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Abstract: With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier–portal vein/ 
intestinal lymphatic vessels–systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, 
such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug 
delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanome-
dicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral 
drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and 
biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of 
targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug 
absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact 
of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different 
nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation 
of oral anticancer nanomedicines. 
Keywords: oral nanomedicine, oral targeted drug delivery, nanoparticles, cancer treatment, biological barriers

Introduction
The route of drug administration is the most important factor in determining drug concentration and residence time at the 
target site.1,2 Despite well-known drawbacks such as poor drug bioavailability and rapid degradation rates and metabo-
lism in the intestine and liver, oral therapy is considered the most ideal and convenient route of drug delivery for both 
systemic and local administration drug delivery.3 It is essential for patients to perceive oral drug delivery positively, 
particularly when compared to infusions or other parenteral methods, which are common in cancer treatments. 
Additionally, the economic benefits of reducing hospital stays for patients should also be considered.4

The gastrointestinal tract (GIT) encompasses a surface area of approximately 300 square meters and is enveloped 
with a sticky mucosal layer that aids in the adhesion and absorption of drugs.5 Notwithstanding, oral drug delivery poses 
a daunting task owing to the intricate nature of the GIT and the impediments to drug delivery, such as substandard 
solubility, stability, and permeability. In addition, an unpleasant taste, gastric irritation, and susceptibility to intestinal and 
liver barrier metabolism are common drawbacks of oral medications.6,7 However, targeted delivery to specific locations 
in the GIT can be achieved through appropriate drug design or delivery vehicles.8 The residence time of digested food in 
the duodenum is relatively brief, and the pH is lower than that of the remainder of the small intestine. This indicates that 
the retention of drugs in the duodenum can be successfully avoided by increasing the pKa value of the delivery vehicle. 
For instance, Lozoya-Agullo et al employed poly(lactic-co-glycolic) acid (PLGA) nanoparticles for colonic delivery, 
demonstrating that drug release in the duodenum could be significantly avoided due to insufficient ambient pH.9
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Drug delivery systems (DDSs) are frequently utilized to improve the stability of drugs, regulate drug release, and 
accumulate drugs at the lesion site, thus improving drug effectiveness.10–13 In 1906, Ehrlich first proposed the “magic bullet” 
hypothesis, which introduced the idea of targeted drugs.14,15 Since rituximab, the first targeted treatment was approved by the 
FDA in 1997, targeted drug delivery systems (TDDSs) have emerged, leading the way for targeted therapy.14

Some researchers advocate using oral targeted drug delivery systems (OTDDSs) in biomedical applications, citing 
their promising potential.16 Oral administration involves the administration of drugs or therapeutic agents that are 
transported into the systemic circulation and accumulate at target sites beyond the GIT. The proposed OTDDS is 
considered to have various potential benefits, such as enhanced compliance, improved convenience of medication 
usage, and lowered expenses for production and healthcare. Historically, oral administration has proven to be more 
effective for treatments based on small molecules. Due to the diverse and heterogeneous nature of the biological barrier 
in the GIT, most new biotherapeutics and high-molecular-weight molecules are not ideal for delivery using this route.1

Recent advancements in materials science are expanding the options for cancer treatments.17 Specifically, nanomedicines and 
their bulk carriers demonstrate significant potential in improving the delivery of small molecules and macromolecules.18–21 Wang 
et al demonstrated that tartaric-acid-modified mesoporous silica nanoparticles exhibit excellent mucus penetration, mucosal 
adhesion, cellular uptake, intestinal transport, and gastrointestinal retention during continuous oral absorption. The nanoparticles 
are efficiently absorbed into the bloodstream during oral delivery, exhibiting absorption rates that are 1.72–2.05 times higher than 
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those of other nanocarriers. They also contribute to a more efficient intestinal transit of loaded doxorubicin (DOX), with 
absorption rates that are 2.32–27.03 times higher than those of other samples. Furthermore, the nanoparticles exhibit satisfactory 
bioavailability (449.73%) and a stronger anti-tumor effect (up to 95.43%).22 The oral delivery of nanocarriers can both promote 
regulated drug release and protect the drug payload from adverse biological and chemical conditions in the GIT. In addition, by 
avoiding first-pass metabolism, oral nanocarriers enhance targeting to specific GIT cell morphologies, penetrate the mucus barrier, 
and improve drug bioavailability.22 The drug delivery community has shown great interest in the search for novel approaches and 
materials that facilitate the transition from intravenous to oral drug delivery.23,24 The viability of OTDDSs must be taken into 
account when considering oral targeted therapy. This includes the consideration of transport mechanisms, intestinal and cellular 
distribution, absorption pathways, and the structural progression of the carriers in the body. The mucosal mucus layer of the 
intestine has a large surface area (greater than 300 m2), which facilitates the attachment of drugs and subsequent absorption.25 

Given the abundance of enterocytes throughout the intestine, particularly in the microfold cells (M cells) lining the lymphatic area 
of the small intestine. M cells are specialized cells present in the intestinal epithelium and are part of the gut-associated lymphoid 
tissue. M cells are morphologically different from intestinal epithelial cells. On the surface of the intestine, M cells have short and 
irregular microvilli, which are different from the highly organized and uniformly and closely arranged microvilli of intestinal 
epithelial cells. Therefore, M cells have higher permeability than other intestinal epithelial cells and can be used as a channel for 
nanoparticles to cross the epithelium. After ingestion, the drug carrier will immediately enter the lymphatic system without 
loss.26,27 Other factors that contribute to reduced drug efficiency due to mechanical degradation within the gastrointestinal tract are 
osmotic pressure along the gastrointestinal tract, the peristalsis of the gastrointestinal muscles, and shear stress generated by 
gastric fluid flow rates within the gastric lumen.28 Furthermore, the flow of gastric juice may also reduce the contact time between 
drug molecules and the epithelial layer, thereby hindering drug absorption.29 Enveloped biologics, such as viruses, vaccines, and 
cells, are frequently the primary components susceptible to mechanical disruption. In a study by Valon et al, the potential effects of 
mechanical stress on various cell types were investigated. The findings indicated that shear stress and compaction may result in 
cell apoptosis and death.30 Furthermore, Choi et al demonstrated that high osmotic pressure can compromise the integrity of 
viruses in acidic environments.28

This review provides a detailed summary of nanotechnologies for oral chemotherapy, highlighting their unique 
properties and the challenges they face in overcoming intestinal biological barriers. It emphasizes the many advantages of 
oral administration over injection: avoidance of discomfort, trauma, infection, and complications. A major challenge with 
oral drug delivery is the relatively low bioavailability of the drug. Nanotechnology can significantly improve the 
bioactivity and availability of oral drugs. The applications of organic and inorganic nanomaterials in oral nanomedicines 
are reviewed, demonstrating their respective advantages and application prospects. Specific challenges and potential 
opportunities for the future development of oral nanomedicines are presented and analyzed. The main physiological 
barriers facing oral drugs are described, and insights into how nanotechnology can overcome these barriers through 
a range of mechanisms of action are provided. Research on oral nanomedicines based on nanomaterials and specific 
application cases in cancer treatment are discussed. Challenges and opportunities encountered in future clinical transla-
tion and industrial production are proposed, and coping strategies are emphasized. The review calls for more solutions 
with innovative designs and applications to promote the clinical transformation and standardized production of oral 
nanomedicines. The ultimate goal is to benefit patients and improve their quality of life through innovative nanotechnol-
ogy designs and applications. We also highlight their potential use in the treatment of cancer (Table 1).

Biological Barriers to OTDDSs
Biological barriers to the transport of drugs or carriers hinder the effective accumulation of nanoparticles at sites of 
disease, impeding the swift targeting of diseased areas. While the transportation of materials within the GIT is highly 
efficient, biological defense mechanisms have evolved to prevent foreign objects—such as synthetic nanoparticles—from 
being harmful. In a similar vein, the defense system acts as a built-in impediment to nanoparticle absorption. Orally 
administered nanoparticles may face challenges in achieving systemic circulation due to resistance and destruction. 
Multiple barriers must be overcome for nanoparticles to complete their intended tasks. In general, physical and 
biochemical barriers form an absorption barrier that prevents nanoparticles from traveling from the gastrointestinal 
lumen to the liver (Figure 1).27
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Table 1 Oral Nanomedicine for Cancer Drug Delivery

Carriers Nanoparticles (NPs) Targeted Cancer Therapeutic Outcomes References

Polymers Carnitine coated PLGA NP – Increased paclitaxel bioavailability [31]

Chitosan coated PLGA NP Oral mucositis induced by 

chemotherapy

Increased oral cavity residence time [32]

PLGA NP Oral cavity cancer Increased local docetaxel delivery [33]

Pegylated PLA NP Breast cancer Increased raloxifene hydrochloride bioavailability [34,35]

Pegylated PLA NP Lung cancer Increased paclitaxel bioavailability [36]

Hyaluronic acid coated pegylated Colon cancer Increased PTC209 delivery and Inhibited cancer stem cell proliferation [37]

PCL NP – Increased ellagic acid [38]

Polymeric micelle Breast cancer, Hepatocellular 

carcinoma

Increased paclitaxel bioavailability [39]

PEG NP Breast cancer Increased SP141 bioavailability [40]

Inorganic 

materials

Aluminum silicate – Increased methotrexate release properties [41]

Selenium NP Prostate cancer Reduced side effects and increased tumor growth inhibition [38]

Metal-organic framework – Increased exendin-4 bioavailability [42]

Mesoporous silica Breast cancer Increased doxorubicin bioavailability [22]

Polysaccharides Chitosan modified with acrylonitrile and arginine – Increased curcumin bioavailability [43]

Cyclodextrin micelles Sarcoma Increased docetaxel BA and tumor reduction [44]

Guar gum NPs – Increased mammary gland targeting and tamoxifen bioavailability and decreased 

liver toxicity

[45]

