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Ultra-short pulse propagation 
model for multi-core fibers based 
on local modes
Andrés Macho Ortiz1, Carlos García-Meca1, Francisco Javier Fraile-Peláez2, Frederic Cortés-
Juan1 & Roberto Llorente Sáez1

Multi-core fibers (MCFs) have sparked a new paradigm in optical communications and open new 
possibilities and applications in experimental physics and other fields of science, such as biological 
and medical imaging. In many of these cases, ultra-short pulse propagation is revealed as a key 
factor that enables us to exploit the full potential of this technology. Unfortunately, the propagation 
of such pulses in real MCFs has not yet been modelled considering polarization effects or typical 
random medium perturbations, which usually give rise to both longitudinal and temporal birefringent 
effects. Using the concept of local modes, we develop here an accurate ultra-short pulse propagation 
model that rigorously accounts for these phenomena in single-mode MCFs. Based on this theory, we 
demonstrate analytically and numerically the intermodal dispersion between different LP01 polarized 
core modes induced by these random perturbations when propagating femtosecond pulses in the 
linear and nonlinear fiber regimes. The ever-decreasing core-to-core distance significantly enhances 
the intermodal dispersion induced by these birefringent effects, which can become the major physical 
impairment in the single-mode regime. To demonstrate the power of our model, we give explicit 
strategies to reduce the impact of this optical impairment by increasing the MCF perturbations.

In order to overcome the Shannon capacity of optical networks based on single-core single-mode fibers (SMFs), 
there has been an extensive research on space-division multiplexing (SDM) employing single-core multi-mode 
fibers (MMFs) and multi-core fibers (MCFs)1–4. In particular, single-mode multi-core fibers (SM-MCFs) allow us 
to increase the channel capacity limit of SMFs by exploiting six signal dimensions (time, wavelength, amplitude, 
phase, polarization and space) through spatial multi-dimensional modulation formats with a reduced digital 
signal processing at the receiver5–8. Interestingly, single-core fibers have also been used as an experimental plat-
form for testing different phenomena related to diverse branches of physics, such as fluid dynamics, quantum 
mechanics, general relativity and condensed matter physics, as well as to develop applications in other fields9–16. 
Along this line, MCFs are potential laboratories that could extend the possibilities offered by single-core fibers. 
As an example, disordered MCFs exhibiting transverse Anderson localization have been reported as systems with 
potential applications in biological and medical imaging15.

In many of these scenarios, ultra-short optical pulses play a key factor to exploit the full potential of MCF 
media. In optical communications, for instance, ultra-short pulses allow us to increase the bit rate to deal with 
current data traffic demand and have been proposed for different applications such as supercontinuum light gen-
eration and optical combs suitable for wavelength-division multiplexed (WDM) systems3,17–20. In experimental 
physics, ultra-short optical pulses propagating in the nonlinear fiber regime have been employed to investigate 
important physical phenomena such as fiber-optical analogues of Hawking radiation or rogue waves on deep 
water via the analysis of the nonlinear Schrödinger equation13,21. In this way, MCFs may offer a physical platform 
to investigate the collision between the nonlinear solutions of these systems from a set of coupled nonlinear 
Schrödinger equations.

For the above reasons, it is important to have available a precise theoretical model encompassing all aspects of 
ultra-short pulse propagation in MCFs. In the picosecond regime, where higher-order dispersive and nonlinear 
effects can be neglected, the Manakov equations have been extended to MCFs and MMFs to analyse the nonlinear 
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propagation of optical pulses wider than 1 ps by including polarization effects and the random longitudinal fiber 
perturbations, but omitting the temporal fluctuations of the medium and without any information of physi-
cal parameters such as the bending radius and the twist rate of the fiber22,23. Unfortunately, in the femtosecond 
regime, existing MCF propagation models exclude polarization effects and omit the temporal and longitudi-
nal random perturbations of the fiber24–32. Since such perturbations modify the birefringence properties of the 
medium and the propagation constant of the core modes33–35, they should be considered in real deployed MCF 
systems or in experimental physics studies using this kind of optical waveguides.

In order to include these realistic fiber conditions in the mathematical description of the propagation of fem-
tosecond optical pulses through a SM-MCF, we present here a theoretical model based on the concept of local 
modes, in which the aforementioned fiber perturbations and polarization effects are incorporated from the begin-
ning in the Maxwell equations. As demonstrated analytically and numerically, the intermodal dispersion induced 
by these random perturbations between different fundamental polarized core modes LP01,mi (where m indicates 
the core and i the polarization axis) can become the major physical impairment in the single-mode regime of 
the fiber when propagating ultra-short optical pulses. In this scenario, the intermodal dispersion, referred to in 
this work as the mode-coupling dispersion (MCD), is induced in the femtosecond regime not only by the mis-
matching between the propagation constants of the polarized core modes, but also by the frequency dependence 
of their mode overlapping. Remarkably, our results indicate that the random nature of the MCD, involving both 
dispersive effects and emerging from the fiber birrefringence fluctuations, should be considered for future MCF 
designs, digital signal processing (DSP) techniques and optical soliton transmissions in advanced SDM systems 
using MCFs7. In addition, it is worth mentioning that this model is general and can also be applied to SMF media. 
In the following, we first describe the proposed model in general terms, and subsequently discuss the impact of 
the MCD, indicating different strategies to reduce its effects via the use of fiber perturbations.

Results
Let us consider a real SM-MCF as a nonlinear, anisotropous and temporal dispersive medium comprising 
longitudinal and temporal birefringent effects. Longitudinal birefringence perturbations are induced via the 
photo-elastic effect by macrobending, microbending and fiber twisting35,36. Furthermore, temporal birefringence 
perturbations are induced by external environmental factors, such as temperature variations and floor vibrations 
inducing temporal changes in the MCF structure. In order to describe theoretically ultra-short pulse propagation 
in real SM-MCFs considering these random perturbations, we employ the concept of local modes35.

