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Cystic fibrosis (CF) is a hereditary and fatal disease that is
caused by mutations of the CF transmembrane conductance
regulator (CFTR) gene on chromosome 7, which encodes the
CFTR protein. This protein functions as an anion channel that
is responsible for negatively charged chloride ion transport
across cells in the body.1 This protein is present in various
organs of the body, including the respiratory tract, the
gastrointestinal tract, the liver, the pancreas as well as the
male reproductive tract. In the airways, impaired function of
this protein leads to increased mucus thickness, which fails
to be cleared by the mucociliary system. This in turn leads to
chronic infection of the respiratory tract and subsequent
unregulated inflammation.2 Inflammatory cytokines and
secreted products accumulate, leading to lung damage and
bronchiectasis. Airway infections are associated with pro-
gressive lung function decline3 and ultimately, with respira-
tory failure, which is the leading cause of mortality in CF.4,5

Individuals with CF develop recurrent infections during
their lifetime and the organisms identified in their respiratory
tract differ over time based on age.6 Staphylococcus aureus is
commonly found in younger children, whereas Pseudomonas
aeruginosa, Achromobacter spp., Stenotrophomonas malto-
philia, and species of the Burkholderia cepacia complex (Bcc)

become more prevalent in older children and adults.
Although these bacteria are considered classic CF pathogens,
the importance and the pathogenicity of mycobacteria, fungi,
and viruses are increasingly being recognized.

The aim of this review is to summarize the epidemiology
and pathogenesis of the most common bacterial, viral, and
fungal species infecting the airways of CF patients. Mycobac-
terial infections will be covered in the article written by Drs.
Richards and Olivier.

Bacterial Infections

Staphylococcus aureus
Staphylococcus aureus is commonly detected early on in life in
the respiratory tract of childrenwith CF. Staphylococcus aureus
is the most prevalent organism in children with CF in the
United States and reaches its highest prevalence between the
ages of 11 and 17 years, with infection in up to 80% of patients
in that age group.6 Staphylococcus aureus is a gram-positive
coccus which typically grows in aerobic conditions, but can
also grow as a facultative anaerobe.7 It is usually considered a
commensal on human skin and can be commonly isolated
from anterior nares and skin creases. Key virulence factors in
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S. aureus include the leukocytolytic toxin Panton–Valentine
leukocidin, which has been associated with necrotizing lung
infections.8 In addition, small colony variants9,10 and biofilm
formation11,12 may contribute to increased antimicrobial
resistance and accelerate lung disease. Although the pathoge-
nicity of methicillin-sensitive S. aureus (MSSA) has been
questioned, coinfection with other pathogens such as P. aer-
uginosa may be associated with worsened clinical outcomes
including more severe lung disease.13

Methicillin-resistant S. aureus (MRSA) infection tends to
occur more commonly in young adults6 rather than in chil-
dren.Methicillin resistance is due to the presence of an altered
penicillin binding protein, which is encoded by themecA gene
belonging to the Staphylococcal Cassette Chromosome
(SCC).14 There have been at least 12 types of SCCmec elements
described to date.15,16 The epidemiology of MRSA is SCCmec
type-specific, with hospital-associated MRSA (HA-MRSA)
strains being more often SCCmec type I, II, and III, whereas
community-associatedMRSA (CA-MRSA) strains tend to carry
SCCmec type IVorV.17Additionally,mecA-negativeMRSA (also
known as borderline oxacillin-resistant S. aureus or BORSA) is
described in CF with β�lactam resistance through various
potential mechanisms, including (1) hyper β�lactamase en-
zyme production,18 (2) plasmid-mediated, inducible methi-
cillinase,19or (3)modificationof thepenicillin-bindingprotein
genes.20 Initial epidemiological studies in children with CF
demonstrated that about two-thirds of MRSA infections were
HA-MRSA(SCCmec II strains) andone-thirdCA-MRSA(SCCmec
IV strains)21; however, SCCmec IV strains have been increasing
in recent years.22 The prevalence of MRSA-positive cultures
has increased about threefold between 2002 and 2017 in
individuals with CF living in the United States.6 Chronic
MRSA infection is of particular significance. It has been asso-
ciated with several negative clinical outcomes, including ac-
celerated decline in lung function, increased hospitalization,
and earlier mortality in patients with CF. Ren et al noted
significantly lower lung function inMRSA-infected individuals
with CF compared with those with predominant MSSA-posi-
tive respiratory tract cultures.23 Individuals with CF who are
MRSA positive have a higher rate of hospitalization and
increased use of oral, inhaled, and intravenous antibiotics,
compared with MRSA-negative patients.23 Furthermore,
Dasenbrooket al reported that therateof lung functiondecline
was greater in patients with MRSA compared with MRSA-
negativepatients inpatientsaged8 to21years (MRSA-positive
patients had a forced expiratory volume in 1 second [FEV1]
decline of 2.06% predicted/year compared with 1.44% pre-
dicted/year in those without MRSA; difference—0.62% pre-
dicted/year, 95% confidence interval [CI]:�0.70 to�0.54;
p¼0.001).24