Protein Pectin coated casein/zein NP – Enhanced curcumin bioavailability [46]

Apotransferrin and lactoferrin NP Hepatocellular carcinoma Enhanced doxorubicin bioavailability and decreased liver nodule number [47]

Milk casein NP – Increased resveratrol bioavailability compared with free administered drug [48]

Polydopamine NPs – Increased gastric targeting and local xanthatin delivery [49]

Bioactive mangiferin Colon cancer Increased mangiferin bioavailability [50]

Succinylated casein – Increased paclitaxel bioavailability [51]

Lipid 

nanoparticles

Hybrid lipid- poly(ε-caprolactone) NP Subcutaneous model of hepatic 

cancer

Increased cabazitaxel bioavailability and tumor growth inhibition [52]

Hybrid polymer-lipid NP – Increased berberine bioavailability [53]

Chitosan coated solid lipid NP – Increased curcumin bioavailability [54]

Amphiphilic and pegylated lipids and cholesterol – Increased siRNA delivery to immune cells [55]

N-succinic anhydride and D-fructose co-conjugated chitosan Breast cancer Increased paclitaxel bioavailability [56]

Squalene NP Colon cancer Increased paclitaxel delivery and tumor killing properties [57]

Bioinspired 

systems

Chimeric virus-like particles decorated with variant-specific surface 

proteins

Mesothelioma Increased immune response against HA-expressing mesothelioma [58]

Live attenuated salmonella coated with polymeric particles Melanoma Increased immune response against VEGFR2 [59]

Yeast loaded polymeric nanoparticles Subcutaneous breast cancer Increased paclitaxel delivery via macrophages [60]

Milk exosomes Subcutaneous lung cancer model Increased tumor killing properties and safety [61]

Abbreviation: NP, Nanoparticle.
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Physical barriers restrict the penetration of particles, including mucus, tight junctions (TJs), and cell membranes. The 
mucus layer is the primary barrier that nanoparticles must overcome to enter into the circulatory system. It has been 
emphasized that mucus, which safeguards epithelial surfaces, acts as a significant obstruction to nanoparticle 
penetration.62,63 As materials traverse, mucus is continuously released from the mucus layer to wash away pathogens 
and lubricate the epithelium as substances pass through. The shortening of the nanoparticle residence time in mucus 
turnover results in their incapability to penetrate the loosely adherent layer.64 To overcome these barriers, Wang et al 
developed a strategy to modify the nanocarrier surface with cationic cell-penetrating peptides, which are hidden by 
a hydrophilic succinylated casein layer. Succinylated casein is a mucus-inert natural material that degrades specifically in 
the intestine, thereby protecting nanocarriers from the harsh gastric environment. This degradation also promotes mucus 
penetration and induces cell-penetrating peptide exposure upon degradation, which, in turn, facilitates efficient transe-
pithelial transport.51 During the breakdown of the mucus layer, the nanoparticles encounter cellular barriers, such as TJs 
and cell membranes. These TJs between adjacent epithelial cells permit the passage of only small water-soluble 
molecules while limiting the movement of lipophilic compounds, macromolecules, and particles.65 Li et al prepared 
nanocarriers with variable physical properties through the self-assembly of hydrolyzed α-lactalbumin peptide fragments. 
The nanotubes can instantaneously and reversibly open the TJs between cells, thereby facilitating the entry of mangiferin 
into the blood circulation and enhancing its bioavailability.50 The confinement of macromolecules or aggregates at TJs 
obstructs the potential uptake pathway of nanoparticles, which is referred to as the paracellular route. Similarly, cell 
membranes either favorably or unfavorably allow foreign particles to pass through them. The direct penetration of cell 
membranes by nanoparticles is impracticable. Therefore, the primary absorption mechanism is membrane transport.66 

Biochemical barriers present additional factors that substantially impede nanoparticle uptake and transport. Harsh 
gastrointestinal conditions, including immune cells, efflux pumps, variable pH, and digestive enzymes, combined with 
hepatic clearance, result in significant transport barriers.66 For oral targeted nanoparticles to enter the circulation, they 
must successfully avoid chemical destruction and metabolic enzymes, as well as physiological efflux immune phagocy-
tosis, and hepatic first-pass effects. Meeting these requirements necessitates a careful overall design of the 
nanoparticles.14 A novel delivery system has been developed, comprising polymeric liposomes modified with 
N-succinic anhydride and D-fructose-conjugated chitosan. This system has been designed to achieve the delivery of 
paclitaxel by targeting the dual transporters of monocarboxylic acid transporters and glucose transporters.56 The system 
is therefore capable of efficient targeted delivery.

Figure 1 Biological barriers to nanoparticle absorption into the systemic circulation, mainly consisting of physical barriers and biochemical barriers. Physical barriers greatly 
limit the influx of nanoparticles, and biochemical barriers result in the degradation and clearance of nanoparticles.
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The oral bioavailability of these drugs can be significantly enhanced by the use of nanocarriers, which can increase drug 
solubility, prevent drug degradation by gastrointestinal enzymes, and facilitate drug passage through mucus gel layers and 
absorptive membranes. The aforementioned properties of nanocarriers, including self-emulsifying drug delivery systems, 
solid lipid nanoparticles, nanostructured lipid carriers, liposomes, polymeric nanoparticles, inorganic nanoparticles, and 
polymeric micelles, are largely dependent on their surface chemistry. In particular, the following determined by the surface 
chemistry of the nanocarrier: interactions with food, digestive enzymes, bile salts, and electrolytes; diffusion behavior across 
the mucus gel layer; and fate on the absorptive membrane. Bioinert surfaces that limit interactions with gastrointestinal fluids 
and contents and mucus, adhesive surfaces that provide intimate contact with the gastrointestinal mucosa, and absorption- 
enhancing surfaces can be designed. Furthermore, a charge conversion surface is capable of converting its zeta potential from 
negative to positive directly at the absorbing membrane, thereby providing a surface for targeted drug release, which is 
advantageous. In addition to the aforementioned passive surfaces, it is even possible to create active surfaces that cleave mucus 
glycoproteins during their passage through the mucus gel layer.

Paracellular and Transcellular Transport Pathways and Mechanisms of OTDDSs
DDS carriers are typically fashioned using functional nanoparticles, which are commonly referred to as nanocarriers for 
delivering therapeutic drugs. These molecular aggregates, known as nanocarriers, are larger and heavier than the 
molecular threshold that separates the gap between the TJs and the cell membrane pores. The likelihood of nanoparticles 
penetrating through the cell membrane or intercellular space directly is nearly non-existent. Many nanocarriers are 
engineered to undergo transepithelial transport in a self-regulated manner, such as briefly opening TJs and inducing 
membrane deformation. Based on this, Lamson et al reported that a negatively charged silica nanoparticle can indirectly 
cause TJ disruption by binding to integrins, thereby enhancing the paracellular delivery of protein drugs.67 Nevertheless, 
two primary pathways, the paracellular and transcellular pathways, are responsible for the movement of particulate 
matter throughout the GIT (Figure 2).

The TJ gap spans from 10 to 30 and 50 angstrom, implying that entities with molecular radii surpassing 151 angstrom 
(around 3.5 kDa) would be barred from accessing this absorption pathway.68 Paracellular transport’s passive mode 
necessitates that particles possess sufficient smallness or deformability to cross the intercellular space. Nanocarriers 
smaller than 5 nm are delivered to the basolateral blood or lymphatic capillaries beneath the GIT wall via paracellular 
pathways that follow concentration gradients. For example, 5 nm ionic gold nanoparticles have been found to prefer-
entially penetrate epithelial Caco-2 cell monolayers via the paracellular pathway.69 Paracellular transport via endothelial 
leakage induced by nanoparticles has recently been demonstrated, which is likely to also occur within the intestinal 
epithelium.70 Additionally, the size distribution of artificial nanoparticles frequently exhibits inhomogeneity and poly-
dispersity. A small proportion of ultrafine nanoparticles consistently exists within the system. These minute nanoparticles 
can be carried into the microcirculation via paracellular pathways. However, compared to overall uptake, the quantity 
transported is minimal. Moreover, by momentarily opening the TJ pathway, carefully engineered nanoparticles can pass 
through the intestinal epithelium and reach the underlying microcirculation.71–73 By mimicking the natural mechanism of 
pathogen interaction with intestinal epithelial cells, lectin-modified methacrylic acid-based NPs were used to encapsulate 
a small bacterial fragment, C-CPE, which was able to interact with the tight junction protein Claudin-4, leading to the 
opening of tight junctions.74 Although it is not nanoparticles’ primary means of transportation, they can evade lysis due 
to their inability to enter cells. Enzymatic digestion is advantageous for the realization of OTDDSs. The transcellular 
route through endocytosis remains the primary transport pathway for most nanocarriers. The uptake of oral nanoparticles 
primarily involves membrane mobile transport. When nanoparticles approach cells, the interactions between the particles 
and the cell membrane arise from various sources, resulting in the deformation of the membrane to enclose the 
nanoparticles, which are then taken up by the cell.75

Endocytic and Transcytotic Transport Pathways and Mechanisms of OTDDSs
Endocytosis is a cellular physiological process whereby cells absorb molecules via the phagocytosis of extracellular 
molecules through cell membrane movement.76 Particle uptake is significantly influenced by endocytosis, especially 
carrier-mediated endocytosis. Specifically, phagocytes—monocytes, dendritic cells, neutrophils, and macrophages—are 
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the targets of phagocytosis. Intestinal immune cells carry out most phagocytosis that occurs in the intestine.77 The 
primary function of phagocytosis is to eliminate dead cells, pathogens, and cellular debris. However, its involvement in 
intestinal particle uptake remains unclear. Pinocytosis is present in almost all eukaryotic cells and serves as an essential 
method for capturing external fluids and soft particles.78 Due to its capacity to rapidly engulf large quantities of droplets, 
pinocytosis is also known as macropinocytosis. Pinocytosis is typically a non-selective method of uptake.79 In the case of 
liquids or soft particles, macropinocytosis serves as the primary endocytic pathway. It is now generally accepted that 
actin regulates the endocytic process of pinocytosis, which is not directly triggered by cargo or receptor molecules.80 