A local mode can be considered as an eigenfunction in a short core segment in which the perturbations of the 
ideal phase constant and the transversal function the LP01 mode are approximately constant in each polarization 
axis. Hence, each core can be modelled as a series of birefringent segments supporting local modes, in each of 
which the longitudinal and temporal MCF perturbations are approximately invariant but can fluctuate between 
adjacent segments (see Fig. 1). In this way, in contrast with previous works22–32, the fiber perturbations can be 
included from the beginning in the Maxwell equations. In ref.35, the coupled local-mode theory (CLMT) recently 
developed accounts for the MCF birefringence with a rigorous formalism, but considering monochromatic elec-
tromagnetic fields and omitting additional nonlinear effects such as the intrapulse stimulated Raman scattering. 
Consequently, the initial assumptions of the CLMT will be revisited here to develop a unified theory describing 
ultra-short pulse propagation in real MCFs.

Figure 1.  Multi-core fiber scenario of the proposed ultra-short pulse propagation model. Each core m 
propagates two polarized core modes (PCMs) LP01,mx and LP01,my through a series of birefringent segments, in 
which the longitudinal and time-varying transversal functions and phase constants of the PCMs are invariant. 
The PCMs of each birefringent segment define the fiber local modes. Only the cores a and b have been 
considered for the numerical calculations.
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Multi-core fiber local modes.  In contrast to the non-dispersive model of the CLMT35, we now assume 
non-monochromatic electric fields. Again, we consider both orthogonal polarizations in each core and a single 
optical carrier ω0. In order to simplify the mathematical analysis, let us describe the real wave function of the 
global electric field strength in the MCF structure using slowly-varying amplitude functions as in SMFs18,37–40:
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where Ei,ω0 is the slowly-varying complex amplitude of the electric field strength in the i = x, y polarization axis. It 
should be noted that the slowly-varying amplitude approximation performed in equation (1) allows us to decou-
ple the rapid temporal oscillation of the optical carrier from the slow temporal evolution of the complex ampli-
tudes of the optical pulses. Therefore, the herein proposed model is valid if and only if the Maxwell equations 
are approximately satisfied when using equation (1). However, this assumption is not fulfilled if the pulse is too 
narrow, namely around the order of the period of the optical carrier or shorter. In such a case, the decomposition 
performed in equation (1) is no longer useful and the concept of the complex amplitude itself becomes unclear40. 
In our case, the optical carrier lies in the third transmission window (around 193.1 THz), which sets the limits 
of applicability of the ansatz given by equation (1) to pulses wider than ~10 fs (with a pulse bandwidth narrower 
than ~100 THz). In additional MCF applications which require the use of a different optical band, the validity 
of equation (1) can be easily tested by verifying that the pulse bandwidth is much lower than ω0/2π. Moreover, 
considering that the intrachannel pulse-to-pulse interactions are the predominant nonlinear effects for optical 
pulses shorter than ~50 ps in single-carrier and WDM transmissions41–43, we have assumed a single optical car-
rier. Consequently, the herein presented model will allow us to describe the propagation of pulses with a temporal 
width between 10 fs and 50 ps, not only in SM-MCF single-carrier transmissions, but also in WDM systems using 
these optical fibers. Specifically, in SM-MCF WDM transmissions, the derived coupled local-mode equations (see 
below) should be numerically solved for each optical carrier of the WDM system.

The complex amplitude Ei,ω0 is the key term of the proposed model, as it will encode the MCF perturbations 
and the optical pulses. Using the perturbation theory44, Ei,ω0 can be expressed in each polarization axis i = x, y of 
a N-core MCF as a function of the polarized core modes (PCMs) “mi” (with m = 1, …, N), where mi refers to the 
LP01,mi mode associated with core m alone (i.e., in the absence of the other cores). In addition, each PCM mi can 
be understood as a series of local modes distributed along the different birefringent segments of core m. All in all, 
the complex amplitude Ei,ω0 can be expressed as:
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where Emi,ω0 is the complex amplitude of the electric field of the PCM mi associated with core m alone; ∼Ami is the 
Fourier transform of the complex envelope of the optical pulses in baseband (with Ω = ω − ω0), which includes 
the temporal birefringence fluctuations; Fmi is the transversal eigenfunction of the PCM mi; and Фmi is the com-
plex phase function of the PCM mi modelling optical attenuation and the MCF longitudinal and temporal ran-
dom perturbations:
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where α is the power attenuation coefficient of the MCF modelling optical absorption due to Rayleigh scattering 
(assumed to be similar in each PCM); and φmi is the real phase function including: (i) the ideal phase constant βmi, 
and (ii) the phase perturbation mi

(B S)β +  induced by macrobending (B) and additional longitudinal and temporal 
fiber structure fluctuations (S).

Note that equation (2) differs substantially from the ansatz assumed in the original version of the CLMT35. 
Specifically, equation (2) assumes non-monochromatic electric fields, which allows us to describe higher-order 
coupling, as well as dispersive and nonlinear effects. In addition, the following considerations on the above equa-
tions are in order:

•	 The longitudinal and temporal MCF perturbations define the birefringent segments and the local modes in 
each PCM mi. These longitudinal and temporal changes are assumed to be slowly-varying in comparison with 
the spatial and temporal duration of the complex envelope. Note that these fiber perturbations are modelled 
in the ∼Ami, Fmi and Φmi functions. Considering that the longitudinal and temporal MCF perturbations modify 
the ideal phase constant βmi(ω), thus, Fmi and ∼Ami should also be assumed to be both longitudinal and tempo-
ral dependent in order to satisfy the Maxwell equations. That is, the fiber perturbations influence not only Φmi, 
but also Ami

∼  and Fmi. The semicolon symbol is used to denote explicitly longitudinal and temporal changes 
induced by these MCF perturbations (to the right of the semicolon).

•	 The aforementioned perturbations are included in equation (2) without approximating Фmi(z, ω; t) to Фmi(z, 
ω0; t). In this way, we can describe accurately the frequency dependence of the phase-mismatching between 
local modes including the fiber birefringence. This flexibility will allow us to investigate the behaviour of the 
MCD in real SM-MCFs and the reduction of this optical impairment via the use of MCF perturbations.
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•	 When operating in the nonlinear regime, and for optical pulses shorter than 200 fs, the nuclei motion induced 
by the vibration of the electronic structure of silica atoms must be included in the constitutive relation 
between the electric field strength and the nonlinear polarization38,45. For optical frequencies well below the 
electronic transitions, the electronic contribution to the nonlinear polarization can be considered instanta-
neous. However, since protons and neutrons are considerably heavier than electrons, the nuclei motions have 
resonant frequencies much lower than the electronic transitions and, consequently, they should be retained 
in the constitutive relation. In particular, Raman scattering is a well-known effect arising from the nuclear 
contribution to the nonlinear polarization. In our model, the isotropic and anisotropic Raman response is 
modelled by the h and u functions, respectively (see below). In the Supplementary Information we provide a 
detailed description of the isotropic and anisotropic response of the nonlinear polarization with the electric 
field strength including both electronic and nuclei motions.

