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Abstract: Since the early 1960s, a compelling body of evidence has accumulated to show that 

proteinases play critical roles in airspace enlargement in chronic obstructive pulmonary disease 

(COPD). However, until recently the causative enzymes and their exact roles in pathologic 

processes in COPD have not been clear. Recent studies of gene-targeted mice in murine models 

of COPD have confi rmed roles for proteinases not only in airspace enlargement, but also in 

airway pathologies in COPD. These studies have also shed light on the specifi c proteinases 

involved in COPD pathogenesis, and the mechanisms by which these proteinases injure the 

lung. They have also identifi ed important interactions between different classes of proteinases, 

and between proteinases and other molecules that amplify lung infl ammation and injury. This 

review will discuss the biology of proteinases and the mechanisms by which they contribute to 

the pathogenesis of COPD. In addition, I will discuss the potential of proteinase inhibitors and 

anti-infl ammatory drugs as new treatment strategies for COPD patients.
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Introduction
COPD is currently the fourth most common cause of death in the USA, and its inci-

dence is increasing, especially in women, worldwide and in third-world countries. The 

National Heart, Lung, and Blood Institute has estimated the annual costs of COPD in 

the USA in 2005 to be US$38.8 billion. COPD is the least well-funded disease relative 

to its global heath burden. As a result of the huge healthcare burden associated with 

COPD, there has been a resurgence of interest in its cellular and molecular mechanisms, 

and in the development of new treatment strategies to limit the deleterious effects of 

proteinases in the lungs of COPD patients.

Pathology
In developed countries, the main risk factor for COPD is smoking cigarettes, which 

accounts for more than 95% of all cases. Other risk factors include inhalation of pol-

lutants, wood smoke, and biomass fuels in enclosed spaces in third-world countries. 

Genetic factors may also increase individual susceptibility to the adverse effects of 

cigarette smoke, or alter normal lung repair processes. Inhalation of cigarette smoke 

and other pollutants leads to a chronic infl ammatory process in the small airways and 

the lung parenchyma including macrophages, polymorphonuclear neutrophils (PMN), 

T lymphocytes (with CD8+ T cells exceeding the numbers of CD4+ T cells), and 

B lymphocytes (Di Stefano et al 1996; Saetta 1999; Turato et al 2001; Hogg et al 2004). 

Over time, there is destruction of the alveolar walls leading to airspace enlargement, 

loss of lung elasticity, closure of small airways, and irreversible airfl ow obstruction. 

Pathological changes also develop in the airways, including mucus metaplasia and 

mucus hyper-secretion. Narrowing of the small airways develops as a result of mucus 
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plugging, infl ammation in the airway walls and lumen, and 

subepithelial fi brosis. This small airway obstruction is also 

an important determinant of the fi xed airfl ow obstruction 

that occurs in COPD patients (Hogg et al 2004). Although 

COPD is a complex disorder caused by multiple mediators 

and pathways (including reactive oxygen species [ROS], 

pro-infl ammatory mediators, apoptosis of structural cells, 

and inadequate repair processes), there is strong evidence that 

proteinases make critical contributions to all the pathologic 

processes detected in the lungs of COPD patients.

Historical aspects of proteinases 
in COPD:  The proteinase-
antiproteinase hypothesis
Two observations in the 1960s, one clinical and one experi-

mental, led to the proteinase/antiproteinase hypothesis for 

the pathogenesis of emphysema. The fi rst observation was 

that genetic defi ciency of α
1
-proteinase inhibitor ([α

1
-PI], 

which is the major inhibitor of neutrophil elastase [NE] in the 

lower respiratory tract) is associated with early-onset, severe 

panlobular pulmonary emphysema (Laurell and Eriksson 

1963). The second observation was that instillation of papain 

(a metalloproteinase with elastin-degrading activity) into 

rat lungs results in progressive airspace enlargement (Gross 

et al 1965). Since then, other proteinases that degrade lung 

elastin, including porcine pancreatic elastase (Karlinsky et al 

1983) and subsequently NE and proteinase 3 (PR3), which 

are more relevant to human COPD compared to porcine 

pancreatic elastase, were shown to enlarge airspaces when 

instilled into the lungs of experimental animals (Senior 

et al 1977; Kao et al 1988). Based upon these observations 

the proteinase-anti-proteinase hypothesis was formulated: 

Inhalation of cigarette smoke (or other pollutants) leads 

to the recruitment of infl ammatory cells into the lungs. 

Infl ammatory cells release various proteinases that exceed 

the proteinase inhibitor defense of the lung. Uncontrolled 

proteinases degrade the extracellular matrix (ECM) protein 

components of the alveolar walls (especially the elastic 

fi bers) leading to destruction and loss of the alveolar walls 

and airspace enlargement (Figure 1).

Because of the association between α
1
-PI defi ciency 

and pulmonary emphysema, early studies focused on the 

role of NE in airspace enlargement. While unrestrained NE 

activity in the lung is likely to be important in the panlobular 

pulmonary emphysema associated with α
1
-PI defi ciency, this 

is probably an oversimplifi cation of mechanisms underlying 

the majority of COPD patients, who have normal plasma 

levels of α
1
-PI. Studies during the last 3–4 decades have 

identifi ed roles for other proteinases in airspace enlargement, 

roles for proteinases in airways pathologies (Figure 1), and 

important interactions between different classes of protein-

ases and between proteinases and other molecules (eg, ROS 

and infl ammatory mediators) that amplify infl ammation and 

ECM destruction in COPD.

Classifi cation and biology 
of proteinases
Proteinases cleave the internal peptide bonds of polypeptides. 

They can be classifi ed into 4 groups by the chemical nature 

of their active site: serine, metallo-, cysteine, and aspartic 

proteinases (Table 1). Proteinase inhibitors are generally 

targeted against individual classes of proteinases (Table 1). 

Serine proteinases and MMPs are optimally active at neutral 

pH and have the largest role in extracellular proteolysis. 