Compared to other endocytic vesicles, macropinosomes are larger and lack cytoplasmic membranes. They are produced 
by the process of macropinocytosis. Their size and shape vary a lot, ranging from 0.5 to 10 mm. Consequently, 
pinocytosis plays a role in transporting large, delicate nanostructures in the GIT.81

The main mechanism of particle uptake is thought to be carrier-mediated endocytosis, as opposed to phagocytosis and 
macropinocytosis. However, its efficiency and speed are not yet fully understood. Certain proteins or receptors on the cell 
membrane enable the selective process known as carrier-mediated endocytosis.82 Utilizing specialized biological 
macromolecules, this form of transport is responsible for transporting particles into the cytoplasm. The two types of 
biological macromolecules are receptors and transporters. Different transmembrane proteins, called transporters, allow 
extracellular materials to be selectively transported across biological membranes.83 Receptors are biological macromo-
lecules that respond to particular ligands. The carrier proteins located within the cell membrane typically assist in 
receptor-mediated endocytosis. During membrane transport, carrier proteins—typically self-assembling proteins—cover 
transport vesicles. They have the ability to assemble into polyhedral lattices that aid receptor-mediated endocytosis by 

Figure 2 Transport mechanisms of nanoparticles across cells. Nanoparticles are first taken up by apical epithelial cells through endocytosis followed by transcytosis across 
the intestinal wall consisting of multiple layers of cells into the underlying capillaries. 
Abbreviations: CcIE, clathrin-/caveolin-independent endocytosis; CME, clathrin-mediated endocytosis; CvME, caveolin-mediated endocytosis; TJs, tight junctions.
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organizing and sorting essential membrane proteins.84 A mechanism for the selective uptake of various endogenous and 
exogenous particles is provided by carrier-mediated endocytosis. After endocytosis, molecular aggregates or particles 
first bind to specific cell surface receptors, resulting in the formation of carrier protein-coated pits. Technical terms are 
clarified when they are initially used. These pits subsequently emerge from the membrane, generating small vesicles that 
possess the carrier and its ligands. The presently recognized carrier proteins contain clathrin, caveolin, RhoA, CDC42, 
flotillin, and ARF6.85 Among the proteins involved in carrier-mediated endocytosis, clathrin and caveolin have been 
identified as the key proteins responsible, for diverse endocytotic functions. These three main modes of carrier-mediated 
endocytosis are outlined below.

In mammalian cells, the main endocytic pathway is called clathrin-mediated endocytosis (CME). It regulates the recycling 
of transporters and transmembrane receptors to change the composition of the plasma membrane in response to external 
stimuli and to control cell surface signaling.86 Particles initially adhere to the cell membrane during clathrin-mediated 
endocytosis through non-specific electrostatic or hydrophobic interactions, or by recognizing specific receptors. This causes 
the cell membrane to invaginate and form endocytic pits.87 Extracellular particles are encapsulated in clathrin-coated vesicles 
at the neck of the pore through the fusion of cell membranes. After merging with early endosomes, the contents of these 
vesicles undergo sorting for either recycling back into the plasma membrane or transportation to lysosomes. Endocytic 
particles are predominantly degraded within lysosomes. However, there are occasional instances whereby these particles 
evade degradation and successfully exit the endocytosis/lysosome pathway, thus permitting their subcellular delivery.88

Particles are internalized via caveolae-mediated endocytosis (CvME) in the plasma membrane, leading to the creation 
of small, cup-shaped invaginations known as caveolae. These invaginations possess a unique caveolae protein shell, 
which measures 50–100 nm in diameter, and they are abundant in the lipid rafts of cholesterol and sphingolipids.89 They 
are involved in many different transport processes, such as endocytosis, and caveolin is regarded as one of the most 
significant membrane proteins because it helps move different cargoes.90,91 Studies have indicated that intestinal 
epithelial cells demonstrate significant activity in CvME.82,92 In contrast to CME, CvME has the potential to allow 
micro-/nano-particles to directly enter the cytoplasm, avoiding endo-/lyso-somal compartments.93 This could have 
a beneficial impact on targeted oral drug delivery. As a result of caveolae’s small size, the CvME internalization of 
large particles (>100 nm) is challenging. Research has indicated that the size of the particle alone (excluding ligands) 
determines its entry route.94 The CvME pathway establishes an approximate 60 nm limit that mainly internalizes the 
particle, with negligible entry via CME.95

In cells lacking clathrin and caveolin, endocytosis occurs in a manner that is independent of these proteins.96 In the absence 
of fluids and cytokines that are similar to clathrin and caveolin, cells take up various cargos via this pathway. This pathway 
requires specific lipid components, predominantly cholesterol. Because only a small number of particles are capable of 
inducing this type of endocytosis, the endocytic pathway is unique. Occasionally, bacteria and viruses hijack target particles 
and enter host cells through this pathway. Vesicles or pits of around 90 nm in diameter are formed through clathrin-/caveolin- 
independent endocytosis, with the internalized particles progressing into early and late endosomes.97 Folate-modified 
nanoparticles serve as a notable instance of internalization pathway employment via this mechanism.98

Transcytosis is a form of transcellular transportation utilized for larger molecules or particles. It serves as a mechanism for 
carrying cargo through the cell interior and into neighboring cells through a series of coordinated endocytosis and 
exocytosis.99 The cargo penetrates the membrane of the cell through endocytosis from one side and is subsequently 
transported to the opposing side through exocytosis. Epithelial cells, particularly secretory cells, are the most frequent sites 
of transcytosis. Transcytosis serves as a convenient means for pathogens to invade tissues and, thus, is essential for the 
transmembrane transportation of nanoparticles before reaching the portal vein. It is the main mechanism for transporting 
nanoparticles across cells among a variety of transcellular transport mechanisms. Despite the ability of nanoparticles, 
especially ligand-modified nanoparticles, to be internalized into cells, there exists an “easy entry but difficult transcytosis” 
phenomenon.100 For instance, researchers investigated intestinal mucins in a Caco-2/HT29 coculture cell model.101 Their goal 
was to promote endocytosis while limiting the transcytosis of nanoparticles across enterocytes. Notably, zwitterionic 
nanoparticles demonstrated significant basolateral exocytosis.102 However, in contrast to transcytosis, nanoparticles become 
trapped inside the cell and are unable to leave the cell and enter the bloodstream.
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Fate of OTDDS in the GIT
OTDDS carriers are typically composed of micro-/nano-particles that feature functional ligands.103 By improving 
absorption and distribution, they can control the pharmacokinetics of administered drugs, which can lead to attenuation 
and synergy. Nonetheless, these carriers undergo a sequence of biological processes prior to entering the systemic 
circulation, which results in substantial uncertainty regarding their effectiveness in targeted oral delivery.104 To inves-
tigate the practicality of OTDDSs, an understanding of the mechanism of OTDDS vectors as they journey through the 
GIT and into the systemic circulation is crucial.

OTDDS carriers undergo immediate physiological and/or biochemical processing upon exposure to harsh gastro-
intestinal conditions. This processing may include depolymerization, digestion, degradation, and excretion in feces.105 

During this process, some carriers appear as intact particles, while others undergo deformation prior to absorption. 
Depolymerization is associated with the disintegration of carriers (molecular aggregates). When nanoparticles, such as 
small-molecule micelles, self-assemble from amphiphiles with a high critical micelle concentration, this phenomenon is 
easily observed in physiological settings.106 The biotransformation of nanomaterials by gastric acid or gastrointestinal 
enzymes is known as “digestive degradation”. While degradation refers to the breaking down of large molecules that 
shorten the polymer’s molecular chain, digestion primarily refers to the breaking down of large particles into small 
particles or conversion into small molecular substances.107 In the discoid bodies of enterocytes, certain degradation 
products of lipid carriers can be reconstituted into novel nanostructures or form chylomicrons for subsequent 
transport.108,109 In addition to dissociation, digestion, and degradation, intestinal peristalsis is also responsible for the 
removal of certain particles from the body.

Previous information relates to the fate transition of foregut cells to absorptive epithelial cells in OTDDS vectors.110 

Upon reaching the absorptive epithelium, trans-epithelial transport takes place alongside intestinal epithelial post- 
transformation, which leads to the further disposal of the OTDDS vector in the intracellular environment. When orally 
consumed, drug carriers may undergo digestion either in the lumen of the GIT or in the cytoplasm. The post-disposal of 
OTDDS vectors in intestinal epithelial cells mainly involves two aspects: apical exocytosis and lysosomal degradation 
through efflux pumps.111 The OTDDS carrier collapses as a result of intracellular digestion by lysosomes, blocking the 
particles’ ability to transcytose into capillaries intertwined with the intestinal endothelium.112 In addition, apical 
exocytosis increases the likelihood of rectal excretion and decreases vector internalization. The OTDDS carrier is 
extracted and eliminated by the liver after successfully crossing the intestinal epithelium and entering the portal vein, 
further reducing the risk of systemic circulation.113

After being orally administered, most OTDDS carriers undergo the biological processes mentioned above. OTDDS 
vectors generally follow a predictable path from the gastrointestinal lumen to the liver, although this can vary depending on the 
specific vector.114 While some OTDDS vectors are excreted or digested before reaching the portal vein, others can cross the 
oral barrier and enter the bloodstream. The efficacy of OTDDSs is determined by their ability to survive the liver clearance 
process, internalize into intestinal epithelial cells, penetrate the mucus layer on the intestinal epithelium, and remain intact 
during gastrointestinal transit.115 It is therefore crucial to investigate the ability of OTDDSs to perform these tasks.