Coupled local-mode equations for ultra-short optical pulses.  Inserting equations (1)–(3) in the 
Maxwell equations, the complex envelopes are found to satisfy the following relation:
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where mi (z, t) is the complex envelope of the optical pulses in the time domain; Dax
(eq)ˆ  is the equivalent dispersion 

operator in the core a and x-polarization including the frequency dependence of the MCF perturbations in the time 
domain; α̂ is the attenuation operator, which accounts for the frequency dependence of the attenuation coefficient in 
the time domain; the h and u functions describe the isotropic and anisotropic Raman response, respectively; the f 
function is defined as f : = h + u; the phase-mismatching term φ φ ω φ ωΔ = −z t z t z t( ; ) : ( , ; ) ( , ; )ay ax ay ax,

(0)
0 0  

describes the phase-mismatching between the PCMs ax and ay at ω0; Max ay,
(eq)ˆ  and Kax mx,

(eq)ˆ  are, respectively, the equiv-
alent intra- and inter-core mode-coupling dispersion operators between the PCMs ax-ay and ax-mx; q̂ax

(I) and ĝax ay,
(I)  

are the nonlinear mode-coupling dispersion operators associated with the instantaneous response of the nonlinear 
polarization and accounting for the nonlinear mode overlapping between the PCMs ax-ax and ax-ay; and qax

(R)ˆ  and 
ĝax ay,

(R)  are analogous to q̂ax
(I) and ĝax ay,

(I) , but associated with the nonlinear polarization induced by the delay response 
of the nuclei motion of silica atoms (Raman effect). The theoretical model is completed by 2 N−1 additional coupled 
local-mode equations, which can be obtained just by exchanging the corresponding subindexes in equation (4). A 
comprehensive description of the mathematical derivation of these equations and the main parameters of the model 
can be found in the Supplementary Information.

The proposed coupled local-mode equation presents new interesting terms when compared with previous 
ultra-short pulse propagation models in MCF24–32. Specifically, the linear operators of equation (4) are found to 
be longitudinal and temporal dependent, instead of constant coupling coefficients and unperturbed propagation 
constants. Thanks to these linear operators, our model is able to describe accurately the linear and nonlinear 
propagation of each PCM and the linear and nonlinear MCD (also termed in the literature as the intermodal 
dispersion) between different LP01,mi modes including the longitudinal and temporal MCF perturbations.

It is worthy to note that the MCD is induced in each birefringent segment by two different dispersive effects 
when propagating femtosecond optical pulses through a MCF: (i) the frequency dependence of the local mis-
matching between the phase functions φmi(z, ω; t) of the PCMs, referred to as the phase-mismatching dispersion 
(PhMD); and (ii) the frequency dependence of the mode overlapping between the PCMs, modelled by the cou-
pling coefficients and referred to as the coupling-coefficient dispersion (CCD). As an example, the PhMD 
between the PCMs ax and mx is given by the phase-mismatching Δφmx,ax(z, ω; t) and the CCD by the coupling 
coefficients ωk z t( , ; )ax mx,  and ωk z t( , ; )mx ax, , both dispersive effects modelled by the operators Dax

(eq)ˆ , Dmx
(eq)ˆ , K̂ax mx,

(eq)
 

and K̂mx ax,
(eq)

. Along this line, note that the equivalent dispersion operators Dax
(eq)ˆ  and D̂mx

(eq)
 describe not only the 

linear propagation of the PCMs ax and mx, but also the exact phase-mismatching Δφmx,ax(z, ω; t) at each angular 
frequency ω at a given z point. Although the CCD has been previously reported considering ideal MCFs without 
birefringent effects, the CCD and the PhMD induced by these perturbations have been overlooked so far in the 
femtosecond regime24–32. However, the analysis of both physical impairments is essential to describe the propaga-
tion of ultra-short optical pulses in real MCFs perturbed by longitudinal and temporal birefringent effects. The 
first- and higher-order MCD induced by both dispersive effects will be further analysed in the next sections.
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Remarkably, the MCD can be observed in a SM-MCF between the PCMs of different cores (inter-core MCD) 
and between the PCMs of a single core (intra-core MCD). Note that the intra-core MCD is the well-known linear 
and nonlinear polarization-mode dispersion (PMD). Hence, from now on we will discuss the inter-core MCD 
(IMCD) involving mode-coupling between the PCMs of different cores.

Inter-core mode-coupling dispersion.  Although the proposed model allows us to investigate a wide 
range of propagation phenomena in MCFs, our efforts are mainly focused on a deeper understanding of the 
IMCD induced by the fiber perturbations. In order to clarify the impact of the MCF birefringence on this physical 
impairment when propagating femtosecond optical pulses, we discuss the IMCD from equation (4) by omitting 
the optical power attenuation, the PMD (intra-core MCD) and the nonlinear effects in a first approximation. 
For simplicity, to facilitate the physical interpretation and gain insight into the effects of the IMCD, let us also 
consider only two cores a and b, a single polarization axis (along the x direction), and a short MCF segment in a 
time interval where the longitudinal and temporal fiber perturbations can be assumed to be constant. Note that 
these initial assumptions allow us to investigate the IMCD in a MCF comprising cores of different characteristics: 
heterogeneous, homogeneous, coupled, uncoupled, lowly- or highly-birefringent, trench- or hole-assisted, and 
with step- or gradual-index profile.