In summary, although both MSSA and MRSA are common
pathogens in the CF airways, MRSA in particular is associated
with detrimental outcomes in patients with CF.

Pseudomonas aeruginosa
Pseudomonas aeruginosa is an important gram-negative
pathogen in patients with CF. It is a non-lactose fermenter
commonly found in freshwater, which grows at an optimal

temperature for growth of 42°C.25 Pseudomonas aeruginosa
has several virulence factors associated with infection of the
host, including flagella which makes it a motile organism, as
well as pili which facilitate attachment to epithelial cells in
the respiratory tract.26,27 Pseudomonas aeruginosa expresses
three main exopolysaccharides: alginate, Pel, and Psl, which
are important in the establishment and maintenance of a
biofilm structure.28 It growsmainly as an aerobe but can also
survive under anaerobic conditions. Pseudomonas aerugi-
nosa is intrinsically resistant to some β-lactam antibiotics
and can acquire antimicrobial resistance via either chromo-
somal mutation or horizontal gene transfer.29

As per the CF Foundation Patient Registry Annual Report,
the percentage of individuals with a positive culture for
P. aeruginosa has declined over time, with the largest decrease
observed among individuals younger than 18 years (47.0
percent had a positive culture in 1997 compared with 27.5
percent in 2017).6 The decrease in P. aeruginosa infection
prevalence may be due to early antibiotic eradication treat-
ment of incident infections. In 2017, 44.6% of individuals with
CF in theUnited States.were culture positive forP. aeruginosa.6

Pseudomonas aeruginosa is often initially acquired from
environmental sources.Once thebacteria establish themselves
in the CF airways, they undergo adaptive changes such as
decreasing motility by downregulating flagellum expression.
In addition to downregulating of other virulence factors,30–33

P. aeruginosawill alsooverproduceexopolysaccharides suchas
alginate which confers mucoidy status.33 Chronic infection,
which is often monoclonal before undergoing adaptive diver-
sification of clonal variants, has been associated with acceler-
ated lung function decline and earlier mortality.34 To prevent
these poor outcomes, initial and new-onset P. aeruginosa
infections are usually aggressively treated in an attempt to
eradicate the organism from the airways.35–37However, erad-
ication failure remains a problem in this patient population38;
chronic phenotype of the isolate such asmucoid status is a risk
factors for eradication failure.39

Burkholderia cepacia Complex
The Bcc includes over 20 species of nonfermenting gram-
negative bacilli, which can be acquired from the environ-
ment or transmitted from person to person.40

Burkholderia species grow under aerobic conditions. This
organism is frequently found in the environment, especially
soil and potted plants.41 It is considered to be a highly virulent
organism, with factors such as pili facilitating epithelial cell
attachment, extracellular proteases resulting in tissuedamage,
quorum sensing genes facilitating biofilm formation, and a
type III secretion system promoting cellular invasion.42–46 As
previouslymentioned, Bcc species are intrinsically resistant to
several different antimicrobial classes including aminoglyco-
sides due to efflux pumps and β-lactams via inducible chro-
mosomally encoded β-lactamases.47,48