The structural evolution of OTDDS vectors has a significant impact on oral administration. The OTDDS carrier will be 
exposed to the harsh environment of the GIT. Oral targeted delivery can have unpredictable consequences due to the potential 
for structural and morphological changes in OTDDS carriers during intestinal lumen and transmembrane transport.116 

Premature drug release often occurs, even when nanocarriers remain intact in gastrointestinal fluids.117 Variations in transport 
routes also lead to variations in the biological disposal of the vehicle. This is particularly important given the high probability 
of lysosomal degradation during transcellular transport. The carrier may degrade or break down, causing the payload and 
ligand to detach from the carrier. It can be expected that, for environmentally and enzymatically unstable vectors, off-target 
effects will occur in vivo. It is imperative that the OTDDS delivery vehicle retains its structural integrity both before and after 
absorption to facilitate the flow of payload and ligands into the circulatory system.118

The destabilization of oral OTDDSs is facilitated by gastrointestinal pH, enzymes, and digestive aids (including bile 
salts, lecithin, and bicarbonate), as well as intracellular lysosomal enzymes.119,120 Fragile nanostructures may deteriorate 
or disintegrate during transport across membranes. The inefficacy of oral insulin utilizing different nanocarriers suggests 
that the stability of the nanostructures determines their systemic absorption. Furthermore, the stability and integrity of the 
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OTDDS vector have a significant impact on how it enters the systemic circulation and subsequently affects biological 
processes. Any alteration to the microstructure of the vehicle makes it impossible to address the concept of “aiming”. 
Therefore, when designing OTDDSs, drug developers should focus on the structural evolution of the carrier both before 
and after intestinal absorption.

Oral Targeted Drug Delivery Strategies
For patients, oral administration is still the preferred route, with over two-thirds of clinically used drugs being delivered 
orally. The unique advantages of oral drug delivery, such as high compliance, low manufacturing costs, and low sterility 
requirements, make it ideal for chronic disease management and long-term medication.121 Therefore, researchers are 
increasingly focusing on developing OTDDSs. The hallmark of OTDDSs is their ability to target distant sites beyond the 
GIT. This allows therapeutic drugs to penetrate the biological barrier of the GIT and enter the systemic circulation, 
enabling them to concentrate on the desired target area.122 Nevertheless, administering nanomedicines orally and 
reducing off-target effects are complex tasks. The varying and distinct physiology of the entire GIT, including variable 
pH, digestive enzymes, mucin turnover, and efflux pumps, generates a formidable obstacle to nanocarriers entering the 
systemic circulation, confronting them with several limitations to overcome.25,123 It has been reported that over four- 
fifths of nanoparticles administered orally are not absorbed by the GIT.124 It is evident that OTDDSs still encounter 
numerous obstacles. For instance, the lipids and surfactants present in oral lipid drug carriers may act as substrates for 
gastrointestinal lipases. The levels of these enzymes, in conjunction with pH and bile secretion, are crucial parameters 
that determine the fate of lipid formulations and the dispersion, dissolution, and absorption of lipophilic drugs in the 
gastrointestinal tract. It is therefore essential to have a basic understanding of lipase, pH, and bile acid levels in vivo in 
order to develop relevant in vitro models.125 Furthermore, these parameters and their changes in healthy subjects are now 
well documented. However, in vivo data for specific populations (age groups, patients with various diseases, patients 
receiving treatments affecting gastrointestinal parameters, etc.) are rare, and obtaining these data from clinical studies is 
sometimes difficult due to ethical restrictions. Therefore, it is highly desirable to gain a better understanding of the 
biological fate, absorption, and transport properties of nanoparticles to expedite the rational design of OTDDSs.

Generally, OTDDSs refer to delivery systems that focus on gastrointestinal tissues located locally or remote tissues 
outside of the GIT. Colon-specific drug delivery systems are primarily included in the former category, as they are more 
concerned with particles’ local activities than their systemic absorption. For the purpose of this discussion, we 
concentrate on the systemic targeting outcomes of oral administration and do not elaborate further on the nanocarriers 
used. Several requirements must be met to achieve targeted oral drug delivery. Several biological barriers prevent 
nanotherapeutics from effectively entering the bloodstream and accumulating at diseased sites.7 The idea is to preserve 
the full composition of the drug delivery systems that can be designed after passing through the hepatic and gastro-
intestinal absorptive epithelium. Two necessary conditions are required to achieve oral targeted medication administra-
tion. Firstly, once the drug escapes hepatic extraction through the portal vein and the absorptive epithelium. OTDDS 
must maintain structural integrity during delivery to withstand both extracellular and intracellular biodegradation, 
ensuring the drug and ligand smoothly reach the tumor site.

In the latter scenario, the delivery system can undergo destruction within the gastrointestinal lumen. However, the resultant 
components can be reassembled into fresh and targeted nanostructures once the GIT has evolved. Qin et al reported a method 
to achieve specific release and activation of the prodrug 5-fluorocytosine (5-FC) in the tumor microenvironment by utilizing 
the tumor tropism of yeast and the extracellular hyaluronidase level. The enzyme cytosine deamination on the surface of yeast 
can catalyze the conversion of 5-FC into cytotoxic 5-fluorouracil (5-FU), thereby effectively inhibiting tumor growth and 
prolonging the survival of tumor-bearing mice.126 To maintain a stable low-energy state, molecules naturally organize 
themselves into stable structures, usually micro-/nano-particles, through the action of van der Waals forces, hydrogen bonding, 
hydrophobic effects, and electrostatic interactions.127 Even after digestion in the gastrointestinal tract, targeted drug carriers 
can still combine with ligand materials to form new nanostructures, regardless of whether endogenous chemicals such as bile 
salts are present.128,129 It has been demonstrated that self-assembled peptides with β-sheet motifs are capable of forming 
nanofiber structures. These structures are stabilized by hydrophobic packing in the core of the fiber and a network of hydrogen 
bonds along the long axis. By modulating electrostatic interactions between the peptide and the pH and salt composition of the 
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solvent, the length of the nanofibers can be significantly extended, leading to fiber entanglement and the formation of 
hydrogels. Furthermore, the nanofibers can be customized with extensive modifications to enable the delivery of small 
molecules, proteins, and cells.130 These nanostructures include mixed micelles and vesicles, and they can emerge due to 
physicochemical interactions after remodeling during the evolution of the GIT. Once OTDDSs have surpassed gastrointestinal 
and hepatic barriers and entered the systemic circulation, they can act as intravascular vehicles for the targeted delivery of 
payloads to disease sites. To overcome the strong mucus and villus barrier, a polymeric micelle has been synthesized that can 
rapidly penetrate mucus and be absorbed by villi, effectively delivering paclitaxel to tumors. The therapeutic effect of this 
polymeric micelle on hepatocellular carcinoma and triple-negative breast cancer is even more pronounced than that of an 
intravenous polyethylene glycol-based micelle. The alcohol-free counterpart of PTX, or free PTX, is more effective.39

The development of effective oral cancer nanomedicines necessitates overcoming a series of physiological and 
anatomical obstacles, including those encountered along the gastrointestinal tract and mesenteric capillaries, as well as 
those within the tumor itself.8,131 The first barrier to nanomedicines reaching intestinal villus cells is the intestinal mucus 
on epithelial cells.132 Polyethylene glycol (PEG)-modified self-emulsifying drug delivery systems can improve the 
hydrophobicity of the carrier surface. When highly lipid-soluble drugs are administered orally, they can enhance the 
carrier’s mucus layer penetration and cellular internalization, effectively increasing intracellular drug concentrations, 
which provides a promising method for improving the bioavailability of oral drugs.133 It is now evident that a non- 
fouling surface, ie, not bound to any biomacromolecules in the intestinal mucus, is of paramount importance for 
nanomedicine penetration into the viscous mucus.134 For instance, nanoparticles coated with dense hydrophilic polymers, 
such as polyethylene glycol, are capable of rapidly penetrating physiological mucus secretions and are therefore 
designated as mucus-penetrating particles.135 However, such nanoparticles are invisible to cells, which renders them 
difficult to internalize, even in villous cells.40,136 A zwitterionic betaine polymer has recently been identified as a specific 
interactor with proton-assisted amino acid transporter 1 (PAT1), which is overexpressed in epithelial cells. This binding 
enables the deep penetration of intestinal mucus and efficient transepithelial absorption for insulin delivery.73

OTDDSs are different from vascular targeted drug delivery systems (VTDDSs), which are involved in the selective 
concentration and localization of drugs to specific sites, such as organs, tissues, cells, subcellular organelles, and 
structures. This is achieved through vascular delivery pathways utilizing carriers, ligands, or antibodies. In contrast, 
VTDDSs use functional vectors containing payloads that are delivered to target sites through systemic circulation via 
affinity and contact with specific cells.27 In the previous several decades, VTDDSs have made significant progress in the 
field of anti-tumor treatment via intravascular administration.137,138 However, intravenous drug administration is an 
invasive method that causes considerable inconvenience.

