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ABSTRACT Correlations between gene transcription and the abundance of high-
energy purine nucleotides in Saccharomyces cerevisiae have often been noted. How-
ever, there has been no systematic investigation of this phenomenon in the absence
of confounding factors such as nutrient status and growth rate, and there is little
hard evidence for a causal relationship. Whether transcription is fundamentally
responsive to prevailing cellular energetic conditions via sensing of intracellular
purine nucleotides, independently of specific nutrition, remains an important
question. The controlled nutritional environment of chemostat culture revealed a
strong correlation between ATP and GTP abundance and the transcription of
genes required for growth. Short pathways for the inducible and futile consump-
tion of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the
transcriptional effect of an increased demand for these nucleotides. During
steady-state growth using the fermentable carbon source glucose, the futile con-
sumption of ATP led to a decrease in intracellular ATP concentration but an in-
crease in GTP and the guanylate energy charge (GEC). Expression of transcripts
encoding proteins involved in ribosome biogenesis, and those controlled by pro-
moters subject to SWI/SNF-dependent chromatin remodelling, was correlated
with these nucleotide pool changes. Similar nucleotide abundance changes were
observed using a nonfermentable carbon source, but an effect on the growth-
associated transcriptional programme was absent. Induction of the GTP-cycling
pathway had only marginal effects on nucleotide abundance and gene transcrip-
tion. The transcriptional response of respiring cells to glucose was dampened in
chemostats induced for ATP cycling, but not GTP cycling, and this was primarily
associated with altered adenine nucleotide levels.

IMPORTANCE This paper investigates whether, independently of the supply of any
specific nutrient, gene transcription responds to the energy status of the cell by
monitoring ATP and GTP levels. Short pathways for the inducible and futile con-
sumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae,
and the effect of an increased demand for these purine nucleotides on gene tran-
scription was analyzed. The resulting changes in transcription were most consistently
associated with changes in GTP and GEC levels, although the reprogramming in
gene expression during glucose repression is sensitive to adenine nucleotide levels.
The results show that GTP levels play a central role in determining how genes act to
respond to changes in energy supply and that any comprehensive understanding of
the control of eukaryotic gene expression requires the elucidation of how changes
in guanine nucleotide abundance are sensed and transduced to alter the global pat-
tern of transcription.
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In order for Saccharomyces cerevisiae cells to survive, grow, and proliferate, their
metabolism must respond, in both the short term and the long term, to changes in

their environment. This is achieved via control exerted at multiple levels, including the
regulation of gene transcription and the modulation of gene product activities by both
posttranslational modifications and the allosteric binding of metabolites to enzymes
and other effectors (1–5). These differing routes of control allow metabolic responses
to take place on different time scales: the allosteric and posttranslational mechanisms
can produce almost instantaneous effects, while the reprogramming of gene expres-
sion produces adjustments over the longer term. The intracellular abundance of
small-molecule metabolites plays a key role in these responses not only at the level of
enzyme activity but also at the level of the regulation of gene expression. Thus,
metabolites can exert their effects via the modulation of TORC1 kinase activity by
amino acid availability (6) and through the influence of intracellular cyclic AMP (cAMP)
and acetyl-CoA concentrations on the activity of the PKA kinase complex (7, 8) and on
histone acetylation (9). It has also been proposed that SNF1 kinase activity is regulated
by ADP nucleotide levels (10). Since gene expression also determines metabolite
abundance by providing anabolic enzymes, the state of cellular metabolism at any time
can be viewed as the product of the interplay between metabolite concentrations and
the abundance and activity of gene products.

ATP and GTP, together with the other related nucleotide di- and monophosphates,
are among the most highly connected metabolites in the yeast metabolic network
(http://yeast.sourceforge.net/), and their intracellular concentrations are a key measure
of general metabolic status. The concept of a cellular adenylate energy charge (AEC),
defined by the relative concentrations of all three phosphorylated adenosine nucleo-
tides [ATP] � 0.5[ADP]/[ATP] � [ADP] � [AMP], was first proposed in 1967 to describe
the energy status of living cells (11), and the homeostatic control of AEC has since
become a common paradigm in cell physiology. The analogous cellular guanylate
energy charge (GEC) is also considered relevant, based on the requirement for GTP as
the immediate source of energy for peptide bond formation in cellular protein synthe-
sis (12).