Cysteine and aspartic proteinases are optimally active at 

acidic pH, and their main role is in intracellular degradation 

of proteins in lysosomes. However, acid proteinases can 

degrade extracellular proteins if they retain catalytic activity 

at neutral pH or are released into an environment having an 

acidic pH, such as the pericellular environment of activated 

macrophages (Mason et al 1986; Shi et al 1992). The pro-

teinases implicated in the pathogenesis of COPD belong to 

the serine, metallo-, and cysteine proteinase classes.

Serine proteinases
Serine proteinases implicated in COPD include PMN-derived 

serine proteinases, urokinase-type plasminogen activator 

(uPA), granzymes, and plasmin (Table 1).

PMN-derived serine proteinases
These include NE, PR3, and cathepsin G (CG). PMN and 

pro-infl ammatory monocytes store preformed serine pro-

teinases in their primary granules, from which the enzymes 

are released when pro-infl ammatory mediators induce PMN 

degranulation (Owen et al 1994; Owen and Campbell 1999). 

Together, these serine proteinases have a broad spectrum of 

activity against ECM proteins (especially elastin) and non-

ECM proteins (Owen and Campbell 1999).

Urokinase-type plasminogen activator (uPA)
This enzyme is expressed by PMN, monocytes, and macro-

phages. Preformed uPA is stored in and released from the 

specifi c granules of PMN. However, uPA expression is regu-

lated at the transcriptional level in mononuclear phagocytes 

by pro-infl ammatory mediators (Granelli-Peperno et al 1977; 

Vassalli et al 1991). Following its release from cells, uPA binds 
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to a specifi c receptor (uPA receptor) on phagocyte surfaces, 

where it functions as a cell-associated proteinase. The main 

function of uPA is to convert inactive plasminogen to active 

plasmin, another serine proteinase. Plasmin degrades fi brin 

during lysis of blood clots. However, plasmin also cleaves and 

activates latent growth factors, latent proMMPs, and protease-

activated receptor-1 (PAR-1) on macrophages, which drives 

macrophage MMP-12 production (Saksela and Rifkin 1988; 

Taipale et al 1992; Raza et al 2000; Churg et al 2007b). Thus 

by generating plasmin, uPA regulates not only fi brinolysis, but 

also ECM degradation and fi brotic processes in the lung.

Granzymes (GRZ)
Granzymes are granule-associated enzymes that are 

predominantly expressed by CD8+ T lymphocytes and are 

stored in the lytic granules of these cells (Smyth et al 1996). 

The main GRZ family members in human CD8+ T cells are 

GRZ A and B. Activation of CD8+ T cells by antigen leads 

to rapid exocytosis of GRZ and perforin-containing granules. 

Perforin alters the properties of the cell membrane of the 

target cells, allowing entry of GRZ into the target cell, and 

GRZ A and GRZ B then initiate caspase-independent and 

caspase-dependent apoptosis, respectively.

Serine proteinase inhibitors
Serine proteinase inhibitors in plasma and interstitial fl uids 

include α
1
-PI, α

1
-antichymotrypsin, plasminogen activator 

inhibitors, α
2
-plasmin inhibitor, and the universal inhibitor, 

α
2
-macroglobulin (α

2
-M), which inhibits all four classes 

of enzymes (Carrell 1986). Secretory leukocyte proteinase 

inhibitor (SLPI) and elafi n are synthesized locally in the 

respiratory tract by epithelial cells.
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Figure 1 Mechanisms by which different classes of proteinases contribute to pathologies in COPD. Cigarette smoke stimulates infl ammatory cell recruitment, proteinase 
production, and proteinase release from infl ammatory, immune, and structural cells in the lung. Proteinases contribute to airspace enlargement by degrading ECM and promoting 
death of structural cells of the alveolar walls. Proteinases also amplify lung infl ammation and promote mucus hypersecretion and small airway fi brosis.
Abbreviations: COPD, chronic obstructive pulmonary disease; ECM, extracellular matrix; MAC, macrophages; PMN, polymorphonuclear neutrophils; IP-10, interferon-γ 
-inducible protein-10; SP, serine proteinases; MMP, matrix metalloproteinases; ADAMs, proteinases with a disintegrin and a metalloproteinase domain; CP, cysteine proteinases; 
GRZ, granzymes.
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Metalloproteinases
This class of proteinases includes the matrix metalloprotein-

ases (MMPs) and members of the ADAMs family.

MMPs
MMPs have an NH

2
 terminal pro domain, an active site 

zinc atom, and a COOH terminal hemopexin domain that 

regulates the binding of the enzymes to their substrates. 

MMPs are generally produced as inactive proenzymes 

(proMMPs). Latency is maintained by an interaction 

between the active site zinc atom and a conserved cysteine 

residue in the pro domain. Activation of proMMPs occurs 

when this interaction is disrupted, which may be achieved 

by the actions of other proteinases and oxidants in the 

extracellular space (the cysteine switch mechanism of 

activation of proMMPs [Murphy et al 1999; Fu et al 2001]). 

Some MMPs are activated in the transgolgi by cleavage of 

the prodomain by furin, an intracellular serine proteinase 

(Imai et al 1996; Cao et al 2005). MMPs are generally 

synthesized de novo by cells activated by pro-infl ammatory 

mediators or growth factors. However, PMN store 

preformed MMP-8, MMP-9, and MT6-MMP (MMP-25) 

in their cytoplasmic granules, from which the enzymes 

are released when PMN degranulate (Owen and Campbell 

1999). Macrophages express MMPs-1, -3, -7, -9, -12, 

and -14 (Shapiro et al 1991; Rajavashisth et al 1999), and 

lung epithelial cells and fi broblasts produce MMPs-2, -9, and -

14. MMPs are subdivided into 6 groups based upon a similar 

domain organization and substrate specifi city including: 1) 

the interstitial collagenases (MMPs-1, -8, and -13); 2) the 

gelatinases (MMPs-2 and -9); 3) the stromelysins (MMPs-3, 

-10, and -11); 4) matrilysin (MMP-7); 5) metalloelastase 

(MMP-12); and 6) membrane-type MMPs (MT-MMPs), 

which are integral membrane proteinases having either a 

transmembrane domain or a glycosylphosphatidyl-inositol 

anchor to the cell membrane (Sato et al 1994; Takino 

et al 1995). The interstitial collagenases degrade interstitial 

collagens. The other subgroups have broader substrate 

specificities including denatured collagens (gelatins), 

basement membrane proteins, and pro-inflammatory 

mediators. MMPs-7, -9, and -12 also degrade elastin (Owen 

and Campbell 1999).