Similar to VTDDSs, OTDDSs require various nanocarriers, such as metal–organic hybrid nanocarriers, organic nanocar-
riers, and inorganic nanocarriers. Combined diagnostics and treatment frequently use inorganic carriers. Nanotubes, quantum 
dots, silicon/carbon/selenium nanoparticles, and gold nanoparticles are commonly used to provide targeted delivery. Due to 
their excellent biocompatibility and biodegradability, the nanocarriers commonly employed in drug delivery are primarily 
made of organic biological materials, such as cell-originated exosomes, which are used as carriers; liposomes; nanoemulsions; 
micelles; nanovesicles; nanogels; lipid nanoparticles; and polymer nanoparticles. It is imperative to use carriers that maintain 
the physiological environment of the body while delivering drugs to targeted tissues, which these organic nanocarriers 
provide. Metal–organic frameworks have also been adequately examined as hybrid nanoparticles for specific drug delivery.139 

Zhou et al designed a pH-triggered self-unfolding capsule that encapsulates zwitterionic hydrogel-coated metal–organic 
framework (MOF) nanoparticles. MOF nanoparticles exhibit a high loading capacity for exendin-4, while the zwitterionic 
hydrogel layer confers unique transmucosal penetration capabilities and the effective internalization of nanocarriers by 
epithelial cells.42 The ligands utilized to modify nanocarriers may include vitamins, sugars, antibodies, aptamers, oligopep-
tides, biomimetic cell membranes, lectins, transferrin, and lactoferrin.140,141 OTDDSs with ligand-specific biomarkers can be 
abundantly expressed in lesions but less so in normal tissues.142 The influence of endogenous and exogenous factors, including 
pH, enzymes, light, temperature, and magnetism, enables OTDDSs to achieve the specific delivery and controlled release of 
their cargo.143,144 In order to achieve the systemic administration of OTDDSs, it is necessary to consider a number of 
obstacles, including digestion, absorption, and transportation. As long as the target particles remain in circulation for an 
extended period, they can be concentrated at the target site.
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OTDDSs for Cancer Treatment
In contrast to the wide range of research applications for VTDDSs, there have been few advances in OTDDSs. Recent research 
suggests that the primary determinants of oral carrier absorption and transport are particle size, carrier type (material), and the 
mode of transport.145 OTDDSs are delivered by a variety of carriers, including liposomes, micro-/nano-emulsions, micelles, 
polymer/composite nanoparticles, quantum dots, and yeast microcapsules.146 These carriers can be classified into two groups: 
gastrointestinal digestible carriers and non-digestible carriers (although they biodegrade in the body). Bioimaging has strongly 
supported the explanation of the transmembrane transport of various vectors.147,148 It is clear that both digestive and dyspeptic 
vectors can be transported across intestinal epithelial cells as a group.149,150 However, the transport of intact nanoparticles 
depends on their size.151 Particles larger than 200 nm, such as those measuring 500, 550, 600, 1000, and 2000 nm, are unable 
to effectively cross the intestinal membrane and primarily attach to the villous surface.152,153 In addition, bioimaging has 
shown that most of the digestion of the digestive vehicle takes place in the GIT, especially for lipid-containing 
formulations.154–156 Only a small proportion of nanoparticles are able to withstand lipolysis in the GIT, traverse the intestinal 
epithelium, and migrate to the liver or systemic circulation. Transepithelial absorption is severely restricted for carriers that are 
poorly digested, such as silicon- and polymer-based nanoparticles, even those with particle sizes smaller than 200 nm.157,158 

Fluorescence is a sign that smaller polymer carriers, such as micelles smaller than 50 nm, can be fully absorbed in the liver and 
blood.159 Nevertheless, the overall absorption of nanoparticles is relatively limited in comparison to oral dosages, especially 
when administered through the enterocyte pathway. Several oral nanomedicines currently in clinical trials are listed in Table 2.

Polymers
Polylactic acid (PLA) and polylactic acid-co-glycolic acid (PLGA) offer excellent biocompatibility and resistance to 
the gastrointestinal environment.160 They have recently been shown to increase the stability of liposomal formulations 
and are widely used to stabilize oral pharmaceutical formulations, such as tablets and capsules.161 As such, they could 
improve the oral delivery properties of other materials. However, due to the high cost of processing, synthesis, and 
subsequent large-scale production, PLGA nanoparticles pose significant challenges for real-world applications.8 The 
commonly used polymer PLGA has been shown to effectively target the Na+-coupled organic cation/carnitine 
transporter 2 (OCTN2) expressed in the lumen of the small intestine, enhancing paclitaxel delivery (Figure 3A).31 

Studies have demonstrated that the lymphatic system can absorb most PLA through pathway caveolin-mediated 
transport, indicating a high level of biocompatibility, safety, and sustained drug release capabilities.162 However, 
low gastrointestinal absorption and rapid elimination are evident when administered orally. Raloxifene hydrochloride 
that has been PEGylated and encapsulated in PLA nanoparticles can have enhanced bioavailability, and it has been 
demonstrated to be useful in treating breast cancer.34,163 Since the gastrointestinal epithelium is rich in folate receptors, 
the pharmacokinetic properties of hydrophobic chemotherapeutic drugs such as paclitaxel can be improved via the 
modification of PLA particles with folate (Figure 3B).164 Folic acid stimulates the internalization of particles by 
gastrointestinal epithelial cells and improves their diffusion within the mucus layer. In a previous study, D-alpha- 
tocopheryl polyethylene glycol (PEG) succinate was added to the delivery system, resulting in a decrease in the release 
rate of paclitaxel and an increase in the loading rate of the drug.36 The system’s safety and efficacy were successfully 

Table 2 Recent Clinical Trials on Nanoparticle Formulations for OTDDSs

Formulation Formulation Cancer Phase NCT Number

Pegylated liposomes Doxorubicin Breast cancer 1 NCT03719326

Ethylcellulose-based polymeric NPs Cetuximab Colorectal cancer 1 NCT03774680

Lipid-based Paclitaxel Stage IV gastric cancer 1 and 2 NCT02890511
Nonviral lipid NPs Osimertinib Non-small-cell lung carcinoma 2 NCT04486833

Nanostructured lipid curcumin Avastin/FOLFIRI Colorectal cancer 2 NCT02439385

Nanoparticle suspensions AZD4635 Carcinoma 1 NCT02740985
Albumin-stabilized NPs Lapatinib Various cancers 1 NCT00313599

Abbreviation: NPs, nanoparticles.
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tested in a rat lung cancer model (Figure 3C).36 Polycaprolactone (PCL) is a polymer commonly utilized to create 
biocompatible nanoparticles for delivering various chemotherapeutic drugs. These drugs include docetaxel,165 

cisplatin,166 methotrexate,166 and paclitaxel.167 Ellagic acid, an anticancer drug, has been shown to have improved 

Figure 3 Therapeutic role of PLA and PLGA-loaded drugs in tumors. (A) LC-PLGA NPs and Na+ bind to the specific sites of OCTN2, and OCTN2 changes its confirmation from 
outward-facing to an occluded state, inducing the following membrane invagination and endocytosis. In this process, multipoint binding could increase the interaction and accelerate 
NP absorption. Additionally, Na+ is also essential in this process. Adapted with permission from Kou L, Yao Q, Sun M, et al. Cotransporting ion is a trigger for cellular endocytosis of 
transporter-targeting nanoparticles: a case study of high-efficiency SLC22A5 (OCTN2)-mediated carnitine-conjugated nanoparticles for oral delivery of therapeutic drugs. Adv 
Healthc Mater. 2017;6(17). Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.31 (B) Schematic diagram of the possible inhibiting mechanism of the P-gp efflux 
transport of paclitaxel-loaded TPGS mixed polymersome. Reprinted from International Journal of BiologicalMacromolecules, 139, Xiao Qian Pan, Yan Chun Gong, ZiLing Li, Yu Ping 
Li, Xiang Yuan Xiong, Folate-conjugatedpluronic/polylactic acidpolymersomes for oral delivery ofpaclitaxel, 377-386, Copyright 2019, with permission from Elsevier.164 (C) 
Schematic illustration of PTX-TP-M inhibiting the efflux system and contributing to absorption. Adapted with permission from Hou J, Sun E, Zhang ZH, et al. Improved oral 
absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Deliv. 2017;24(1):261–269. Copyright © 2017 Taylor & Francis.36
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oral bioavailability when delivered via PCL nanoparticles. Furthermore, the PCL nanoencapsulation of ellagic acid has 
been found to increase its hydrophilicity and uptake by M cells in the lymphatic system, resulting in more than 
a threefold increase in bioavailability.38

In recent years, Eudragit® polymers, synthesized from esters of acrylic and methacrylic acids, have demonstrated 
significant potential in developing pH-sensitive and innovative drug delivery systems capable of binding various therapeutic 
agents, including proteins, vitamins, hormones, vaccines, and genes. Utilizing Eudragit® EPO (EEP) as a carrier for curcumin 
can substantially enhance its serum concentration.168 Additionally, coating nanoparticles with Eudragit® S100 allows for pH- 
dependent drug solubility, increased gastrointestinal stability, and enhanced cellular uptake of protein drugs.169,170 Amorphous 
solid dispersions of Eudragit E neutralized with hydrochloric acid (Eudragit E/HCl) have been shown to optimize the 
solubility of trans-resveratrol, achieving an oral bioavailability of 40% in rat studies.171 Different grades of Eudragit® are 
tailored to target therapeutic agents to specific sites via oral delivery, such as stomach-specific and colon-specific delivery.172 

Existing research underscores the unique ability of Eudragit® polymers to precisely target incorporated drugs to specific sites. 
Eudragit S100 (ES)-coated doxorubicin hydrochloride (DOX) nanoparticles are increasingly recognized for their precision in 
colon cancer treatment and reduced systemic distribution.173,174 Various nanoformulation technologies leveraging Eudragit® 

polymers enhance drug solubility, stability, and bioavailability. The application of Eudragit® polymers in drug formulation 
holds significant research value and broad potential, particularly in improving the oral absorption of poorly soluble drugs, 
developing colon-targeted drug delivery systems, and achieving controlled and targeted drug release.