The epidemiology of Bcc infections in CF has been exten-
sively examined given the potential for transmission between
patients.49,50 In 2017, 2.4 percent of individualswith CF in the
CF Foundation Patient Registry Annual Report were culture
positive forBcc.6 In earlyepidemiological studies,Burkholderia
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cenocepacia was initially described as the most common Bcc
organism in individuals with CF42,51 and this species has been
linked to several epidemic strains worldwide.52–56 In particu-
lar, theB. cenocepaciaET-12 strain (ET-12Bc) has causedoneof
the largest epidemics in CF individuals in Canada and the
United Kingdom55 since the 1980s and has been associated
with very poor clinical outcomes. The epidemiology of Bcc
infections in CF has changed over the last several decades,
however, as Burkholderia multivorans is becoming more com-
mon than B. cenocepacia.57–59 This is thought to be due to
implementation and reinforcement of infection control and
prevention measures lowering B. cenocepacia60 acquisition
rates, whereas B. multivorans may be more often acquired
from the environment. Burkholderia gladioli is a closely related
species that is the third most common Burkholderia species
isolated in CF, but it is not part of the Bcc.

Burkholderia cenocepacia is of particular importance in CF
because it has been associated with poor clinical outcomes
including accelerated lung function decline61 as well as
increased mortality both before and after lung transplanta-
tion.62,63 In addition, B. cenocepacia,42,64 as well as other
species such as B. multivorans,65 has been linked to cepacia
syndrome, a clinical entity characterized by necrotizing
pneumonia and sepsis with near-total fatality rates. There-
fore, infection with Bcc species remains an important con-
cern in the CF population due to the significant associated
morbidity and mortality.

Stenotrophomonas maltophilia
Stenotrophomonas species are gram-negative rods and obli-
gate aerobes. They are nonfermenting, oxidase-negative
organisms that can be found in water sources in the environ-
ment. Although four species of Stenotrophomonas exist,
S. maltophilia is the most common one identified in human
hosts. Stenotrophomonas maltophilia virulence factors include
extracellular enzymes (such as alkaline serine proteases),
outer membrane lipopolysaccharides,66 and the ability to
form biofilms.67,68 Antimicrobial resistance may occur due
to the presence of multidrug efflux pumps, β-lactamases,
aminoglycoside-modifyingenzymes, and reducedoutermem-
brane permeability.69

The prevalence of S. maltophilia has been shown to vary
from 12% to as high as 30% in CF populations.70–73 Previously
identified risk factors for acquisition include antibiotic use,74

inparticular following theuseofantipseudomonal agents.75,76

Initial infection is thought to be due to acquisition from
environmental sources rather than person-to-person
transmission.

Previous studies have described that individuals with CF
who are infected with S. maltophilia infection tend to be
older and have lower baseline lung function compared with
patients without S. maltophilia. However, in these studies,
S. maltophilia–positive individuals did not havemore rapidly
declining percent predicted FEV1 (ppFEV1) or decreased 3-
year survival.77,78 However, chronic S. maltophilia infection
(defined as two or more positive cultures in the year prior)
has been described as a significant risk factor for pulmonary
exacerbations treated with intravenous antibiotics79; it is

not, however, associated with a higher risk of failing to
recover baseline lung function following an exacerbation
event. In addition, registry-based studies have shown that
patientswith chronic S. maltophilia have a three times higher
risk of death or lung transplantation compared with those
without S. maltophilia infection.80,81

Achromobacter Species
Achromobacter species are gram-negative, catalase-positive,
oxidase-positive, nonsporulating rods. Up to 23 species are
now known within the Achromobacter genus to date. Achro-
mobacter species tend to grow under aerobic, nonfermenta-
tive conditions and at an optimal temperature of 25 to 37°C.
They are environmental organisms, commonly found in soil
and water. Achromobacter species are motile due to the
presence of flagella, and can exhibit binding factors tomucin,
collagen, and fibronectin, thereby facilitating initial attach-
ment and invasion of the respiratory tract.82,83 Biofilm
formation as well as intrinsic resistance to several classes
of antimicrobials through the expression of efflux pumps, β-
lactamases, and aminoglycoside-modifying enzymes84–86 is
also expressed by this group of pathogens.