ADAM
ADAMs are a family of type I transmembrane protein-

ases, so called because they contain a disintegrin and a 

metalloproteinase domain (Primakoff and Myles 2000). 

The metalloproteinase domain of ADAMs sheds mem-

brane-anchored cytokines such as pro-tumor necrosis 

factor (TNF-α), other cytokines, growth factors, apoptosis 

Table 1 Proteinases involved in the pathogenesis of COPD

Class of
proteinase

Optimum
pH

Examples Sources Inhibitors

Serine
proteinases

Neutrophil elastase (NE)
Cathepsin G (CG)
Proteinase 3 (PR3)

PMN
P Monocytes

α1-proteinase inhibitor (α1-PI)
α1-antichymotrypsin (α1-Ach)
Secretory leukocyte protease 
inhibitor (SLPI) Elafi n
α2-macroglobulin (α2M)

Neutral Urokinase-type plasminogen 
Activator (uPA)
Granzymes
Thrombin
Plasmin

PMN, monocytes, macrophages

CD8+ T cells, NK cells
Plasma
Plasminogen in plasma

Plasminogen activator inhibi-
tors (PAI)
Not known
Anti-thrombin III, α1-PI
α2-antiplasmin, α1-PI

Metallo-
proteinases

Neutral Matrix metalloproteinases
(MMP) ADAMs

Granulocytes
Monocytes and Macrophages
Epithelial cells
Fibroblasts

Tissue inhibitor of metallo-
proteinases
(TIMPs-1-4)
α-macroglobulin

Cysteine
proteinases

Acidic Cathepsins B, S, H, L
Caspases

Infl ammatory cells
T cells
Epithelial cells
Infl ammatory cells
Endothelial cells
Epithelial cells

Cystatins A, C, S
α2-macroglobulin
Kininogens
Inhibitors of apoptosis pro-
teins (IAPs)
CmrA, p35, α1-PI

Abbreviations: COPD, chronic obstructive pulmonary disease; PMN, polymorphonuclear neutrophils; ADAMs, proteinases containing a disintegrin and a metalloproteinase 
domain; P-monocytes, pro-infl ammatory monocytes.
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ligands and receptors for these molecules from cell surfaces 

to regulate infl ammation, apoptosis, and possibly fi brotic 

processes (Black et al 1997; Primakoff and Myles 2000; 

Black 2002). The disintegrin domain binds to integrins 

to regulate integrin-mediated cell adhesion and migration 

(Primakoff and Myles 2000).

MMPs are inhibited by α
2
-M and the four members of the 

tissue inhibitors of metalloproteinases family (TIMPs1-4), 

which are synthesized by connective tissue cells and leuko-

cytes and form non-covalent complexes with MMPs (Woess-

ner Jr 1991; Murphy and Docherty 1992). The inhibitors 

of ADAMs have not been fully elucidated, but ADAM-17 

is inhibited by TIMP-3 but not TIMP-1 or -2 (Amour et al 

1998; Black 2004).

Cysteine proteinases
Cathepsins B, H, L, and S have been implicated in COPD 

(Table 1). Cathepsin S and L are potent elastases in vitro 

(Mason et al 1986; Shi et al 1992) and contribute to 

macrophage-mediated ECM degradation. The main inhibi-

tors of cysteine proteinases are the cystatin superfamily, the 

kininogens, and α
2
-M (Henskens et al 1996).

Roles of proteinases in COPD
Evidence for roles of proteinases in COPD comes from stud-

ies of purifi ed proteinases, studies of clinical samples from 

COPD patients, and animal models of COPD.

In vitro studies of proteinases
Lung infl ammation and airspace enlargement
NE, CG, PR3, and GRZ have the potential to promote lung 

infl ammation in COPD patients, because they stimulate the 

release of pro-infl ammatory mediators from airway epithelial 

cells and macrophages in vitro (Hubbard et al 1991; Bedard 

et al 1993). Proteinases can also proteolytically cleave media-

tors to alter their biologic activities (Figure 1). MMPs-8 and -9 

cleave and activate various chemokines in vitro (Van Den 

Steen et al 2000; Balbin et al 2003). ADAM-17 and several 

MMPs shed and activate membrane-associated pro-TNF-α 

from macrophage surfaces (Primakoff and Myles 2000; Black 

2002; Churg et al 2003a). NE, MMP-12, and MMP-9 cleave 

elastin, and MMPs cleave α
1
-PI, generating fragments of these 

two molecules that are chemotactic for infl ammatory cells 

(Senior et al 1980; Hunninghake et al 1981). Serine, metallo-, 

and cysteine proteinases acting together can degrade elastin, 

interstitial collagens, and basement membrane proteins in 

vitro (Owen and Campbell 1999). All of these ECM proteins 

must be degraded when lung airspaces enlarge (Figure 1).

Airway pathologies
NE, MMP-9, and ADAMs-10 and -17 increase epithelial 

cell expression of MUC5AC, a major mucin protein, by 

activating epithelial growth factor receptor (EGFR) through 

shedding of membrane − bound pro-transforming growth 

factor (TGF)-α. This releases soluble, active TGF-α, which 

activates the EGFR (Kohri et al 2002; Shao et al 2004; 

Deshmukh et al 2005). NE, CG, and PR3 potently stimulate 

goblet cell degranulation (Sommerhoff et al 1990). Tissue 

kallikrein is a serine proteinase expressed by infl ammatory 

cells and submucosal glands. It also stimulates mucin synthe-

sis in airway epithelium in vitro by shedding and activating 

pro-EGF, another EGFR ligand (Casalino-Matsuda et al 

2006). NE also damages epithelial cells (Amitani et al 1991) 

and inhibits ciliary beat frequency of lung epithelial cells 

(Smallman et al 1984). Increased production and impaired 

clearance of mucus predispose COPD patients to recurrent 

bacterial airway infections, which amplify airway infl amma-

tion and injury (Figure 1).