Many studies of S. cerevisiae have reported correlations between changes in phos-
phorylated adenosine and guanosine nucleotide concentrations and changes in cell
physiology or gene expression. Batch-grown cultures using glucose as the carbon
source exhibit marked decreases in the ratios of both [ATP]/[ADP] and [GTP]/[GDP] on
transition from exponential growth to the stationary phase (13). Conversely, the
addition of glucose to respiring or glucose-starved cells produced marked increases in
these ratios (13, 14). In silico studies have also predicted a role for [GTP]/[GDP] in
modulating the activity of the PKA complex by influencing the activity state of the
Ras2p GTP-binding protein responsible for controlling production of the upstream
cAMP signal (15–17).

Perhaps the most convincing in vivo data has been collected from yeast cultures as
they transit through cycles of respiratory oscillations where expression of a majority of
genes in the genome becomes highly synchronized (18, 19). These oscillations, char-
acterized by alternating periods of high and low oxygen consumption (oxidative and
reductive phases, respectively), are associated with corresponding oscillations in [ATP]/
[ADP] ratios and with a periodic large-scale rewiring of gene expression such that
energy-intensive processes (such as ribosome biogenesis) are implemented during the
periods of high respiratory activity/energy production (18–22). Extensive nucleosome
repositioning occurs as the yeast cells transit through a cycle, and modulation of the
activity of ATP-dependent chromatin remodelling complexes has been proposed to
contribute to the transcriptional reprogramming by making core promoter elements of
target genes more accessible for use (20–22). Acetyl-CoA could be a key metabolic
signal through its indirect effect on the acetylation status of histones and other proteins
involved in chromatin remodelling (9, 23). Conversely, a direct role for ATP has also
been proposed, since many chromatin remodelling complexes are dependent on this
nucleotide for their activity (20).
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All these observations provide circumstantial evidence for the yeast cell transcrip-
tional program being, in some way, generally responsive to changing nucleotide levels.
They suggest a cycle of regulation between metabolic activity, nucleotide concentra-
tions, and gene expression. Evidence for a causal relationship is, however, sparse since
confounding variables such as growth rate (24) or nutritional status (25) cannot be
adequately controlled when experiments are performed in batch culture. In order to
circumvent these difficulties, we have developed strains of S. cerevisiae in which an
increased use of ATP or GTP can be induced in cells independently of the external
nutrient supply or changes in the rate of growth. This has been achieved by engineer-
ing yeast to express enzymes from bacteria that enable the futile consumption of either
ATP or GTP. Analysis of the transcriptional response following induction of these
ectopic pathways during continuous culture in chemostats demonstrates that inducing
the futile consumption of ATP, but not GTP, results in a major reprogramming of gene
transcription in yeast cells grown on a fermentative carbon source (glucose) but not on
those cells growing by respiration on acetate. This genetic reprogramming does not
require changes to the AEC but, instead, is associated with an increase in GTP and the
GEC. Induction of the futile consumption of ATP, but not GTP, also has an effect on the
transcriptional response of respiring cells to glucose repression.

RESULTS
Exploiting bacterial enzymes to engineer the futile consumption of ATP or GTP

in S. cerevisiae. To generate strains of S. cerevisiae where a direct and specific increase
in the consumption of ATP or GTP can be controllably induced, we heterologously
expressed genes encoding bacterial enzymes that use these nucleotides as substrates
(Fig. 1 and Table 1). The doxycycline (DOX)-inducible expression of a cyclic dinucleotide
monophosphate (cdiNMP) synthetase enzyme was coupled with the constitutive ex-
pression of its corresponding hydrolase to create short pathways for the futile degra-
dation of two molecules of ATP or GTP to two molecules of AMP or GMP via their
respective cdiNMP intermediates (Fig. 1a). Expression constructs were based on a
centromeric plasmid carrying two nutritional marker genes, URA3 and LEU2, to enable
selection for the continuous presence of the plasmid during prolonged culture (Fig. 1b).
A repressor construct to minimize transcription from the DOX-inducible promoter in
the absence of inducer (26) was also integrated into the genome of the host strain
BY4741. This combination of nutritional markers on the plasmid generated pro-
totrophic strains (Table 1) capable of growing on a minimal medium containing only a
suitable carbon source, ammonium sulfate, potassium phosphate, and trace essential
vitamins and minerals (27). This eliminates confounding effects on the yeast transcrip-
tional program arising from the metabolic consequences of auxotrophy (28).