Achromobacter xylosoxidans is themost common Achromo-
bacter species identified in individuals with CF, accounting for
42% of Achromobacter respiratory tract infections.87 Preva-
lence of Achromobacter infections varies greatly and has been
reported between 3 and 30%.72,73,88,89 Acquisition is thought
to occur mostly from the environment, although patient-to-
patient transmission has been previously described.89–92

Published data regarding the risk factors for initial infec-
tion and clinical impact of Achromobacter infection are
limited and include studies with small sample sizes. Risk
factors for chronic infection include older age and chronic
P. aeruginosa infection.88,93 Of note, patients with chronic
Achromobacter infection had lower lung function and more
pulmonary exacerbations than age, gender, and P. aeruginosa
matched controls in one of the main observational studies
assessing clinical outcomes in patients with Achromobacter
infection.88 In a large epidemiologic study using the Toronto
CF Database, chronic Achromobacter infection (defined as
two or more positive cultures in the previous 12 months)
was associated with a twofold increase in the risk of death or
lung transplantation comparedwith patientswith no history
of Achromobacter infection.94 Currently, no consensus data
exist on optimal treatment strategies for initial acquisition,
treatment during pulmonary exacerbation, or for chronic
suppression of Achromobacter infections.

Anaerobes
Anaerobes are a group of gram-positive and gram-negative
organisms which require reduced oxygen for survival.95 They
are commonly found in variousmucosal surfaces of the human
body including the upper airways, the gastrointestinal tract,
and the female genital tract. They have been associated with
invasive suppurative infections of thebrain, sinuses, lung, liver,
and blood vessels.25 Capsular polysaccharide, hemolysins, pro-
teases, and lipopolysaccharides are virulence factors associated
with pathogenic anaerobes.96
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Due to the technical difficulties of isolating and identify-
ing anaerobes in culture-dependentmethods, the prevalence
of anaerobic infections in patients with CF is not well known.
Recently, culture-independentmethods havehelped identify
that anaerobic bacteria are found in abundant quantities in
sputum and bronchoalveolar lavage fluid of individuals with
CF, with a density estimated between 104 and 9�107 colony
forming unit (CFU)/mL of sputum.97–100 Some of the main
anaerobic bacteria found in the CF airways include Prevotella,
Veillonella, Fusobacterium, Propionibacterium, and Actinomy-
ces.99 However, the role of anaerobes in CF lung disease
remains controversial. In recent years, studies have de-
scribed the association between the detection of anaerobes
and diminished clinical response to systemic antimicrobials
with lung function decline.99,101–105 One of the major lim-
itations in the studyof anaerobes in CF lungdisease is the risk
of contamination of lower airway samples by oropharyngeal
secretions during collection,101,106,107 although recent stud-
ies have tried to address this concern. Anaerobes may inter-
act with other organisms present in the CF airways,
increasing the virulence of P. aeruginosa and transferring
extended-spectrum β-lactamases to P. aeruginosa for
example.108,109

In contrast, the potential beneficial role of anaerobes has
also been described in studies using both culture-dependent
and culture-independent methods. Patients exposed to an-
timicrobial therapymayexperience a decrease in the relative
abundance of anaerobes, with subsequent increased inflam-
mation and decreased lung function. Therefore, reducing
microbial community diversity with regard to anaerobes
may be playing a role in CF lung disease progression.110–115

Viral Infections

The role of viruses in CF airway disease has increasingly been
recognized in recent years, due to ongoing advances in
molecular detection, using methods such as polymerase
chain reaction.25 These molecular assays allow for rapid,
highly sensitive and relatively cost-effective identification of
viruses in the respiratory tract.116 Viral culture and serology
used to be the main methods of detection in the past, but
these techniques were limited due to high cost, labor inten-
sity, and lack of sensitivity.117