Plasmin, MMP-9, NE, and ADAMs may also induce sub-

epithelial fi brosis in COPD airways, because they activate 

latent growth factors such as TGF-β (Taipale et al 1992; 

Yu and Stamenkovic 2000; Chua et al 2007) and insulin-

like growth factors in vitro (Fowlkes et al 1999; Mohan 

et al 2002) and these growth factors induce fi broblasts to 

synthesize and secrete interstitial collagens. However, it 

has not been determined whether these proteinases induce 

sub-epithelial fi brosis in the small airways of human COPD 

patients.

Studies of clinical samples from human 
COPD patients
In addition to the early observation that α

1
-PI-defi cient 

patients have early-onset emphysema, elegant studies from 

Damiano and colleagues (1986) further supported a role for 

NE in pulmonary emphysema. They localized NE bound 

to lung elastic fi bers and showed that the amount of NE 

bound to lung elastin is strongly correlated with the degree 

of emphysematous change. Since then, additional studies 

have confi rmed increased levels of NE in lung samples from 

COPD patients and demonstrated elevated levels of CG, PR3, 

uPA, and MMPs -1, -2, -8, -9, and -14 in various lung samples 

from smokers and COPD patients when compared with 

healthy subjects (Damiano et al 1986; Reilly and Chapman 

Jr 1988; Abboud et al 1998; Betsuyaku et al 1996; Finlay 

et al 1997; Betsuyaku et al 1999; Hill et al 1999; Betsuyaku 

et al 2000b; Cataldo et al 2000; Imai et al 2001; Beeh et al 

2003; Kang et al 2003).
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Although most studies have implicated proteinases from 

infl ammatory cells in COPD pathogenesis, proteinases pro-

duced by lung structural cells and immune cells also play impor-

tant roles (Figure 1). For example, cigarette smoke increases 

MMP production by lung epithelial cells (Imai et al 2001), and 

fi broblasts (Ning et al 2007). T lymphocytes from blood and 

BAL samples from COPD patients have increased levels of 

GRZ and perforin compared to samples from asymptomatic 

smokers and nonsmokers (Hodge et al 2006). Elevated levels 

of GRZ B in BAL samples from COPD patients are correlated 

with bronchial epithelial cell apoptosis, suggesting that GRZ B 

promotes epithelial cell death in the lung and contributes to 

airspace enlargement in COPD patients (Figure 1).

Animal models of COPD
Animal models of COPD provide the strongest evidence for 

the roles of proteinases in COPD.

Acute cigarette smoke exposure models
Acute exposure of mice to cigarette smoke for up for 30 days 

results in increases in lung PMN and macrophages and break-

down of lung collagen and elastin (Churg et al 2002). Studies 

of mice genetically defi cient in proteinases in these acute 

exposure models have identifi ed critical roles for MMP-12 

in regulating PMN infl ux and for thrombin and plasmin in 

regulating MMP-12 production (Figure 2). Cigarette smoke 

acutely upregulates macrophage MMP-12 levels by injuring 

lung capillaries (Burns et al 1989; Li et al 1996), leading to 

leakage of thrombin and plasmin into the alveolar space. 

Thrombin and plasmin cleave, thereby activating protease-

activated receptor -1 (PAR-1) on macrophages. Signaling 

through PAR-1 increases macrophage MMP-12 synthesis 

(Raza et al 2000; Churg et al 2007b). Macrophage-derived 

MMP-12 regulates PMN infl ux into the lung by shedding 

pro-TNF-α from activated macrophages, which likely up-

regulates E-selectin expression on endothelial cells to promote 

PMN transendothelial migration (Churg et al 2003a) and 

lung ECM degradation by PMN-derived serine proteinases 

(Figure 2). It is noteworthy that delivering human α
1
-PI to 

mice acutely exposed to cigarette smoke prevents PMN infl ux 

and ECM destruction. This is probably due to α
1
-PI inhibit-

ing both PMN serine proteinase-mediated ECM destruction 

and thrombin- or plasmin-induced increases in macrophage 

MMP-12 production (Churg et al 2003b, 2007b).

Chronic smoke exposure models
Exposure of WT mice to cigarette smoke for 3–6 months 

results in airspace enlargement, inflammation, and 

subepithelial fi brosis in the small airways, similar to that 

reported in human cigarette smokers (Hautamaki et al 1997; 

Martin et al 2001). Studies of proteinase-defi cient mice in 

this model have confi rmed roles for MMP-12 and NE in 

regulating chronic lung infl ammation and airspace enlarge-

ment (Figure 3) and for MMP-9 and/or MMP-12 in inducing 

subepithelial fi brosis in the small airways of smoke-exposed 

mice.

Mice defi cient in MMP-12 (MMP-12−/− mice) exposed 

to cigarette smoke for 6 months are completely protected 

from developing increased lung macrophage counts and 

from developing airspace enlargement (Hautamaki et al 

1997). MMP-12 degrades elastin and other ECM components 

to cause airspace enlargement (Figure 3). The decreased 

macrophage accumulation in MMP-12−/− mice is due to 

the lack of MMP-12-mediated cleavage of elastin, which 

generates elastin fragments that are chemotactic for blood 

monocytes (Figure 3) (Houghton et al 2006b). T lymphocyte 

products also play a critical role in driving MMP-12-medi-

ated infl ammation and airspace enlargement, since CD8+ 

T-cell-defi cient (CD8-/-) mice have a blunted infl ammatory 

response to cigarette smoke and fail to develop emphysema 

(Maeno et al 2007). This is mediated by a CD8+ T cell 

product, IFN-γ inducible protein 10 (IP-10), which induces 

production of MMP-12 and degradation of the lung ECM 

(Figures 1 and 3). This process may also contribute to COPD 

pathogenesis in human subjects, since lung tissue from 

human COPD patients contains increased numbers of Th1 

cells associated with increased levels of IP-10 and MMP-12 

(Grumelli et al 2004).