Inorganic Materials
Currently, oral drugs loaded with inorganic nanoparticles are more stable under the acidic conditions of the intestine, although 
select materials do completely dissolve at low pH values. Silica nanoparticles, which possess favorable biocompatibility, have 
undergone significant investigation as a means of improving the oral delivery of therapeutic drugs.175 These nanoparticles may 
be produced in a porous form to accommodate diverse payloads.176 Silica has been approved as a safe food and drug additive 
by the US FDA and European FSA.1 Its oral ingestion is deemed safe, although amorphous silica dissolves slowly at a low pH 
and quicker at a higher pH. Thus, exploiting GIT pH gradients with amorphous silica is a lucrative tool. Additionally, silica 
nanoparticles, porous and adjustable, can hold various payloads (Figure 4),175 including biologics, and they can protect them 
from digestive enzymes after encapsulation. Engineered mesoporous silica particles encapsulate biologics, safeguarding them 
from the digestive enzymes pancreatic alpha-amylase and lipase.177 Recently, there has been talk of using silica nanostructures 
to create floating drug delivery systems that allow for prolonged gastric retention in the presence of plant polymers and sodium 
bicarbonate.178 Utilizing similar technology based on aluminum silicate aims to enhance the delivery of the antineoplastic 
drug methotrexate, which has a particularly short half-life.179 Moreover, organometallic silicate nanocomposites decorated 
with gold nanoparticles (AC-Au), whose surface coating is pH-sensitive, can significantly enhance the oral delivery of 
methotrexate for colorectal cancer treatment.180 Additionally, selenium is another element that can be employed in oral 
nanomedicines due to its high anticancer potential.43 However, the clinical utilization of selenium is associated with notable 
adverse effects that restrict its application.44,181 Therefore, certain scholars have generated synthetic biological selenium 
nanoparticles via Bacillus licheniformis bacteria, which exhibit low toxicity.44

Chitosan
Polysaccharides are amphiphilic molecules with the innate capability to enclose anti-tumor therapeutics and exhibit favorable 
wetting properties to overcome the mucus barrier. These molecules are obtained from various biological sources, such as chitosan 
from animals, alginates from algae, pectins from plants, and glucans from bacteria.182 They exhibit remarkable biocompatibility 
and are easy to formulate into nanoparticles, finding wide usage in multiple fields. Polysaccharide nanoparticles, such as other 
nanoformulations, have been found to inhibit efflux pump activity and can be selectively taken up by M cells in certain cases 
(Figure 5A).45,183 Chitosan is considered a benchmark biomaterial due to its ability to promote the relaxation of TJs and enhance 
paracellular uptake.180,184,185 This occurrence is most notable at lower pH levels, where chitosan becomes protonated, resulting in 
the destabilization of the linkage.186 However, chemical adjustments such as methylation can expand these traits and enhance 
chitosan’s potential to operate over a broader pH spectrum, increasing its solubility within.187 Because chitosan is partially 
soluble in water, hydrogel formulations can contain a variety of payloads, including biologics such as proteins and siRNA.47 The 
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most promising material for oral nanomedicine may be chitosan because of its chemical modification and hybridization with 
other materials. Adding arginine and acrylonitrile groups to chitosan nanoparticles has been shown to increase the bioavailability 
of curcumin (Figure 5B).188 Acrylonitrile induces the self-assembly of nanoparticles and provides the hydrophobic structure 
needed to host hydrophobic therapeutics. By increasing solubility, promoting cell surface interactions, and prolonging the GIT 
residence time, arginine regulates drug release.188 Cyclodextrin, another polysaccharide widely utilized to develop oral 

Figure 4 MSNs-based nanocomposites developed in the biomedical field. (A) Various nanostructured MSNs-based nanocomposites. Depending on the assembly process, 
the functional nanostructures can be introduced as the shell (Type I) or core (Type IV), can be loaded in the pore channels (Type II) or surface (Type III), and can form Janus- 
type hierarchical structure (Type V). (B) Typical elements used for constructing various types of MSNs-based nanocomposites. There are four main categories of 
nanocomposites based on the elemental type, including noble metal NPs/MSNs, metal compound NPs/MSNs, upconversion NPs/MSNs, and metal-free NPs/MSNs 
nanocomposites. MSNs: Mesoporous silica nanoparticles. Adapted with permission from Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for 
biomedical applications. Signal Transduct Target Ther. 2023;8(1):435. Copyright © 2023, The Author(s).175
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Figure 5 (A) Enhancement of drug absorption through polysaccharide nanocarriers. Reprinted from International Journal of Biological Macromolecules, 130, Madhumita 
Dey, Madhurima Das, Anindita Chowhan, TapanKumar Giri, Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier, 34-49, Copyright 2019, with 
permission from Elsevier.183 (B) Schematic drawing of self-assembled cur-encapsulated AN–CS–Arg NPs. Adapted with permission from Raja MA, Zeenat S, Arif M, Liu C. 
Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery. Int J Nanomed. 2016;11:4397–4412. Copyright © 2016 Dove 
Medical Press.188
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nanomedicines, effectively encapsulates the hydrophobic drug docetaxel and can impede efflux pump activity.189 In a previous 
study, when given orally, cyclodextrin nanoparticles considerably enhanced the bioavailability of paclitaxel. The drug was 
observed in the bloodstream 24 hours after administration, demonstrating encouraging outcomes in the treatment of mouse 
sarcoma models.190,191 The therapeutic efficacy of celecoxib in the treatment of colorectal cancer has been demonstrated in 
clinical trials. Segale et al prepared a chitosan-coated NP microsphere of celecoxib, which can avoid the rapid release of 
celecoxib when encountering an acidic environment and enhance its release in the intestinal lumen.192 Furthermore, Sinha et al 
developed a novel biopolymer composite multi-system comprising chitosan, succinate, and alginate, which is employed to wrap 
capecitabine for the treatment of colorectal cancer. The study also examined the efficacy of the biopolymer composite multi-joint 
system in the treatment of rectal cancer. The results demonstrated that the multi-system exhibited the greatest degree of swelling 
in an intestinal environment with a pH of 7.4, with minimal swelling observed in an acidic environment. This results in the 
protection of the drug and the effective targeting of the colon.193 A layer-by-layer self-assembly approach was also employed to 
develop chitosan nanoparticles for oral delivery, with the objective of treating colorectal cancer.194 The layer-by-layer self- 
assembly method employed polycaprolactone (PCL, 95% w/w) as the substrate, which markedly enhanced the high loading 
efficiency of 5-fluorouracil (5-FU). Moreover, the outermost layer was functionalized with folic acid, thereby conferring selective 
tumor lesion binding and targeting capabilities. The findings demonstrated that 5-FU exhibited remarkable stability and 
a pronounced cytotoxic effect on colon cancer cell lines.

In order to enhance the pH-dependent properties of chitosan NPs, Zhang et al developed an automated oral insulin 
delivery system comprising ion attraction between polyglycolic acid (PGLA), chitosan, and alginate. This approach has 
been shown to enhance the in vitro efficacy of chitosan NPs against gastric acid erosion.195 Furthermore, studies have 
been conducted to enhance the stability of chitosan NPs in acidic environments via the addition of gelatin.196 

Consequently, the exploration of more effective and non-toxic pH-stable materials represents a crucial avenue for the 
advancement of chitosan NPs as cancer-specific treatments. The resulting GIT presents a series of physical, chemical, 
and enzymatic obstacles that hinder oral drug delivery and stability. These obstacles are considered to be some of the 
major issues to overcome. At present, the application of chitosan NPs is still in the verification stage of in vitro and 
animal experiments. There is still a considerable distance to travel before chitosan NPs can be considered a viable option 
for oral therapy and intestinal disease treatment.

Protein
In addition, protein carriers made from proteins exhibit hydrophilic and lipophilic properties, rendering them suitable for 
accommodating drugs with various chemical and physical characteristics. Moreover, protein nanoparticles can traverse 
the M cells found in the GIT.48 Previous research has demonstrated that the disintegration of protein nanoparticles in the 
GIT can be prevented through the use of protease inhibitors.197 The methodology for producing protein nanoparticles 
influences their susceptibility to enzymatic degradation. Protein carriers generated by desolvation have a greater 
sensitivity to degradation by pepsin than particles synthesized via emulsification, potentially due to dissimilarities in 
the cleaved peptide bonds of pepsin.198 Furthermore, protein stability in the GIT may be improved by integrating proteins 
with other materials.199 For instance, the incorporation of the carbohydrate pectin can guard the particles while increasing 
curcumin loading efficiency when applied to casein/zein nanoformulations.52 The surface of the protein carrier allows for 
chemical modification at multiple sites, which promotes particle accumulation at the intestinal epithelial level.200 The 
protein carrier’s cellular specificity is also a notable feature. Interestingly, the accumulation of doxorubicin in liver cancer 
is effectively increased after the oral administration of nanoparticles composed of apotransferrin and lactoferrin. 
However, further examination is required to determine its absorption mechanism.53 Bovine casein nanoparticles can be 
efficiently loaded with resveratrol through hydrogen and hydrophobic bonds.201,202 Research has illustrated that resver-
atrol is exceptionally proficient at encasing casein nanoparticles, and these particles can be released in a regulated fashion 
in both gastrointestinal fluids.203 Moreover, this casein nanoparticle showcases superb interactions, which consequently 
lead to the enhanced bioavailability of resveratrol within the body.