In this case, stimulating the PCM ax at z = 0, the IMCD can be modelled in each PCM and in the MCF seg-
ment by two different linear and time-invariant (LTI) systems with the following transfer functions in baseband 
Ω = ω − ω0 (see section 2 of the Supplementary Information for more details):
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where Hax and Hbx are the transfer functions of the two LTI systems describing the IMCD effects in the PCMs ax 
and bx, respectively; βΔ bx ax,

(eq)  is the mismatching of the equivalent phase constants between the PCMs ax-bx in the 
MCF segment, including the fiber perturbations bx ax,

(B S)βΔ +  and the intrinsic phase-mismatching βΔ bx ax,  when 
considering heterogeneous cores; and 


η Ωz( , ) is the complex function defined as:
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  the coupling coefficients between the PCMs ax and bx. Furthermore, performing the 
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(eq)β βΔ = Δ Ω = Ω  and ~ ~η η= Ω = Ω: d ( 0)/dr r k( ) ), we can directly infer the main implications of 

the IMCD from equations (5):

•	 For ideal homogeneous cores without MCF perturbations βΔ =( 0)bx ax,
(eq) , it is straightforward to demonstrate 

that the impulse response of both LTI systems is proportional to the Dirac delta functions 


δ η±t z( )(1) , as 
detailed in Section 2.1 of the Supplementary Information. Therefore, the pulse splitting induced by the 
first-order CCD and predicted by Chiang24 can be observed in both cores for a MCF length L satisfying the 
condition η>L T /2P

(1)


, where TP is the temporal pulse width. In ref.32, the heterogeneous case was analysed 
following a similar approach to the original work of Chiang24, that is, considering the two-core fiber as an 
ideal optical coupler and thus omitting the realistic perturbations of the medium.

•	 The power of our model reveals itself when considering real homogeneous and heterogeneous MCFs with 
longitudinal and temporal birefringent effects inducing a significant local phase-mismatching bx ax,

(eq)βΔ . In this 
case, the LTI systems introduce an additional group delay (with opposite sign in cores a and b) induced by the 
exponential terms of equations (5), and therefore, the impulse response is found to be proportional to 
δ η β± ± Δt z z( )bx ax

(1)
,

(eq)(1)


. Note that this effect is produced by the first-order PhMD, modelled by the term 
βΔ bx ax,

(eq)(1), which accounts for the equivalent differential group delay between the PCMs ax and bx. Conse-
quently, the pulse splitting and the group delay induced by the first-order CCD and the first-order PhMD 
inherit the possible random nature of 


η (1) and bx ax,

(eq)(1)βΔ  along the MCF length (arising from the stochastic 
perturbations of the medium). In addition, the IMCD can also vary in time following the temporal fluctua-
tions of the MCF perturbations that modify the value of η (1)


 and βΔ bx ax,

(eq)(1).
•	 The increment of the MCF perturbations given by βΔ bx ax,

(eq)  increases the group delay in the non-excited core 
b, but reduces the group delay in the excited core a. Note that the transfer function Hax can be approximated 
to Hax ≈ 1 if the absolute value of the equivalent phase-mismatching bx ax,

(eq)βΔ  is much higher than the cou-
pling coefficients, as can be deduced from equations (5a) and (6). Consequently, the MCF perturbations can 
be used as a potential strategy of birefringence management to reduce the impact of the IMCD on the MCF 
transmission.
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•	 As mentioned before in the theoretical description of equation (4), and also inferred from equations (5), the 
CCD and the PhMD are induced by the frequency dependence of the coupling coefficients and the local 
phase-mismatching bx ax,

(eq)βΔ , respectively. Thus, the second- and higher-order dispersive effects of the IMCD 
will introduce an additional chirp in the optical pulses, modifying their complex envelopes. In particular, 
although the higher-order PhMD is difficult to observe between orthogonal PCMs of a given core with simi-
lar dispersive parameters (also termed in the literature as the higher-order PMD), the higher-order PhMD 
becomes an important issue when PCMs of different cores are involved. In the same way, higher-order disper-
sive effects of the CCD will also modify the complex envelopes of the optical pulses.

•	 In spite of the fact that equations (5) are only an approximate solution of the coupled local-mode equations in 
the linear regime of the fiber, these expressions also allow us to infer a fundamental behaviour of the IMCD 
in the nonlinear regime. The Kerr effect will increase bx ax,

(eq)βΔ  reducing the mode-coupling between both 
PCMs, in line with the behaviour of the nonlinear inter-core crosstalk experimentally observed in ref.34. 
Nonetheless, in general, equation (4) must be solved numerically to perform a complete analysis of the IMCD 
effects in the nonlinear regime. As we will see below, additional propagating effects will appear on the optical 
pulses induced by the MCF nonlinearities, which can only be observed when solving numerically the coupled 
local-mode equations.

These points are verified through numerical calculations of equation (4) in next section. As we will see, many 
interesting IMCD effects related to MCF perturbations that could not be addressed with previous femtosecond 
pulse propagation models24–32 emerge when using the proposed theory.

Numerical calculations.  In all the analysed cases, we considered a MCF comprising a fiber length of 
L = 40 m and two cores a and b distributed in a square lattice with a core-to-core distance dab = 26 μm and a core 
radius R0 = 4 μm, as depicted in Fig. 1. The wavelength of the optical carrier λ0 was selected to be in the third 
transmission window with λ0 = 1550 nm. The peak power of the optical pulses was taken to be 0 dBm to analyse 
the IMCD effects in the linear regime (Figs 2, 3, 4 and 6) and 40.7 dBm to investigate the impact of the medium 
perturbations on a fundamental soliton (Fig. 5). The time variable was normalized using the group delay of the 
PCM ax as a reference with tN = (t − βax

(1)z)/TP, where TP is defined in this work as the full-width at 1/2e (~18%) 
of the peak power. In order to investigate the main effects of the IMCD, different fiber parameters are considered 
in each numerical example. The specific parameters of each simulation are detailed in Tables S1 and S2 of the 
Supplementary Information.

As a first simple example, we considered a homogeneous MCF with constant bending conditions. The mate-
rial refractive index of the cores a and b and the cladding was selected to be na = nb = 1.452 and ncl = 1.444, 
respectively. Figure 2 shows the simulation results of the coupled local-mode equations when a 350-fs Gaussian 
optical pulse is launched into the PCM ax at z = 0. In this example, the linear birefringence is induced via the 
photo-elastic effect by three different constant bending radius RB = ∞, 10 cm and 1 cm, depicted in Fig. 2(a–c), 
respectively. Moreover, the chromatic dispersion [also known as group-velocity dispersion (GVD)] and the PMD 
(induced by the intrinsic random fiber birefringence) were omitted to isolate the effects of the first-order IMCD. 
In this way, the pulse is only propagated by the PCMs ax and bx.