NE−/− mice are 60% protected from airspace enlargement 

and have decreased infl ux of PMN and monocytes into the 

lung compared to smoke-exposed WT mice (Shapiro et al 

2003) (Figure 3). NE likely contributes to airspace enlarge-

ment directly by degrading elastin and other ECM protein 

components of the alveolar walls (Shapiro et al 2003) 

(Figure 3), but the mechanisms by which NE promotes lung 

infl ammation are not clear.

When rodent airways are exposed acutely to cigarette 

smoke, increases in growth factor and collagen production 

are detectable within 2 h, and before infl ammation occurs 

in the airway walls (Churg et al 2006). This indicates that 

smoke directly promotes small airway subepithelial fi bro-

sis and that smoke-induced infl ammation and proteinase 

production are unnecessary for this process. However, in 

guinea pigs chronically exposed to cigarette smoke for up 

to 6 months, infl ammatory cell MMPs amplify this process, 

since delivering a synthetic dual inhibitor of MMPs-9 and -12 
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to these animals signifi cantly reduces small airway fi brosis 

(Churg et al 2007a). Studies of MMP inhibitors in human 

COPD patients are thus warranted to determine whether these 

proteinases play important roles in this important pathology 

in humans as well as mice.

Transgenic murine models
Transgenic mice over-expressing MMP-1 in the lung 

develop enlarged airspaces (D’Armiento et al 1992), which 

may either refl ect abnormal alveolar development or destruc-

tion of mature interstitial collagens by MMP-1. Assessment 

of transgenic mice inducibly over-expressing cytokines in 

the adult lung have confi rmed a role for immune-mediated 

infl ammation in airspace enlargement. Adult transgenic mice 

over-expressing a Th1 cytokine (IFN-γ), a Th2 cytokine 

(IL-13), or a cytokine with Th1 and Th2 activities (IL-18) in 

airway epithelial cells spontaneously develop striking lung 

infl ammation, increased lung levels of MMPs and cysteine 

proteinases, and airspace enlargement (Wang et al 2000; 

Zheng et al 2000; Kang et al 2007). In mice over-expressing 

IL-13, MMPs -9 and -12 play critical roles in promoting 

airspace enlargement, and MMP-12 also promotes infl am-

mation and drives the increased expression of other MMPs 

in the lung (Lanone et al 2002). In transgenic mice over-

expressing IFN-γ, cathepsin S stimulates lung epithelial 

apoptosis, lung infl ammation, and airspace enlargement 

(Zheng et al 2005).

Alveolar septal cell apoptosis models 
of airspace enlargement
Apoptosis of alveolar septal cells (Aoshiba et al 2001) and 

leukocytes (Aoshiba et al 2001; Hodge et al 2005) occurs in 

the lungs of COPD patients, and apoptosis of the endothelial 

and epithelial cells that make up the alveolar walls contributes 

to the development of emphysema. Septal cell apoptosis and 

airspace enlargement in the absence of overt lung infl ammation 

can be induced rapidly in experimental animals by: 1) pharma-

cologic blockade of vascular endothelial growth factor recep-

tors in rodents (Kasahara et al 2000); and 2) transfection of 

murine alveolar epithelial cells with caspase-3, a pro-apoptotic 
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Figure 2 Interactions between proteinases regulate infl ammation and matrix destruction in mice acutely exposed to cigarette smoke. Cigarette smoke drives macrophage 
MMP-12 production, at least in part by inducing thrombin- and plasmin-mediated activation of protease-activated receptor-1 (PAR-1) on macrophages. MMP-12 stimulates 
PMN accumulation in the lung by shedding pro-TNF-α from the macrophage surface, generating soluble, active TNF-α. Active TNF-α stimulates PMN trans-endothelial 
migration by up-regulating endothelial E selectin expression. PMN proteinases, such as neutrophil elastase (NE), amplify macrophage MMP-12 mediated destruction of the 
lung ECM.
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cysteine proteinase (Aoshiba et al 2003). However, increased 

elastase activity due to acidic proteinase(s) is detected in BAL 

samples after transfection of alveolar epithelial cells with 

caspase-3 (Aoshiba et al 2003). Thus, proteinases released 

from dying structural cells may degrade the lung ECM, thereby 

acting synergistically with septal cell apoptosis to cause loss 

of alveolar units and airspace enlargement (Figure 1).

Interactions between proteinases 
and other mediators and pathways 
in COPD
Interactions between different classes of proteinases and 

between proteinases and other molecules present in COPD 

lungs either amplify or inhibit proteinase production, lung 

infl ammation, and airspace enlargement in COPD lungs.

Studies of the NE−/− and MMP-12−/− mice exposed chroni-

cally to cigarette smoke demonstrated interactions between 

these two classes of proteinases (Figure 3), with MMP-12 

cleaving and inactivating α
1
-PI to increase NE-mediated 

lung injury, and NE cleaving and inactivating TIMP-1 to 

amplify MMP-12-mediated lung destruction (Shapiro et al 

2003). Proteinases also interact with ROS present in cigarette 

smoke itself and are generated by phagocytes activated by 

cigarette smoke. ROS activate proMMPs in vitro and have 

been thought to exacerbate lung infl ammation and injury in 

COPD patients (Owen 2005). Consistent with this hypothesis, 

mice transgenically over-expressing the antioxidant enzyme 

Cu-Zn superoxide dismutase in the lung are protected from 

developing chronic lung infl ammation, increased lung MMP 

levels, and emphysema in response to intratracheal instil-

lation of porcine pancreatic elastase, or chronic exposure 

to cigarette smoke (Foronjy et al 2006). However, mice 

defi cient in a phagocyte-specifi c component of the NADPH 

oxidase, which generates superoxide anions (O
2

−), develop 

greater airspace enlargement in response to cigarette smoke 

than WT mice (Kassim et al 2005). This is due to ROS-

mediated inactivation of MMPs via oxidative inactivation of 

residues in the catalytic domain of MMPs (Fu et al 2003a). 