Lipid nanoparticles improve the solubility of hydrophobic drugs when encapsulated.204 They are often mixed with hybrid 
formulations for oral delivery to improve their stability in the gastrointestinal tract. However, some research suggests that 
liposomes may interact with bile salts to form vesicles and micelles that are transcytosally absorbed in the upper gastrointestinal 
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tract.205,206 Mixed lipid–polymer nanoparticles have been formulated to enhance the oral bioavailability of cabazitaxel, which is 
affected by the common low solubility and high metabolism problems of taxanes (Figure 6).55 The ε-caprolactone polymeric 
structure can safeguard it from an acidic environment, and triglyceride can improve the drug-loading capacity. Finally, surface 
modification with positively charged octadecyl amine and neutrally charged poly (ethylene oxide) improves mucosal penetration 
and cellular uptake. Due to the known lymphatic transport of cabazitaxel, M cells may be more likely to take up these particles. 
This technique has the potential to significantly increase the oral bioavailability and efficacy of the chemotherapy drug.55

Lipid
Furthermore, a study conducted by a team of researchers revealed that berberine, which has anti-tumor properties, can 
have improved oral bioavailability when administered using PEGylated PLGA-stabilized lipid nanoparticles.207 Although 
oral medications are advantageous for clinical purposes, the GIT can degrade the particles, leading to their failure.208 In 
a previous study, a hybrid lipid–PLGA system with PEGylation was developed to improve particulate drug encapsula-
tion, stability, and interaction with the gastrointestinal epithelium.209 PEG surface modification is necessary to cross the 
mucus barrier, as demonstrated by the authors’ finding of increased in vivo intestinal absorption.207 Other research teams 
have also applied a coating of N-carboxymethyl chitosan onto solid lipid nanoparticles, which are known to enhance the 
solubility of hydrophobic drugs and steadily release payloads at intestinal pH levels.58,210 This process also assists in 
absorption through the lymphatic system, thereby circumventing first-pass metabolism by the liver.211 The payload is 
safeguarded in the stomach’s acidic environment and absorbed into the mesenteric lymph nodes thanks to the 
N-carboxymethyl chitosan coating.212 Short interfering RNA and long interfering RNA are biological agents that are 
well suited for oral administration but are sensitive to the aggressive gastric surroundings and are unable to cross the GIT 
epithelium.213 The lipid blend that makes up the particles includes amphiphilic lipids that can form complexes with RNA, 
cholesterol, DSPC, and PEGylated lipids, thereby increasing particle stability and the permeability of short interfering 
RNA through mucus.60 In a previous study, the authors discovered that the optimal concentration of PEG is crucial for 
short interfering RNA to effectively traverse the mucus barrier, confirming the significance of optimizing surface 

Figure 6 Polymer–lipid hybrid nanoparticles are able to efficiently orally deliver the anticancer drug cabazitaxel into the systemic circulation and can achieve the desired oral 
anticancer effect. Reprinted from Journal of Controlled Release, 269, Tianyang Ren, Qian Wang, Ying Xu, Lin Cong, Jingxin Gou, Xiaoguang Tao, Yu Zhang, Haibing He, Tian 
Yin, Haotian Zhang, Yan Zhang, Xing Tang, Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using 
surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles, 423-438, Copyright 2018, with permission from Elsevier.55

https://doi.org/10.2147/IJN.S482329                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 9906

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


modification density.60 Although the in vitro delivery efficiency is high, pepsin and bile salts impact the stability of these 
particles, which leads to their aggregation and degradation, respectively. It is crucial to consider all factors that contribute 
to the gastrointestinal environment because pepsin, the protease, can still have an impact on the therapeutic effectiveness 
of lipid nanoparticles.60,214 The results emphasize the need for a comprehensive analysis of gastrointestinal conditions to 
ensure the success of lipid nanoparticle-based therapies. The concentration of pepsin in the stomach varies greatly in vivo 
before and after meals and decreases during fasting.60 It also readily accumulates in significant amounts in intestinal 
crypts, where the particles can transfer short interfering RNA to immune cells. This finding highlights the importance of 
the timing of the dose and diet in the management of gastrointestinal disorders.

Biologics and Others
In recent years, various biologics have been explored and applied for the treatment of cancer, including the delivery of 
small molecule drugs, nucleic acids, peptides, and proteins.215,216 Utilizing different nanoparticles, microparticles, 
hydrogels, or their combinations significantly enhances bioavailability and targeting specificity within the intestine. 
Biologic nanoparticles possess features such as robust absorption, immune cell stimulation, pH responsiveness, and 
attributes of biocompatibility, biodegradability, non-toxicity, selectivity, and specificity, marking them as exceptional 
carriers or ingredients for oral drug delivery.141,217,218 The self-assembly of nanoparticles based on lipid bilayers plays 
a pivotal role in biological systems.219 For instance, hydrogel materials that can mimic bacterial flagellar movement can 
be used to develop semi-intelligent microrobots akin to drug carriers.220 Additionally, hydrogel-based pH-responsive 
biologics can astutely release drugs in accordance with the pH conditions of living cells. The properties of hydrogels can 
be tailored to match the specific pH environment of the target site.221

There are multiple types of bacterial biologics employed in oral drug delivery systems, including bacterial ghosts, 
nanoparticle-enhanced bacteria, and recombinant bacteria.222–224 Bacterial ghosts are non-viable pseudobacterial con-
structs devoid of genetic material. Extracted from bacteriophages, they possess an innate capability to target immune 
cells and boost immunity for disease treatment. Examples include the use of Salmonella enteritidis and Vibrio cholera in 
the preparation of biologic vaccines.225,226 Similarly, live attenuated Salmonella bacteria have been coated with DNA- 
condensed cationic polymer nanoparticles to produce oral cancer vaccines (Figure 7A).32 The goal of the system is to 
deliver the immunogenic drug to the cytoplasm while avoiding phagosome entrapment and remaining stable at a low ph. 
E. coli or Vibrio cholera ghosts have been utilized to facilitate the delivery of therapeutic agents such as plasmid DNA, 
hepatitis B virus core protein, and doxorubicin drugs. In a notable development, Tang et al engineered a nanoparticle- 
coated, attenuated Salmonella vector for oral DNA vaccine delivery as a cancer treatment strategy.32 Similarly, Fan et al 
innovatively merged nanoparticle-based photothermal conversion with thermosensitive plasmids to create oral nanocar-
riers designed for anti-tumor drug delivery.227 These nanoparticle-enhanced bacterial systems are frequently referred to 
as microrobots. Surface-functionalized with nanoparticles and loaded with therapeutic drugs, microrobots are adept at 
targeted cellular delivery.218 Generally, this advanced delivery system facilitates the transport of proteins or genes to 
specific target sites and proves useful in deploying therapeutic drugs within hypoxic tumor regions. Additionally, 
bioinspired helical microrobots present potential for drug localization and diagnostic purposes, while biological hybrid 
vectors embedded with magnesium can adjust stomach pH levels. Nevertheless, the issues of bioavailability and toxicity 
related to these materials persist as significant concerns.

Viral mimic systems resemble viruses in structure, yet they differ in function or genetic attributes. The primary 
vectors employed in gene delivery include adenoviruses, retroviruses, and lentiviruses.228 These vectors possess 
capabilities such as replication, drug binding, cellular penetration, and system stability. According to Takamura et al, 
plasmid DNA can be effectively encapsulated within the hepatitis E virus in vitro, forming a biological agent that 
successfully targets the intestinal mucosa.229 Furthermore, virosomes, circular carriers, and monolayer/bilayer phospho-
lipid membranes have been utilized for the oral delivery of therapeutic agents. The core cavity of the virosome 
encapsulates DNA, RNA, proteins, or pharmaceuticals. The viral exterior safeguards its contents from proteolytic 
degradation and the acidic environment of the stomach, effectively delivering therapeutic compounds into the cytoplasm 
while bypassing endosomal degradation. Nonetheless, the potential for immunogenicity restricts the application of 
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Figure 7 (A) Schematic illustration of cationic nanoparticle-coated attenuated salmonellae for improved antigen expression and tumor-targeting immune response activation. 
(1) Engineering of polyplex nanoparticle-coated Salmonellae. (2) Oral DNA vaccine delivery mediated by nanoparticle-coated Salmonellae. (3) Intracellular trafficking of 
nanoparticle-coated Salmonellae and antigen expression. (4) Activation of antitumor immune response. Adapted with permission from Hu Q, Wu M, Fang C, et al. 
Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732–2739. Copyright © 2015 American Chemical 
Society.32 (B) Schematic diagram of yeast capsule-mediated oral delivery of nanoparticles to inflammation-associated disease sites distant from the gastrointestinal tract. 
Adapted with permission fromZhou X, Zhang X, Han S, et al. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral 
route. Nano Lett. 2017;17(2):1056–1064. Copyright © 2017 American Chemical Society.61
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virosomes in drug delivery systems. Strategic modification and employment of carriers offer promising prospects for 
future biomedical applications.230

Various derivatives extracted from yeast cells exhibit promising drug delivery attributes due to their size, morphology, 
drug loading efficiency, and targeting capabilities. These derivatives are apt for oral administration and M cell targeting; 
M cells, notably, lack microvilli and mucus layers, facilitating the entry of microparticles into the immune system. Zhou 
et al demonstrated a cisplatin-derived nanotransmitter administered orally via yeast microcapsules for tumor therapy.231 

Post-oral administration, yeast microparticles traverse to the intestine and are channeled to the tumor site through 
M cells. The yeast’s outer layer and cytoplasm are chemically removed and substituted with therapeutic nanoparticles via 
electrostatic forces. M cells facilitate the movement of yeast-carrying nanoparticles to the lymphatic system, where 
macrophages identify and transport these particles to tumors, maintaining their potent anti-tumor effects (Figure 7B).61

Milk-derived exosomes have the potential to produce safe oral nanomedicines,33,49 as they form a part of the 
everyday diet, are easily obtainable, and remain stable at a low pH.57,232 In a previous study, it was found that, 
in vitro, milk exosomes demonstrated high efficacy and permitted the regulated delivery of the paclitaxel drug in gastric 
juice.37 In vivo, the encapsulated exosomes displayed substantial tumor eradication effects in a subcutaneous lung cancer 
model without any adverse reactions associated with the drug or carrier.233 A slight inhibition of tumor growth was 
observed upon exosome administration. This effect is possibly attributable to the presence of potentially anti-tumorous 
molecules, such as complex α-lactalbumin and oleic acid, derived from human milk, contained within the exosomes.234 

The absorption mechanism remains unclear, although a prior report has demonstrated that the oral administration of 
exosomes can target several organs, notably the liver, spleen, kidneys, and pancreas.235 Research in this area is currently 
highly active, and a range of foods such as grapes may serve as feasible sources of exosomes, thereby broadening the 
selection of oral nanomedicine platforms.236

Cancer represents a significant global public health concern. The intricate immune microenvironment of malignant 
tumors renders single treatment methods, such as surgery, radiotherapy, and chemotherapy, inadequate for preventing 
tumor proliferation and recurrence. Nevertheless, nanotechnology can combine two or more therapeutic methods to 
achieve synergistic effects in cancer treatment. These include, but are not limited to, improving the solubility and local 
drug concentration of hydrophobic drugs, overcoming various biological barriers, prolonging the circulation of drug 
systems, and preventing rapid systemic clearance.237 Consequently, nanotechnology continues to be developed and used 
in cancer treatment. For instance, it can be employed to enhance the solubility and stability of drugs, as well as to 
improve the bioavailability and targeting of drugs. Nevertheless, oral nanomedicines also encounter certain limitations 
and challenges in the treatment of malignant tumors.