Figure 2(a) depicts the ideal homogeneous MCF, where the pulse splitting previously observed by Chiang24 
appears induced by the first-order CCD (see Supplementary Information for more details). Moreover, it can be 

Figure 2.  First-order IMCD with constant bending conditions. Simulation results of a 350-fs Gaussian optical 
pulse propagating through a 40-m homogeneous 2-core MCF (cores a and b) with three different constant 
bending radius: (a) RB = ∞, (b) RB = 10 cm and (c) RB = 1 cm. (Colorbar: normalized intensity).
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observed from Fig. 2(b) and (c) that the lower the bending radius, the higher the phase-mismatching induced 
between the PCMs is. Therefore, an additional group delay appears in the optical pulse induced by the first-order 
PhMD, with opposite sign in the PCMs ax and bx. Specifically, note that the group delay increases in core b when 
reducing the bending radius as a direct consequence of the impulse response hbx(t) [see equations (5)], which is 
proportional to the Dirac delta function δ η β± + Δt z z( )bx ax

(1)
,

(eq)(1)


 (with βΔ bx ax,
(eq)(1) < 0 in this case). In contrast, the 

group delay decreases in core a when the bending radius is reduced [Fig. 2(c)]. As was pointed out previously, Hax 
tends to 1 as βΔ bx ax,

(eq)  increases. Furthermore, the pulse splitting is reduced in both cores because of the reduction 
of the mode-coupling induced by the fiber bending. This shows that MCF longitudinal perturbations (low values 
of the bending radius in this case) can be used to reduce the effect of the IMCD along the MCF propagation.

Figure 3.  First-order IMCD with random bending conditions. Simulation results of a 250-fs Gaussian optical 
pulse propagating through a homogeneous 2-core MCF comprising 50 birefringent segments with random 
bending conditions. Two different normal distributions were considered: (a) RB1 = N(μ = 100, σ2 = 40) cm and 
(b) RB2 = N(μ = 10, σ2 = 2) cm. (c) Pulse dispersion comparison at the MCF output for the PCM ax. (Colorbar: 
normalized intensity).

Figure 4.  Higher-order IMCD in real homogeneous and heterogeneous MCFs. 200-fs Gaussian optical 
pulse propagated along a 40-m 2-core MCF in the PCMs ax and bx considering higher-order PhMD effects. 
(a) Homogeneous MCF. (b) Heterogeneous MCF with index difference Δn = na − nb = 0.002. (Colorbar: 
normalized intensity).
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Another interesting potential effect of the first-order IMCD is related to the random birefringence that arises 
from a randomly-varying fiber bending radius. In this case, the effect of the first-order PhMD along with the 
CCD can also be observed when considering a high number of MCF birefringent segments where the bend-
ing radius fluctuates with a Normal distribution between adjacent segments. We simulate the MCF of the first 
example considering a 250-fs Gaussian optical pulse and 50 birefringent segments with two different random 
distributions of the bending radius (RB): RB1 = N(μ = 100, σ2 = 40) cm and RB2 = N(μ = 10, σ2 = 2) cm, where N 
is the normal distribution function. The numerical results are shown in Fig. 3(a) and (b) for each bending radius 
distribution, respectively.

As can be seen from Fig. 3(a), the group delay and the pulse splitting present a random evolution in each core 
due to the stochastic nature of the MCF perturbations inducing a random differential group delay βΔ bx ax,

(eq)(1) 
between the PCMs ax and bx, in line with our previous theoretical predictions. However, if the average value of 
the bending radius is reduced, the phase-mismatching between the core modes increases (see Section 4 of the 
Supplementary Information), and therefore, the pulse dispersion induced by the first-order PhMD decreases, as 
can be seen from Fig. 3(b) and (c). The comparison of the pulse dispersion at the MCF output in the PCM ax is 
shown in Fig. 3(c) for each bending radius distribution, verifying that the IMCD is reduced with the second bend-
ing radius RB2. It should be noted that, for higher fiber distances, although the intrinsic random linear birefrin-
gence of the MCF may increase the pulse distortion (via the PMD), small index differences induced in each core 
by the fiber fabrication process could reduce the inter-core crosstalk levels46 and the IMCD effects. On the other 
hand, although the circular birefringence has been omitted in these simulations to isolate the effects of the IMCD, 
in the Supplementary Information we include additional simulations in which both linear and circular random 
birefringent effects are considered. As can be noted from Fig. S3, the circular birefringence only induces power 
exchange between orthogonal polarizations. Remarkably, we cannot observe an additional pulse distortion in this 
case taking into account that the PMD can be neglected in both cores when the intrinsic linear birefringence is 
omitted in the numerical simulations.

In the next example, we compare the effects of the IMCD induced by the CCD and higher-order effects of 
the PhMD in homogeneous and heterogeneous MCFs. As detailed in the previous section, higher-order dis-
persive effects of the PhMD appear when considering a non-vanishing Δβbx,ax

(r) with r ≥ 2. To investigate the 
additional chirp induced by the higher-order PhMD, a 200-fs Gaussian optical pulse was simulated in the same 
homogeneous MCF as in the previous examples, but with Δβbx,ax

(1) = 0.28 ps/km, Δβbx,ax
(2) = 0.2 ps2/km and 

Δβbx,ax
(3) = 0 ps3/km (which are typical values induced by manufacturing imperfections47,48). A second hetero-

geneous MCF with Δn = na − nb = 0.002, Δβbx,ax
(1) = 6.5 ps/km, Δβbx,ax

(2) = 1 ps2/km and Δβbx,ax
(3) = 0.1 ps3/km 

was also simulated (dispersive parameters which can be found in a heterogeneous MCF desing49). In both cases, 
the bending radius was assumed to vary randomly along 50 birefringent segments as a Normal distribution of 
RB = N(μ = 100, σ2 = 40) cm. In order to illustrate the higher-order PhMD effects, the GVD is compensated in 
both cores along the MCF propagation using the dispersive parameters of a given PCM as a reference, in this case 
the PCM ax (the specific dispersive parameters and additional details of this simulation can be found in Table S2 
of the Supplementary Information).