Thus, phagocyte-derived O
2

− (and ROS derived from O
2
−) in 

COPD lungs may constrain rather than promote phagocyte 

MMP-mediated lung injury (Fu et al 2003b; Kassim et al 

2005). This may be one reason that clinical trials have failed 

to demonstrate protective effects of antioxidant supplementa-

tion in COPD patients (Rahman and MacNee 1996).

PMN

Monocyte

TIMP-1

NE
cleaves
TIMP-1

MMP-12
α1-PI

MMP-12
cleaves
α1-PI

PMN

NE

NE

Elastin fragments 
which are 
chemotactic for 
monocytes

Macrophage

Endothelium

Interstitium

Matrix

Figure 3 Interactions between proteinases regulate infl ammation and ECM destruction in mice chronically exposed to cigarette smoke. Neutrophil elastase (NE) promotes 
infl ammation and ECM destruction in mice chronically exposed to cigarette smoke by increasing the infl ux of PMN and monocytes into the lung (by unknown mechanisms), 
and by cleaving and inactivating TIMPs to promote MMP-12 mediated ECM degradation. MMP-12 amplifi es NE-mediated lung infl ammation and destruction by cleaving and 
inactivating α1-PI, the major inhibitor of NE in the lower respiratory tract. Fragments of elastin generated by MMP-12 (and possibly by NE) amplify MMP-12-mediated lung 
injury by stimulating the recruitment of blood monocytes into the lung.
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Molecular mechanisms 
for proteinase-mediated lung 
injury in COPD
In order to contribute to pathologies in COPD, proteinases 

must overcome the effects of proteinase inhibitors, which 

are present at micromolar concentrations in extracellular 

fl uids. Proteinases circumvent the effects of extracellular 

inhibitors by inactivating, evading, or overwhelming them 

(Figure 4).

Inactivation of proteinase inhibitors
Serpins can be cleaved and inactivated by MMPs (Desrochers 

and Weiss 1988; Desrochers et al 1991, 1992; Sires et al 

1994; Gronski Jr et al 1997), NE (Cantin et al 1995), cathep-

sin B (Johnson and Travis 1977), and bacterial proteinases 

(Sponer et al 1991). Serine proteinases cleave and inactivate 

TIMPs (Okada et al 1988). Proteolytic inactivation of α
1
-PI 

and TIMP-1 by MMP-12 and NE occurs in the cigarette 

smoke exposure model of emphysema in mice (Shapiro 

et al 2003).

ROS present in cigarette smoke or released by leukocytes 

activated by smoke inactivate α
2
-M, and α

1
-PI, and SLPI in 

vitro by converting the methionine at the active sites of these 

inhibitors to methionine sulfoxide, which reduces their capac-

ity to inhibit serine proteinases (Carp and Janoff 1979, 1980a, 

1980b; Reddy et al 1994). Whether oxidative inactivation of 

proteinase inhibitors occurs in COPD patients is controver-

sial, since some studies have detected oxidized α
1
-PI in lung 

samples from COPD patients but others have not (Gadek et al 

1979; Stone et al 1983; Abboud et al 1985). Also, ROS can 

inactivate proteinases as outlined above. Global analysis of 

Proteinase: inhibitor
complexes

1. Inhibitor inactivation

3. Membrane-
binding

5. Sequestered 
microenvironment

Cell-matrix adhesion

4. Binding 
to ECM

2. Quantum 
proteolysis

PMN

Matrix

Proteinases 
Stored in 
granules

Figure 4 Mechanisms by which proteinases circumvent proteinase inhibitors in the extracellular space to cause lung injury in COPD. PMN store preformed proteinases 
within intracellular granules, and proteinases are released into the extracellular space when pro-infl ammatory mediators induce PMN degranulation. Proteinases freely 
released by PMN are inhibited when they form complexes with extracellular inhibitors. However, proteinases can circumvent inhibitors by: 1) cleaving or degrading inhibi-
tors; 2) being released at very high concentrations into the extracellular space, thereby overwhelming inhibitors; 3) binding to cell membranes in inhibitor-resistant forms; 
4) binding to matrix substrates in inhibitor-resistant forms; or 5) being released into sequestered microenvironments formed by tight adhesion of PMN to ECM into which 
diffusion of large inhibitors is impaired.
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the oxidation state of proteinase inhibitors in lung samples 

from COPD patients may not accurately refl ect events in cel-

lular microenvironments. ROS are short-lived molecules and 

are active only at short distances from the cells generating 

them before they are inactivated by antioxidants. It is likely 

that ROS and proteinases released into microenvironments 

around activated leukocytes act synergistically to locally 

inactivate inhibitors (or proteinases) and promote (or reduce) 

extracellular proteolysis.

Evasion of inhibitors
Proteinases can evade inhibitors by being released into 

sequestered microenvironments, binding tightly to substrates, 

or binding to cell surfaces (Figure 4).

Sequestered microenvironments
Integrin-mediated adhesion of infl ammatory cells to matrix 

or to cells results in the formation of a "sealed" micro-

environment, which prevents large inhibitors such as α
1
-PI 

(Campbell and Campbell 1988) and α
2
-M (Wright and Sil-

verstein 1984) from penetrating into zones of contact between 

the cells and their substrates (Figure 4).

Tight binding of proteinases to substrates
NE binds very stably to elastin in an active form, and α

1
-PI 

and SLPI have reduced effectiveness against elastin-bound 

NE compared to soluble NE (Bruch and Bieth 1986; Morrison 

et al 1990, 1999). Since NE is bound to interstitial elastin 

in human emphysematous lungs (Damiano et al 1986), lung 

elastin-bound NE likely retains catalytic activity and contrib-

utes critically to destruction of elastin fi bers in pulmonary 

emphysema (Figure 4). MMPs-1, -2, and -9 bind to various 

ECM proteins, which may increase the retention, stability, 

and bioactivity of proteinases in the lung and facilitate their 

roles in extracellular proteolysis (Murphy et al 1992; Allan 

et al 1995).