Firstly, one of the primary challenges faced by OTDDSs is the issue of biocompatibility. Given that OTDDSs must 
enter the body via the gastrointestinal tract, it is of paramount importance that they exhibit stability and biocompatibility 
in the gastric acid and gastrointestinal tract environment. Some nanomaterials may cause gastrointestinal irritation or 
toxic reactions, and they may even have adverse effects on intestinal flora, thereby affecting the absorption and efficacy 
of drugs. Furthermore, nanomedicines may induce adverse reactions or allergic reactions, thereby limiting their clinical 
applicability. Secondly, another challenge faced by OTDDSs is that of supervision. Due to the distinctive physicochem-
ical properties of nanomedicines, their safety and effectiveness assessment methodologies must differ from those 
employed for traditional drugs. It is therefore incumbent upon regulatory agencies to formulate corresponding evaluation 
standards and regulatory policies to ensure the safety and effectiveness of OTDDSs. Finally, the clinical translation of 
OTDDSs represents another significant challenge. Currently, clinical research on OTDDSs is still in its infancy, and there 
is a paucity of large-scale clinical trial data to support its development. Furthermore, the preparation technology and 
production process of OTDDSs also require further improvement to ensure their stability and consistency in clinical 
applications. In conclusion, although OTDDSs have a wide range of potential applications, they still face significant 
challenges, including issues related to biocompatibility, regulatory, and clinical obstacles. It is recommended that future 
research and regulatory work be intensified to facilitate the development and application transformation of oral 
nanomedicines.
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Future Perspectives
Oral drug delivery technology has advanced considerably, from basic tablets to advanced nanoparticle systems. This 
progress has been facilitated by an improved understanding of the intestinal barrier and potential access points to the 
systemic circulation through the portal vein and intestinal lymphatic vessels. The extensive literature pertaining to the 
delivery of small and large molecules across the intestinal barrier has only instilled confidence in unorthodox delivery 
methods. It is vital to acknowledge that, while delivery technology holds as much significance as the active pharma-
ceutical ingredient itself, a single technology is not applicable to all cases. To ensure a seamless transfer, it is crucial to 
strike a balance between innovation and concomitant risks. The main objective is to optimize the minimum effective 
therapeutic concentration through the use of delivery technology. It should be relatively easy to repurpose existing 
medication through unconventional oral delivery strategies, as we already possess the knowledge of pharmacology and 
safety profiles, which can significantly diminish the likelihood of attrition during clinical stage drug development. He 
et al reported the development of an oral polyphenol-armored nanomedicine coated with chitosan and tannic acid on the 
surface of the nanomedicine. This coating renders the nanomedicine resistant to the harsh environment of the gastro-
intestinal tract and enables targeted adherence to specific parts of the colon.238 Researchers believe that understanding the 
in vivo metabolism of nanomaterials is critical to understanding the safety and effectiveness (endpoints) of nanomedi-
cines. By clarifying these processes, we can connect the carrier’s (structural design) features with the endpoints (efficacy 
and/or safety) of nanomedicines. Nanomedicine presents a burgeoning frontier for advancing oral drug delivery, and it 
currently offers a promising option for enhancing the delivery of biological agents and chemotherapy. The scientific 
community has identified chitosan, PLGA, and casein as the best starting materials for success in this field due to their 
numerous and affordable synthesis options. Current research highlights the benefits of nanomedicine in improving the 
bioavailability of drugs, but it ignores the possibility of carriers increasing the concentration of drugs at tumor sites. More 
research is needed to develop methods that overcome the limitations of gastrointestinal epithelial cells, facilitate drug 
release at their interface, and improve tumor targeting. Ma et al constructed a high-performance Pluronic F127 (P127)- 
modified gold shell (AuS)-polymer core nano-oral therapeutic drug loaded with curcumin (CUR) (P127-AuS@CUR). 
P127-AuS@CUR generates brief, mild photothermal effects under near-infrared irradiation, which facilitates nano- 
penetration of colonic mucus and facilitates cellular internalization, lysosomal escape, and controlled CUR release.239

OTDD treatment is a non-invasive treatment method that is more popular with patients and has lower time and 
economic costs. However, poor gastrointestinal barriers (gastric acid barrier and intestinal mucosal barrier) have 
a significant impact on the bioavailability of oral drugs. With the continuous advancement of nanotechnology, numerous 
researchers have discovered that, in the process of applying nanotechnology to treat and/or diagnose various diseases, 
engineered oral nanomedicines are capable of overcoming the gastric acid barrier and effectively crossing the intestinal 
mucus and epithelial barriers. This process improves the solubility, safety, targeting, and half-life of oral drugs and 
successfully reaches the delivery area. Consequently, the bioavailability of OTDDS is enhanced, the controlled release of 
OTDDSs is attained, and the residence time of OTDDSs in the lesion area is prolonged.

Despite the encouraging results that have been achieved thus far, there are still some unresolved issues in the practical 
applications of OTDDSs that require further attention. Firstly, the current primary method for enhancing the therapeutic 
efficacy of OTDDSs is to optimize their bioavailability through nanotechnology. However, there are a few notable instances 
where this approach has been employed to improve the overall performance of OTDDSs. Secondly, the majority of the current 
research on OTDDSs focuses on organs or tissues, with research on cells or organelles still in its infancy. Thirdly, there is 
a paucity of nanomaterial design and development strategies based on biomimetic engineering, including OTDDSs based on 
inorganic and organic nanoparticles. Fourthly, OTDDSs will undoubtedly bring great hope and convenience to the treatment 
of patients with various diseases in the future. However, they still face many inevitable challenges before clinical transforma-
tion and industrialization. For instance, current studies engineer bio-interface interactions (from crossing biological barriers to 
systemic clearance) between OTDDSs and human tissues by modulating some key physicochemical parameters, such as 
morphology, surface chemistry, and elasticity. However, biological barriers possess intrinsic dynamic systems that may lead to 
inaccurate analysis and characterization, thereby affecting the delivery fate of OTDDSs at the target site.240,241 Moreover, 
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a significant number of experiments remain at the proof-of-concept stage in terms of the ambiguous biotoxicity and 
pharmacokinetics of OTDDSs in animals and humans.242

In recent years, nanocellulose has emerged as a versatile and sustainable nanomaterial. Analogous to dietary fibers, 
nanocellulose resists digestion in the human gastrointestinal tract, demonstrating substantial potential in the delivery of 
biological agents. Additionally, the significance of gut microbiota species cannot be overstated; integrating microbial 
informatics methods into drug development and clinical practice is anticipated to enhance drug delivery efficiency while 
mitigating adverse effects on the host and microbial communities. Similarly, a comprehensive understanding of the 
survival strategies employed by human-associated microbial communities in response to various carrier compounds is 
essential for the rational design of carrier-targeted microecological regulations of small-molecule drugs. Future research 
should elucidate the mechanistic basis of carrier-microbe-host interactions, investigate innovative carriers, and translate 
scientific discoveries into clinical applications. Moreover, pH-sensitive Eudragit polymers combined with other nano-
zymes offer notable advantages in protein drug delivery. Recently, 3D printing technology has also gained significant 
attention. 3D-printed carrier nanomedicines can integrate diagnosis, detection, and treatment, enabling multifunctional 
clinical applications. Some of the latest advancements suggest that smart nanorobots can serve as advanced therapeutic 
platforms, offering strong targeting capabilities in these intelligent carrier systems.

Finally, the repeatability and controllability of OTDDSs are unstable, and issues such as the manufacturing cost of 
nanomaterials, regulatory approvals from relevant departments, and the standardization of industrial production must be 
considered by researchers, experts, and technicians.242 The following suggestions are put forth for the advancement of 
OTDDSs: (1) Oral administration is a dosage form that is readily accepted by patients and does not unduly encumber their 
daily lives. Consequently, it is possible to identify a multitude of pharmaceutical resources from animals, plants, microorgan-
isms, and other sources present in our daily diet. These can be utilized through nanotechnology to respond to common diseases 
through the diet, thereby reducing the economic cost of drugs and the time cost of treatment. It is recommended that treatments 
be administered simultaneously. Furthermore, OTDDSs are of significant importance for the early detection and screening of 
diseases. For instance, the use of artificial intelligence, such as nanorobots, or the design of new sophisticated nanomaterials 
with multiple functions, such as nuclear magnetic resonance and fluorescence imaging, can facilitate the elimination of human 
diseases in their initial stages through oral administration. (2) In order to achieve effective and real-time control of these 
diseases, the maximum dose and frequency of oral administration should not be too high. Consequently, in the context of 
animal models and preclinical trials, it is necessary to adapt the parameters of the nanomedicine system in order to optimize the 
effective dose and frequency of OTDDSs, thereby facilitating better compliance with treatment and greater comfort for 
patients. In conclusion, although there are still some issues and challenges to be overcome in the future development of 
OTDDS, there are also significant potential benefits and opportunities. Once these issues have been resolved, the potential 
applications of OTDDSs will be numerous and promising.
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