The simulation results are shown in Fig. 4, where we can observe the additional chirp induced by the second- 
and third-order PhMD (Δβbx,ax

(2) and Δβbx,ax
(3)), which increases the temporal width of the pulse complex enve-

lope in the PCMs ax and bx. Although Δβbx,ax
(2) and Δβbx,ax

(3) are lower in the homogeneous MCF [Fig. 4(a)] 
than in the heterogeneous MCF [Fig. 4(b)], the pulse distortion induced by the higher-order IMCD is signif-
icantly higher in the former case. In the heterogeneous case, the second-order PhMD effects are reduced due 

Figure 5.  IMCD impact on optical solitons. (a) 600-fs fundamental soliton propagated along a 40-m 2-core 
dispersion-shifted homogeneous MCF in the PCMs ax, ay, bx, by considering first- and second-order IMCD 
effects. (b) Pulse shape comparison at the output of the core a. (Colorbar: normalized intensity).
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to the increment of the intrinsic phase-mismatching Δβbx,ax(ω0) between the PCMs ax and bx. These results 
allow us to conclude that, in the femtosecond regime, the GVD compensation can be performed at the DSP 
using the same digital filter for each PCM when heterogeneous cores and short MCF distances are involved 
(L ≤ LPhMD = TP

2/|Δβbx,ax
(2)|, see below). Nonetheless, in homogeneous MCFs, while the criterion L ≤ LPhMD is ful-

filled, Δβbx,ax(ω0) = 0. Hence, the second-order PhMD induces a higher pulse distortion and the GVD compen-
sation must be performed using a different digital filter per core, with the specific dispersive parameters of each 
one. In the case of which L ≪ LPhMD in homogeneous MCFs, the GVD compensation can also be performed using 
the same digital filter for each core. Moreover, due to their low inter-core crosstalk levels, disordered MCFs exhib-
iting transverse Anderson localization14,15 could also be proposed as a means to reduce the impact of the IMCD 
on some applications. In particular, disordered MCFs could be of extreme utility to improve the image quality in 
lensless endoscopy50. In the Supplementary Information we also analyse in Figs S4 and S5 the higher-order effects 
of the IMCD when including mode-coupling between orthogonal polarizations induced by the circular fiber 
birefringence. In both cases, we can observe a higher pulse distortion than in Fig. 4 when including the circular 
birefringence along with the PMD and the second-order PhMD.

For completeness, the IMCD effects are also investigated in the nonlinear fiber regime along with the PMD 
(intra-core MCD). Remarkably, the impact of such perturbations on a bright soliton is analysed. A 600-fs funda-
mental soliton (~350 fs full width at half maximum) was launched into the PCM ax of a dispersion-shifted homo-
geneous 2-core MCF with na = nb = 1.452, ncl = 1.444, and usual first- and second-order GVD coefficients of 
β(2) = −1 ps2/km and β(3) = 0.1 ps2/km, respectively. The peak power (P0) required to support the fundamental 
soliton is found to be 40.7 dBm considering a nonlinear refractive index of nNL = 2.6·10−20m2/W at 1550 nm. The 
fundamental soliton condition was numerically tested by omitting: the core b, the fiber birefringent effects, β(3), 
the self-steepening (induced by the frequency dependence of q̂ax

(I)), and the intrapulse Raman scattering inducing 
frequency shift in optical pulses shorter than 1 ps [Raman-induced frequency shift (RIFS)]18.

Now, in order to simulate realistic MCF conditions, we include the core b, higher-order dispersive and non-
linear effects, and assume Δβbx,ax

(1) = 0.2 ps/km and Δβbx,ax
(2) = 0.1 ps2/km induced by manufacturing imperfec-

tions (similar values for the y-polarization). In this case, we also include the intrinsic linear birefringence of the 
medium along with the linear and circular birefringence induced by the fiber bending and twisting conditions. 
We consider 50 birefringent segments along the MCF length, where the linear and circular birefringence fluctuate 
between adjacent segments. The circular birefringence is induced by a random twist rate fT given by the Normal 
distribution fT = N(μ = 0.1, σ2 = 0.01) turns/m. The linear birefringence is induced by: (i) the random bending 
conditions with RB = N(μ = 100, σ2 = 40) cm; and (ii) the intrinsic linear birefringence of each core, fixed to 
2·10−7 in both cores a and b.

According to Fig. 5, we can observe that the soliton condition is broken along the MCF propagation. As 
discussed later, the second-order PhMD becomes one of the major physical impairment in coupled-core MCFs 
with a near-zero Δβbx,ax

(2) parameter. Therefore, in the first propagation meters, the additional chirp induced by 
the second-order PhMD along with the first-order CCD increases the pulse width and reduces the peak power. 
As a result of the peak power reduction, the pulse width is increased along the MCF length and the soliton peak 
is shifted from its original position due to the first-order PhMD and the second-order GVD (induced by β(3)). 
In this case, note that the effects of the RIFS and the self-steepening are difficult to observe with TP = 600 fs, 
L = 40 m, β(2) = −1 ps2/km, and P0 ≈ 40 dBm. Nevertheless, in optical pulses of few femtoseconds and in MCFs 
with a higher β(2) coefficient, the soliton distortion will be increased not only by the IMCD and the second-order 
GVD, but also by the RIFS and the self-steepening nonlinear effects.

So far, we have evaluated the longitudinal birefringent effects of the MCF, but omitting the temporal per-
turbations of the medium. However, as was indicated above, the IMCD can also fluctuate in time due to the 
temporal fluctuation of the MCF birefringence modifying the value of the phase function φmi(z,ω;t) in each PCM 
mi. Therefore, the random group delay induced by the first-order PhMD in each MCF segment may present a 
time-varying evolution.