Membrane binding of proteinases
MT-MMP and ADAMs are integral membrane proteinases, 

and some members of these families are resistant to inhibi-

tion by physiologic inhibitors. For example, ADAM-17 is 

resistant to inhibition by TIMPs-1 and -2 but not TIMP-3 

(Amour et al 1998), and MT1-MMP is resistant to inhibition 

by TIMP-1 but not TIMP-2 (D’Ortho et al 1998). NE, CG, 

PR3, MMPs-8 and -9 (which lack transmembrane domains 

or glycosylphosphatidyl-inositol anchors) are also expressed 

on the surface of activated PMN (Owen et al 1995a, 1995b, 

2003, 2004; Owen and Campbell 1998; Campbell et al 2000) 

(Figure 4). These surface-bound proteinases potently degrade 

lung ECM proteins and proteinase inhibitors and induce 

goblet cell degranulation (Takeyama et al 1998; Owen et al 

1995b, 2003, 2004). However, unlike the soluble enzymes, 

the membrane-bound forms of these proteinases are resistant 

to inhibition by physiologic inhibitors (Owen et al 1995b, 

2003, 2004; Owen and Campbell 1998; Campbell et al 

2000). The inhibitor-resistance of membrane-bound NE is 

due to positive residues in NE binding to negatively charged 

sulfate groups in PMN plasma membrane proteoglycans 

(Campbell and Owen 2007), but the mechanism underlying 

the resistance of other cell-surface proteinases to inhibition is 

not known. Whatever the mechanism involved, catalytically 

active but inhibitor-resistant membrane-bound proteinases 

are well equipped to play critical roles in pathologies in 

COPD patients.

Overwhelming of inhibitors
Proteinases may overwhelm inhibitors when massive quanti-

ties of enzymes are released from large numbers of infl am-

matory cells, or when high concentrations of proteinases are 

released from individual cells (quantum proteolysis).

Brisk infl ux of infl ammatory cells
During acute exacerbations of COPD, there is brisk infl ux 

of infl ammatory cells into the airways. Active forms of NE, 

MMP-8, and MMP-9 released from these cells are detectable 

in lung secretions from COPD patients (Burnett et al 1987; 

Yoshioka et al 1995; Betsuyaku et al 1999; Hill et al 1999). 

Macrophage clearance of PMN recruited into the lung can 

be impaired in COPD patients by several mechanisms. First, 

cigarette smoke impairs expression of recognition molecules 

for apoptotic PMN on the macrophage surface (Hodge et al 

2007). Second, NE cleaves recognition molecules for apop-

totic PMN from the macrophage surface (Vandivier et al 

2002). Third, when PMN ingest Hemophilus infl uenzae, 

which frequently colonizes the respiratory tract of COPD 

patients, PMN necrosis is rapidly induced (Naylor et al 2007). 

All of these processes hinder noninfl ammatory macrophage 

removal of PMN, instead promoting PMN necrosis and 

release of proteinases into the lung.

Quantum proteolysis and PiZZ α1-PI defi ciency
NE is present at millimolar concentrations in each azurophil 

granule of PMN, which is more than 100-fold higher than the 

concentration of α
1
-PI in plasma (Liou and Campbell 1995). 

The release of an azurophil granule into the extracellular 

space is thus accompanied by a transient burst of proteolytic 

activity (Figure 4), which persists until the granule contents 
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diffuse from this site, and the proteinase-inhibitor ratio 

falls below 1:1 (Liou and Campbell 1995). Individuals with 

severe, inherited defi ciency of α
1
-PI have severe reductions in 

plasma levels of α
1
-PI (less than 4 μM in PiZZ α

1
-PI defi cient 

individuals versus ~30 μM in healthy PiMM individuals) due 

to loop sheet polymerization of PiZ mutant protein within 

hepatocytes, leading to reduced hepatocyte secretion of PiZ 

α
1
-PI (Lomas et al 1992). Quantum bursts of NE-mediated 

proteolytic activity associated with PMN migrating on ECM 

proteins are 10-fold larger in area and 4-fold longer in dura-

tion when PMN are bathed in serum from PiZZ patients 

compared to serum from healthy PiMM subjects (Campbell 

et al 1999), due to defective confi nement of PMN-derived 

NE-mediated ECM degradation. Other mechanisms lead-

ing to excessive ECM destruction and lung infl ammation in 

patients with severe, inherited defi ciency of α
1
-PI include 

the formation of polymers of PiZ α
1
-PI mutant proteins in 

the lung, which not only are ineffective inhibitors of NE, 

but also have chemotactic activity for PMN (Mahadeva et al 

2005; Lomas 2006).

Potential for proteinase inhibition 
in COPD
Based upon the available evidence, strategies to directly 

inhibit proteinases or to decrease the lung proteinase burden 

by decreasing infl ammatory cell infl ux into the lung may 

be effective in limiting proteinase-induced lung injury in 

COPD patients.

Direct proteinase inhibition
Supplementation with physiologic proteinase 
inhibitors
This strategy is effective in murine models of COPD and in 

human subjects with COPD secondary to α
1
-PI defi ciency. 

Delivering α
1
-PI systemically or by the inhaled route to 

smoke-exposed mice inhibits smoke-induced lung infl amma-

tion and airspace enlargement (Churg et al 2003b; Pemberton 

et al 2006). Alpha
1
-PI augmentation therapy is being used in 

the USA in α
1
-PI-defi cient patients who have impaired lung 

function. Observational studies using this strategy confi rm 

that it reduces bronchial infl ammation, slows the rate of 

decline in lung function, increases quality-of-life scores, and 

decreases exacerbation frequency in α
1
-PI-defi cient patients 

(Stockley et al 2002a; Juvelekian and Stoller 2004).