The overall prevalence of viral infections during pulmonary
exacerbations in individualswith CF is estimated to bebetween
13 and 60%.118,119 However, viral infections may be under-
reported due to infrequent use of viral swabs and the limited
number of respiratory viruses detected in a given assay. The
most commonly identifiedviruses inCFpatients are respiratory
syncytial virus (RSV), human rhinovirus, influenza types A and
B, and parainfluenza virus,120–122 although many other viruses
including humanmetapneumovirus, picornavirus, coronavirus,
andcoxsackie/echovirushavealsobeendescribed.120,121,123–125

Viral infections are detectedmore frequently in children than in
adultswithCF.126 In addition, childrenwithCFaremore likely to
experiencesignificantmorbidityassociatedwithviral infections
comparedwith childrenwithout CF.117,123,127,128 The increased
severityof viral infections in individualswithCF comparedwith

non-CF populations has been linked to reduced innate antiviral
response, whereby CF individuals may not mount a sufficient
interferon response or adequately express certain interferon-
stimulated genes, as compared with non-CF controls.129

Viral infections increase the risk of pulmonary exacerba-
tions in both children and adults with CF,124,130 as well as
increased inflammatory markers, leading to longer duration
of intravenous antibiotic therapy and greater drops in lung
function.131,132

RSV is of particular importance in CF, as it is frequently
encountered inboth children and adultswith CFandcan result
in severe symptoms. Symptoms may include rhinosinusitis,
cough, fever, and acute otitis media; RSV infection can also
progress to lower airway disease with bronchiolitis, pneumo-
nia, and exacerbation of chronic airway disease.133 Recent
studies have highlighted that children with CF have increased
RSV-related admissions to hospital compared with healthy
children.134 In infants who have CF disease, RSV is associated
with significant respiratory morbidity.135 Increased rates of
pulmonary exacerbations, longer stay in hospital as well as
prolonged lower airway disease in the 2 years following the
initial respiratory infection have been described in these
patients.135 Similarly, influenza virus infection has also been
associatedwith significantmorbidity in childrenwith CF, with
studiesdescribingan increasedriskofadmission tohospital for
pulmonary exacerbations associated with influenza infection
compared with those without.136,137

Apotentialmechanismfor theseworsenedclinicaloutcomes
in individuals with CF who contract respiratory viral infections
maybedue to the interactionofviruseswithbacterial species in
the airways and a subsequent change in microbial community
composition. Viral infections have been linked to both new
acquisition of P. aeruginosa in previously culture-negative
patients138 and conversion from intermittent to chronic
P. aeruginosa infection in patients with CF.117,120,138,139 RSV
infection has also been linked to increasedP. aeruginosabiofilm
formation, throughdysregulationof the ironhomeostasis in the
CF airway epithelium.140 Similarly, a study has previously
shown that identification of both rhinovirus and S. aureus is
among the most frequent viral/bacterial coinfection in chil-
dren.141 In summary, viral infections are an important compo-
nentof theCFairwaymicrobial communityandcontribute toCF
lung disease.

Fungal Infections

Several different yeasts andfilamentous fungi can be recovered
from the respiratory tract secretions of CF patients.142 Direct
microscopic examination of specimens using fungal stains can
reveal yeast cells, pseudohyphae, or hyphae and several media
can be used to improve the recovery of fungi from clinical
specimens.95 Fungal growth can take as long as 4 weeks
depending on the species. Identification of fungal isolates can
be done using microscopic examination, biochemical testing,
DNA sequence analysis, or matrix assisted laser desorption
ionization-time of flight (MALDI-TOF) mass spectrometry.143

The most common filamentous fungi recovered from CF
airways are Aspergillus species with prevalence rates up to
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78%.144 Often, the recovery of Aspergillus species in CF
sputum represents asymptomatic colonization but can rep-
resent allergic bronchopulmonary aspergillosis (ABPA). ABPA
is characterized by asthma-like symptoms, a positive Asper-
gillus skin test and an elevated serum IgE.145 Episodes of
ABPA can lead to decline in pulmonary function and are
typically treated with systemic steroids.146,147 Occasionally,
Aspergillus can cause a bronchitis associated with increased
pulmonary inflammation. In a study of over 200 children
with CF, chronic Aspergillus fumigatus infectionwas found to
be an independent risk factor for pulmonary exacerbation
treated with intravenous antibiotics.148 Although patients
with persistent A. fumigatus infection had lower ppFEV1

during the course of the study compared with those unin-
fected, there was a significant interaction between A. fumi-
gatus and P. aeruginosa on lung function. Interventional
studies of itraconazole treatment of CF patients chronically
infected with Aspergillus species did not demonstrate
any benefit in terms of lung function or occurrence of
pulmonary exacerbation compared with placebo-treated
patients.149 Invasive pulmonary aspergillosis occurs rarely
in immunocompetent individuals with CF pretransplant.150