To verify this statement, we perform a numerical simulation considering a time-varying intrinsic linear bire-
fringence of the optical medium. Specifically, we simulate the homogeneous 2-core MCF of Fig. 4(a) but assuming 
a constant bending radius of RB = 100 cm and varying the intrinsic linear birefringence of each core over a 4-day 

Figure 6.  Time-varying IMCD. (a) Temporal evolution of the intrinsic linear birefringence assumed in cores 
a and b for the numerical simulations. (b) Corresponding optical pulse calculated in the PCM ax at the MCF 
output each simulated day.
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period. The intrinsic linear birefringence was assumed to vary from day to day following a normal distribution 
with different average value in each core, but with a similar temporal evolution, in line with the experimental 
work reported in ref.35 [see Fig. 6(a)]. Nonetheless, note that faster temporal changes of the linear birefringence 
can also be considered in each core in line with ref.51. In any case, our previous discussion and the coupled 
local-mode equations are also found to be valid for faster time-varying birefringent conditions if these MCF 
fluctuations are approximately constant in time intervals of the order of TP, as indicated above. Figure 6(b) shows 
the temporal dispersion of a 150-fs Gaussian optical pulse obtained each day at the MCF output for the PCM ax. 
As can be seen, the group delay and the pulse shape presents random fluctuations in different days as a direct con-
sequence of the temporal random group delay induced by the first-order PhMD and CCD in each MCF segment. 
From these results, it is clear that the time-varying effects of the IMCD should be taken into account to compen-
sate for this physical impairment using DSP techniques in future SDM optical systems.

Finally, once we know in general terms the effects of the IMCD in ultra-short optical pulses, we investigate the 
fiber length scales over which the dispersive effects of the IMCD should be considered in the pulse propagation 
phenomena when comparing this physical impairment with the first-order GVD. To this end, we compare the 
GVD, CCD and PhMD lengths considering a MCF without random perturbations, given by the expressions for 
the PCMs ax and bx (see Supplementary Information for more details):

β β= | | = | | = |Δ |.L T L T k L T: / ; : /2 ; : / (7)ax ax bx bx axGVD P
2 (2)

CCD P ,
(1)

PhMD P
2

,
(2)

Figure 7 depicts the comparison of the GVD, CCD and PhMD dispersion lengths. As can be seen, the 
first-order GVD is expected to become the major physical impairment in MCFs where the mode-coupling effects 
are significantly reduced. This scenario should be considered in homogeneous uncoupled-core MCFs, i.e., with 
βax

(2) ≈ βbx
(2) and dab/R0 > 7, or in heterogeneous MCFs with inter-core crosstalk levels lower than −30 dB [see 

Fig. 4(b)]. Specific examples of these fibers can be found in refs48,52. On the other hand, the IMCD becomes one 
of the major pulse distortion effects in MCFs operating in the strong coupling regime (dab/R0 < 7). In particular, 
femtosecond pulses propagating in coupled-core MCFs53,54 will be highly degraded by this optical impairment. In 
this scenario, the IMCD induced by the first-order CCD becomes the predominant impairment in coupled-core 
MCFs with homogeneous and low dispersive cores, i.e., with βax

(2) ≈ βbx
(2) < 10 ps2/km. Nevertheless, the 

first-order GVD along with the IMCD induced by the second-order PhMD will be the predominant physical 
impairments in coupled-core MCFs with Δβbx,ax

(2) ≠ 0, especially when these fibers comprise homogeneous but 
non-identical cores with a near-zero Δβbx,ax

(2) parameter.

Discussion
We have presented a general theory modelling the propagation of ultra-short optical pulses in real SM-MCFs per-
turbed by random longitudinal and temporal birefringent effects. The rigorous formalism here reported includ-
ing the longitudinal and temporal fiber birefringent perturbations allows us to describe many interesting effects 
that could not be addressed with previous ultra-short pulse propagation models in the femtosecond regime24–32. 
Figure 8 shows a schematic comparison of our model with previous works.

As can be seen, previous ultra-short pulse propagation models24–32 consider a single polarization, ideal cores 
and omit the fiber birefringent perturbations. Therefore, these works can only describe the frequency dependence 
of the ideal coupling coefficients, the CCD. More specifically, the first- and second-order CCD inducing pulse 
splitting and linear chirp was investigated from these models.

Nevertheless, new dispersive effects induced by the mode-coupling among the fundamental core modes LP01 
emerge when including two polarizations and the fiber perturbations in the Maxwell equations using the con-
cept of local modes. Numerical calculations based on the developed theory reveal the existence of intermodal 
dispersion, referred to as the MCD in this work, induced by the random perturbations of the optical medium 
when operating in the linear and nonlinear fiber regimes. Specifically, in the femtosecond regime, the inter-core 
MCD involves the frequency dependence of the mode overlapping and the phase-mismatching between the 
fiber local modes, dispersive effects referred to as the CCD and the PhMD, respectively. The CCD is completed 

Figure 7.  Comparison of the dispersion lengths. (a) Group-velocity dispersion (GVD) length, (b) coupling-
coefficient dispersion (CCD) length, and (c) phase-mismatching dispersion (PhMD) length.
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in our model by including the fiber perturbations and higher-order dispersive effects inducing pulse splitting 
and nonlinear chirp. The PhMD, overlooked so far in previous models24–32, emerges from: (i) the longitudinal 
and temporal fiber perturbations inducing a random group delay (first-order PhMD), and (ii) the intrinsic 
phase-mismatching between local modes inducing a deterministic group delay and a linear and nonlinear chirp 
(second- and higher-order PhMD). It is worth noting that the PhMD is analogous to the PMD observed in 
optical transmissions using SMFs. Nonetheless, although the second-order PMD is difficult to observe in SMF 
transmissions, the second-order PhMD is expected to become the predominant physical impairment (along with 
the first-order GVD) in coupled-core MCFs comprising homogeneous but non-identical cores with a near-zero 
Δβbx,ax

(2) parameter [see Fig. 4(a) and Fig. 7(c)]. In contrast, the CCD will be the predominant IMCD effect in 
coupled-core MCFs with low dispersive homogeneous cores [see Fig. 7(b)].

