/journal.pone.0231728.g003
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disease term doesn’t necessarily mean the abstract is about that disease, extraneous abstracts

are also selected. Instead of this approach, we also considered using MeSH disease annotations

as a limiting parameter in the Entrez Programming Utilities (E-utilities). However, incomplete

MeSH disease annotations of PubMed abstracts prevented us from using it in this study. In the

future, we intend to explore this option as a means of selecting rare disease MEDLINE

abstracts. Some phenotype terms will co-occur with genes in many MEDLINE abstracts.

Hence, these associations might not be of much informational value. Some phenotype-gene

correlations could also have been the filtered out when filtering abstracts based on presence of

a rare disease.

Using Pearson correlation coefficient, we computed pairwise correlations between entities

identified by the Annotator at both sentence and abstract levels. Abstract-level associations

had a slightly better AUC score than those derived from a sentence level (S1 File). This could

possibly due to a higher recall resulting from using the abstract level associations and a compa-

rable precision because the final ranking of the associations is controlled by their Pearson cor-

relation strengths. These correlation pairs form what is known as the initial correlation

network (ICN). We then used the information propagation algorithm GCAS (Graph Convolu-

tion-based Association Scoring) to propagate information between unconnected entities in a

network in order to establish indirect associations between these entities. The ICN augmented

with inferred associations is referred to as the Association Network (ASN). ASN showed a bet-

ter AUC score compared to the ICN correlations (S1 File). Hence, in this study, the ASN is the

default network used by PRIORI-T.

We compared the associations in PRIORI-T with curated associations from Orphanet.

PRIORI-T had an AUC score of 87% in the top 50. One of the reasons some of the Orphanet

associations are missing in PRIORI-T could be that Orphanet curators rely on comprehensive

associations found in full-text articles, rather than only on abstracts, which have limited cover-

age. Extracting correlation pairs from full-text repositories such as PubMed Central might

help in capturing some of these ‘missing’ associations. Another reason could be due to the

untagged disease term mentions as discussed above. The PRIORI-T associations also con-

tained several novel association pairs that were not present in Orphanet (some examples are

shown in S1 File). While these pairs look promising from a manual inspection, these need a

careful evaluation to filter out any false positives. These could either be due to abstracts not

being relevant to rare diseases getting included or the CE module extracting associations that

Fig 4. The Top-k distribution of the causal genes plotted for each the three time-series datasets–up to 1994, 2004

and 2018 for both ICN and ASN.

https://doi.org/10.1371/journal.pone.0231728.g004
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are negatively or speculatively associated. Thus, it is clear that only after comprehensive analy-

sis can associations in PRIORI-T be considered for addition to resources such as Orphanet.

PRIORI-T also showed better AUC values when compared to the text-mining specific DisGe-

NET and Open Targets as well as the complete DisGeNET and Open Targets associations.

Gene prioritization using PRIORI-T was evaluated on 230 clinical cases where it was seen

that the causal genes for 40% of these cases were captured in the Top-50 and 72% in the Top-

300. This is despite the low number of phenotypes as well as their generic nature and their lim-

ited discriminative power in many of the 230 clinical cases, Moreover, PRIORI-T was seen to

outperform tools such as HANRD and Orphamizer. PRIORI-T relies on correlations extracted

from MEDLINE abstracts while our previously described tool HANRD is made up of curated

and ontological associations. However, the GCAS algorithm used to generate the inferred asso-

ciations is the same in both tools. Despite lacking curated or ontological associations, the

PRIORI-T tool outperformed the HANRD network in the rare disease gene prioritization task.

In fact, addition of curated associations to PRIORI-T showed no advantage over text-mined

associations. This could be possibly due to the availability of more correlations derived from

text-mining when compared those from curated resources. We also found an improved recall

when inferred associations are added to the MEDLINE-derived correlations in PRIORI-T.

The lack of availability of high quality and heterogeneous curated data with sufficient cover-

age can affect the success of gene prioritization tools that rely primarily on curated resources

such as Orphanet and HPO. Moreover, constructing such curated resources is manually inten-

sive. Hence, we took a different approach where our prioritization tool PRIORI-T relied on

MEDLINE-derived correlations and their inferred associations. PRIORI-T performed better

on real world cases compared with tools using curated data and was able to identify the causal

genes with high ranks. Combining a variant prioritization tool with PRIORI-T might help in a

more accurate identification of causal genes in rare disease clinical cases.

Supporting information

S1 File. The supporting file contains list of clinical phenotype terms for each of the 230

cases along with the diagnosed disease(s) and the corresponding causal gene(s). It also con-

tains all the supplementary tables and figures.

(PDF)
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