Scedosporium species are saprophytic filamentous fungi
that are much less commonly found in CF patients but can
also cause serious invasive disease in immunocompromised
conditions.151 Scedosporiosis infections can involve the lung,
bone, eyes, blood vessels, and central nervous system.152

Exophiala (Wangiella) dermatitidis can also be recovered
from CF respiratory specimens.153 It grows as a black yeast at
37°C and as a filamentous fungus at room temperature.
Anecdotal reports describe clinical decline in CF patients
who harbor E. dermatitidis in their sputum.154

Finally, Candida species are the most frequently isolated
yeast from CF airways. Its prevalence ranges as high as 80%,
which is not surprising given that it is a normal colonizer of
the oropharynx.144 Although studies have suggested that
chronic infection with Candida spp. is associated with worse
clinical outcomes, these investigations have not controlled
for potential contamination of expectorated sputum samples
by Candida species present in the oral cavity.155

The CF Microbiome

With the advent of culture-independent molecular methods of
microbial detection, our understanding of microbial diversity
and the interactions ofmicrobial communities in theCFairways
has significantly expanded.102 These newer techniques not only
allow the identification ofmicroorganisms, but also the estima-
tion of relative abundances of microbial communities in the CF
airways.Methodssuchas16Sribosomal ribonucleicacid (rRNA)
gene sequencing of respiratory tract specimens have character-
ized the polymicrobial nature of lower airway infections in CF,
including the coexistence of classic CF pathogens with both
aerobic and anaerobic bacteria in the lower airways that were
previously considered oropharyngeal contaminants.156–159

In a recent study of 269 children and adults with CF, 16S
rRNA sequencing was used to investigate the lower airway
microbiota. Despite significant interindividual variability in

community structure and composition, the core microbiota
included Streptococcus, Prevotella, Rothia, Veillonella, and
Actinomyces. However, when classic CF pathogens such as
Pseudomonas, Burkholderia, Stenotrophomonas, or Achromo-
bacter were found to be present, they tended to dominate the
microbial community within individuals.156 Zemanick et al
also corroborated these main findings, with classic CF patho-
gens foundmore commonly in adults.111 Both Coburn et al and
Zhaoet al have described a decrease inbothmicrobial diversity
and lung function as age increases and lung disease
progresses.156,160 Overall, these findings suggest that
the microbiome of CF airways changes across ages and disease
stages. In addition, recent studies based on 16S rRNA sequenc-
ing have highlighted the potential significance of anaerobes,
whereby the relative abundance of anaerobic taxa in respira-
tory tract specimens of individuals with CF was dominant
during pulmonary exacerbations.161,162

In summary, many studies of the CF microbiome have
recently documented a diversity much more complex than
that described byconventional culture alone,with changes in
relative abundance and structure of microbial communities
in response to age, disease progression, and acute clinical
events. Further studies are needed to understand how these
changes impact clinical outcomes and are affected by thera-
peutic interventions.

Conclusions

Infections of the lower respiratory tract remain a significant
contributor to CF morbidity and mortality, even in the era of
treatment that corrects and/or potentiates CFTR channel
function.163 Pathogens such as MRSA, P. aeruginosa, and
species of the Bcc continue to have significant clinical impacts
on lung function and mortality rates in individuals with CF.
Advances inmolecular technologywill helpourunderstanding
of the microbial communities and their interactions in the CF
airways.Due totheongoing impactofpulmonary infectionson
CF patient survival, novel eradication strategies and effective
chronic suppressive treatments are needed.
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