The potential implications of these effects evidenced by our model should be considered in the future to 
enhance the performance of MCFs for communication applications and to improve our understanding and con-
trol over MCF-based experimental physics. As an important example, the core-to-core distance of the MCFs 
employed in optical networks is being progressively reduced to increase the number of cores in a single clad-
ding53–56. A reduced core-to-core distance will increase the IMCD and the pulse distortion, as discussed in Fig. 7. 
In this scenario, our results show that the increment of the MCF perturbations (increasing the average value of 
the linear birefringence via the photo-elastic effect and mismatching the phase constant of the local modes) is 
an effective birefringence management strategy to reduce the impact of the IMCD on the MCF. Remarkably, our 
results also indicate that the second-order PhMD induces a significant higher pulse distortion in real homoge-
neous MCFs, with not identical but similar dispersive parameters, than in heterogeneous MCFs, with a higher 
value of Δβ(2) between adjacent cores. As a result, in heterogeneous MCFs, the digital compensation of the GVD 
in femtosecond optical pulses can be performed at the DSP using the same digital filter for each core when short 
propagation distances are involved (L ≤ LPhMD).

Furthermore, note that in contrast with previous SMF and MCF models18,22–35,39, our theory also includes the 
nonlinear PMD and the nonlinear IMCD that arises from the isotropous and anisotropous response of the non-
linear polarization considering both electronic and nuclei motion. In particular, our results show that the linear 
and nonlinear IMCD induced by the external fiber perturbations and manufacturing imperfections should also 
be taken into account when propagating femtosecond optical solitons in MCFs. More specifically, the random 
distortion and the pulse chirping emerging from the first- and second-order IMCD break the soliton condition 
along the MCF propagation (see Fig. 5). Hence, the proposed model allows us to investigate the impact of the lin-
ear and nonlinear birefringence induced by the fiber perturbations and higher-order nonlinear effects on optical 
solitons, rogue waves and breathers21.

The CLMT can be applied to design MCFs comprising cores of different manufacturing characteristics: 
homogeneous, heterogeneous, coupled, uncoupled, lowly- or highly-birefringent, trench- or hole-assisted, 
step- or gradual-index. Therefore, this general theory allows us to implement novel MCF designs operating in 
single-mode regime with specific IMCD characteristics, which open new paths to explore in dispersion engi-
neering and pulse shaping applications. However, additional nonlinear terms involving cross-coupling effects 
among the PCMs of different cores should be included for coupled-core MCFs with a core-to-core distance lower 
than three times the core radius (dab < 3R0), as discussed in ref.34. Nevertheless, in such a case, the accuracy of 
this model (based on the perturbation theory) may be reduced if the supermodes of the MCF do not meet the 

Figure 8.  Schematic comparison of the MCD effects which can be analysed with the proposed model 
and previous works of femtosecond pulse propagation in MCFs. Considering a single polarization, ideal 
homogeneous cores and omitting the fiber perturbations, only the CCD can be modelled. However, including 
both orthogonal polarizations and the perturbations of the optical medium, the linear and nonlinear PMD 
along with the IMCD (CCD + PhMD) can be investigated.
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approximation performed in equation (2) when assuming that Ei,ω0 ≈ ∑Emi,ω0. Moreover, while the computational 
time of the coupled local-mode equations may increase considerably when large MCF distances are involved, it 
may be reduced by inserting phase plates23 between birefringent segments (see Section 4 of the Supplementary 
information for more details).

On the other hand, in spite of the fact that we have focused our analysis on the single-mode regime of the fiber, 
note that the extension of equation (4) to the multi-mode regime is straightforward when including additional LP 
mode groups in the complex amplitude of the global electric field strength Ei,ω0 given by equation (2). Inserting 
Ei,ω0 in the Maxwell equations, the coupled local-mode equations can be extended to the multi-mode regime by 
performing a similar mathematical discussion as in the single-mode regime. Along these lines, it should be noted 
that equation (5) can also be employed to analyse the impact of the intermodal dispersion on the linear regime 
between higher-order LP modes of different cores by calculating the appropriate value of the coupling coefficients 
and the equivalent phase-mismatching.

Finally, it is worth mentioning that our model can also play an essential role in other branches of physics. As 
mentioned in the introduction, single-core fibers have been investigated as an experimental platform for testing 
diverse physical phenomena from various fields, including quantum mechanics, general relativity or condensed 
matter physics, among others9–16, based on the analogies of the fiber-optical nonlinear Schrödinger equation. In a 
similar way, the CLMT can be employed to elucidate the underlying wave propagation phenomena of any physical 
system with propagating equations of the form of the coupled nonlinear Schrödinger equations, that is, our coupled 
local-mode equations when higher-order coupling, dispersive and nonlinear effects are omitted. Hence, exotic phys-
ical phenomena such as superposed nonlinear waves in coherently coupled Bose-Einstein condensates57, interacting 
rogue waves58–60 or nonlinear ion-acoustic waves61,62 can be explored in MCF media expanding the possibilities of 
single-core fibers. In the same line, additional physical phenomena such as relativistic effects could also be ana-
lysed using MCF media. Note that an optical pulse propagating through a single-core fiber establishes a moving 
medium which corresponds to a space-time geometry. This gravitational approach was employed by Philbin et al.13 
to demonstrate a fiber-optical analogy of the event horizon in a black hole using an ultra-short optical pulse of 70 fs. 
Therefore, additional gravitational phenomena could be investigated in MCFs when adjacent cores perturb the vir-
tual space-time geometry created by an ultra-short optical pulse propagating in a given core of the fiber.

Methods
Numerical calculations have been performed in Matlab, combining the coupled local-mode equations presented 
in this work with the equivalent refractive index model35 and the split-step Fourier method18. The split-step 
Fourier method allows us to simulate linear and nonlinear propagation employing a low computational time. 
According to this method, equation (4) is rewritten as:

   ˆ ˆ ˆ ˆ ˆ∑α∂ + + + + =
=

z t j z t j z t z t( D 1
2

) ( , ) M ( , ) K ( , ) N ( , ),
(8)z ax ax ax ay ay

m b

N

ax mx mx ax ax
(eq)

,
(eq)

,
(eq) (eq)

where N̂ax
(eq)

 is the operator modelling the nonlinear propagation of the PCM ax. Then, the left-hand side of equa-
tion (8), which describes the linear propagation, is simulated in the frequency domain, while the right-hand side, 
which accounts for the nonlinear propagation, is simulated in the time domain. A detailed description of the 
computational method along with the physical parameters used in the numerical simulations can be found in 
Section 4 of the Supplementary Information.
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