Synthetic proteinase inhibitors
Synthetic inhibitors have several advantages over physi-

ologic inhibitors, including their resistance to oxidative and 

proteolytic inactivation and their effectiveness against both 

soluble and membrane-bound forms of proteinases (Owen 

et al 1995b, 2003, 2004). In animals exposed to cigarette 

smoke, or in transgenic mice over-expressing IL-13, deliv-

ering synthetic inhibitors of serine, metallo-, and cysteine 

proteinases by the systemic, oral, or inhaled routes blocks 

lung infl ammation and airspace enlargement (Churg et al 

2002; Lanone et al 2002; Stockley et al 2002b; Wright et al 

2002; Pemberton et al 2005). Daily oral delivery of synthetic 

MMP inhibitors not only prevents airspace enlargement 

in mice chronically exposed to cigarette smoke, but also 

prevents progression of lung infl ammation and airspace 

enlargement if therapy is initiated after emphysema has been 

established (Martin et al 2001). Synthetic inhibitors may also 

have potential in limiting the airfl ow obstruction produced 

by small airway fi brosis, since a synthetic compound that 

inhibits both MMP-9 and MMP-12 effectively blocks small 

airway fi brosis in cigarette smoke-exposed guinea pigs 

(Churg et al 2007a).

Anti-infl ammatory strategies
Approaches to reducing infl ammatory cell recruitment into 

the lung and activation of infl ammatory cells would not only 

reduce the lung burden of infl ammatory cell-derived protein-

ases but also that of other pathogenetic molecules generated 

by infl ammatory cells in COPD patients such as ROS and 

pro-infl ammatory mediators. Inhibitors of phosphodiester-

ase E4 (PDE4), the major PDE isoenzyme in infl ammatory 

cells, decrease inflammatory cell migration, activation, 

and release of proteinases in vitro. Rofl umilast (a PDE4 

inhibitor) also protects mice from cigarette-smoke induced 

lung infl ammation and airspace enlargement (Martorana 

et al 2005). Short-term clinical trials of phosphodiesterase 

E4 inhibitors in COPD patients have indicated that these 

inhibitors decrease lung infl ammation, lung proteinases, and 

pro-infl ammatory mediators, increase post bronchodilator 

forced expiratory volume in one second (Martina et al 2006; 

Calverley et al 2007; Grootendorst et al 2007), and reduce 

the frequency of acute exacerbations (Martina et al 2006; 

Calverley et al 2007). Statins (hydroxymethylglutaryl CoA 

reductase inhibitors) have diverse anti-infl ammatory effects 

and also represent a potential new approach to COPD. This 

is supported by a recent study showing that simvastatin 

reduces lung inflammation, airspace enlargement, and 

pulmonary hypertension in cigarette smoke-exposed rats 

(Lee et al 2005). Several recent retrospective analyses have 

reported reduced morbidity and mortality in COPD patients 
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taking statins for cardiovascular disease (Gueders et al 2005; 

Mancini et al 2006).

Other potential approaches to reduce infl ammatory cell 

infl ux into the lung include anti-oxidant supplementation, 

inhibiting the transcription factor NF-κB, which drives the 

production of several pro-infl ammatory molecules caus-

ing infl ammation in COPD lungs (Retamales et al 2001; 

Szulakowski et al 2006) and inhibitors of chemokine receptors 

(Donnelly and Barnes 2006). Histone deacetylases, which are 

enzymes that switch off transcription of pro-infl ammatory 

genes, are inactivated in COPD patients (Ito et al 2005) and 

represent another potential drug target in COPD patients.

Conclusions and future directions
There is now substantial evidence from animal model systems 

that proteinases make important contributions to pathologies 

in COPD and that proteinase inhibition and anti-infl ammatory 

strategies effectively limit smoke-induced lung injury in 

mice. However, there are critical gaps in our knowledge about 

the roles of proteinases not only in pathogenesis of human 

COPD, but also in repair processes in the lung in COPD, and 

in lung biology in general.

It is important to note that murine model systems of COPD 

have limitations. Mice lack submucosal glands and do not 

develop mucus hypersecretion or acute exacerbations in the 

murine cigarette smoke exposure model. Mice also have fewer 

circulating PMN than humans and do not express MMP-1. 

The role of MMP-12 in human disease must be clarifi ed. Early 

studies failed to detect increased expression of MMP-12 in 

lung samples (Finlay et al 1997; Imai et al 2001), but more 

recent studies using other techniques have demonstrated 

increased levels of MMP-12 in human COPD (Grumelli et al 

2004; Molet et al 2005; Woodruff et al 2005; Demedts et al 

2006). Thus, PMN-derived serine proteinases and MMPs in 

addition to MMP-12 may be important in human COPD. The 

challenge for the future will be to determine which proteinases 

play critical roles not only in airspace enlargement but also 

in airway pathologies in human COPD patients.

The biologic roles of proteinases expressed in the lung 

have also not been fully elucidated. Evidence is accumulat-

ing that some proteinases have both benefi cial as well as 

deleterious roles in the murine lung. NE plays critical roles 

in bacterial killing in mice (Belaaouaj et al 1998), MMP-8 

reduces lung infl ammation (Owen et al 2004; Gueders et al 

2005), and MMP12 has anti-tumor activities (Houghton et al 

2006a). If these proteinases have similar benefi cial activities 

in the human lung, this may limit the usefulness of inhibitors 

of these proteinases in COPD patients, who are at increased 

risk for developing respiratory tract infections and lung can-

cer (Skillrud et al 1986). Little is also known about repair 

processes in the COPD lung in general, or whether protein-

ases participate in lung repair in COPD. Studies of MMP-9 

defi cient mice in bleomycin-mediated lung injury suggest 

that MMP-9 might play roles in epithelial repair processes 

in the injured lung (Betsuyaku et al 2000a), and it is likely 

that other proteinases contribute to repair of the injured lung 

in COPD patients.

There have been no long-term clinical trials of synthetic 

proteinase inhibitors or anti-infl ammatory agents in COPD 

patients due mainly to the high cost of such trials. In addition, 

we currently lack knowledge about appropriate biomarkers 

for studying the effectiveness of new treatment strategies 

in COPD patients. Nevertheless, based upon the evidence 

available, randomized clinical trails to test the safety and 

effi cacy of proteinase inhibitors and anti-infl ammatory agents 

are justifi ed in COPD patients.
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