The functionality of the engineered pathways was assessed by analysis of the
intracellular nucleotide composition in the host strains following induction with DOX
during growth in batch culture (Fig. 1c and d). Strain BY4741-112-137 carrying only the
inducible cdiGMP synthetase gene variant dgcA0244 from the bacterium Caulobacter
crescentus (29) showed intracellular production of cdiGMP to levels approximately 10
times the concentration observed for GTP and twice that for ATP, the latter being the
most abundant natural intracellular nucleotide in yeast cells (Fig. 1c). Similar DOX-
induced expression of the cdiAMP synthetase gene ybbP from Bacillus subtilis (30)
yielded ca. six times more intracellular cdiAMP than ATP (Fig. 1d; strain BY4741-112-
136). In each case, incorporation of genes determining cdiNMP hydrolase activity in the
strains prevented accumulation of the heterologous cdiNMP metabolites, indicating a
successful conversion of the nucleotide triphosphate to monophosphate via the
cdiNMP intermediate. Thus, coexpression of the cdiGMP hydrolase gene SVF3559 from
Shigella flexneri (31) in strain BY4741-112-141 reduced cdiGMP production by 98.5%
(Fig. 1c). Only low levels of the linear dinucleotide pGpG were observed, consistent with
the conversion of the majority of the cdiGMP generated by the synthetase DgcA to
GMP. Coexpression of a portion of the Bacillus subtilis cdiAMP hydrolase gene yybT (32)
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FIG 1 Engineering inducible consumption of ATP or GTP in S. cerevisiae using coding sequences from
bacteria. Shunt pathway loops for the futile turnover of each nucleotide triphosphate to their correspond-
ing monophosphates via cyclic dinucleotide monophosphate (cdiNMP) intermediates (a) were introduced
into S. cerevisiae BY4741-112 on a series of related centromeric plasmids (b). A targeted HPLC-UV
metabolomics analysis (c and d) of the constructed strains following induction of expression of the plasmid
genes encoding the cdiNMP synthetase enzymes using doxycycline (DOX) (5 �g/ml) shows high-level
production of cdiGMP (c) (strain 137) and cdiAMP (d) (strain 136) compared to the control strain carrying
the empty vector (c and d) (strain 134). Constitutive coexpression of appropriate cdiNMP hydrolase genes
completes the pathway loop and removes the accumulation of cdiGMP (c) (strain 141) and cdiAMP (d)
(strain 151) during similar inductions. None of the bacterial metabolites was detected in strains constitu-
tively expressing the cdiNMP hydrolase genes alone (strain 138 [c] and strain 148 [d]). In both panels c and
d, the panels to the left are overlays of HPLC-UV chromatograms (arbitrary absorbance units [Au] with
detection at 254 nm) from a representative analysis of metabolite extracts from cultures of the strains
indicated. Analysis of a mixed standard (STD) containing 2,000 pmol of either cdiGMP and pGpG (c) or
cdiAMP and pApA (d) indicates the retention times of these metabolites. The panels to the right show
normalized nucleotide abundances (picomoles/optical density) calculated from the HPLC-UV data as an
average of duplicate experiments. Values are means � standard deviations (error bars).

Hesketh et al. ®

January/February 2019 Volume 10 Issue 1 e02500-18 mbio.asm.org 4

https://mbio.asm.org


with the DOX-inducible yybP gene in strain BY4741-112-151 reduced cdiAMP produc-
tion by 82.5% compared to expression of ybbP alone (Fig. 1d).

Using carbon-limited chemostat cultures to analyze the effect of inducing
increases in ATP or GTP consumption during steady-state growth. Aerobic cultures
of S. cerevisiae have the potential to generate energy from externally supplied carbon
sources by either fermentative or respiratory pathways. In order to analyze the effect of
inducing increases in ATP or GTP consumption in cells using these different routes for
energy production, strains were grown in chemostats at dilution rates of 0.11 to
0.12 h�1 under carbon-limited conditions using a defined minimal medium containing
either 0.5% (wt/vol) acetate (respiratory) or 0.25% (wt/vol) glucose (respiratory) as the
energy source. Cultures were sampled to analyze any changes in the intracellular
nucleotide pool composition and genome-wide transcript abundance, as illustrated in
Fig. S1 in the supplemental material and described in detail in Materials and Methods.
Chemostat cultivation, characterized by growth at a fixed rate in constant nutritional
conditions, was used to control for confounding effects of any changes in growth rate
or external nutrient supply during induction. Each culture was sampled during steady-
state growth in the noninducing conditions (designated SS1) and 3 h, 6 h, and 9 h after
inducing the heterologous pathway by adding DOX (designated T1, T2, and T3,
respectively), and during steady-state growth in the induced cultures (designated SS2).
To investigate any effect on the transition from respiratory to fermentative growth, the
chemostats respiring acetate were additionally treated with a pulse of glucose (final
concentration, 1.6% [wt/vol]) after collecting the SS2 sample, and further samples were
taken 15 min (G1), 30 min (G2) and 60 min (G3) after treatment. Transcription of the
transgenes in the chemostat experiments proceeded as designed, and production of
the cyclic and linear dinucleotide intermediates was within the range expected from
the batch culture data in Fig. 1 (Fig. S1). The genes encoding the hydrolase enzymes
ranked in the top 2% most highly expressed genes, and the induced expression of the
synthetase constructs was in the top 1%. Normalized transcriptome and nucleotide
abundance data are provided in Data Set S1, and nucleotide abundance plots are
provided in Data Set S2.

Nucleotide indicators of high cellular energy status correlate with transcription
of genes required for ribosome biogenesis. To define the basal relationship between
nucleotide and transcript abundances in the experimental system, covariance in the
sets of data obtained for the control chemostat strains BY4741-112-138 and BY4741-
112-148 was analyzed using principal components analysis (PCA) (Fig. 2) and by sparse

TABLE 1 Plasmids and yeast strains used in this study

Plasmid or strain Description or relevant genotype Reference

Plasmids
pAH112 pRS-HIS3-MET15 TetR::SSN6 36
pAH134 pRS-LEU2-URA3 VP16::TetR’ TetO7pr 36
pAH136 pRS-LEU2-URA3 VP16::TetR’ TetO7pr::ybbP 36
pAH137 pRS-LEU2-URA3 VP16::TetR’ TetO7pr::dgcA 36
pAH138 pRS-LEU2-URA3 VP16::TetR’ TetO7pr:: TDH3pr::SFV3559 This work
pAH141 pRS-LEU2-URA3 VP16::TetR’ TetO7pr::dgcA TDH3pr::SFV3559 This work
pAH148 pRS-LEU2-URA3 VP16::TetR’ TetO7pr:: TDH3pr::yybT This work
pAH151 pRS-LEU2-URA3 VP16::TetR’ TetO7pr::ybbP TDH3pr::yybT This work

Strains
BY4741 MATa ura3Δ0 leu2Δ0 met15Δ0 his3Δ1
BY4741-112 BY4741 with integrated plasmid pAH112 (his3Δ1::pAH112 ura3Δ0 leu2Δ0) 36
BY4741-112-134 BY4741-112 with centromeric plasmid pAH134 (prototroph) 36
BY4741-112-136 BY4741-112 with centromeric plasmid pAH136 (prototroph) 36
BY4741-112-137 BY4741-112 with centromeric plasmid pAH137 (prototroph) 36
BY4741-112-138 BY4741-112 with centromeric plasmid pAH138 (prototroph) This work
BY4741-112-141 BY4741-112 with centromeric plasmid pAH141 (prototroph) This work
BY4741-112-148 BY4741-112 with centromeric plasmid pAH148 (prototroph) This work
BY4741-112-151 BY4741-112 with centromeric plasmid pAH151 (prototroph) This work
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partial least-squares (sPLS) canonical analysis using the mixOmics R package (33) (Fig. 3
and Data Set S3). PCA of the nucleotide abundance data (Fig. 2a) indicates that the
cultures growing in acetate are distinguished from those grown in glucose by higher
levels of ATP, GTP, IMP, cAMP, AMP, GMP, CMP, GDP, ADP, UMP, and CTP (nucleotides
shown in zone 1 of Fig. 2a), but they exhibit similar values for AEC and GEC. The
addition of glucose to the acetate-grown cultures changes the levels of zone 1
nucleotides to levels more similar to those observed in the glucose-grown chemostats,
with the notable exception of IMP, GTP, and ATP which, in contrast, are increased
further (Fig. 2 and Data Set S2). Both AEC and GEC were markedly higher in these
samples compared to either the steady-state acetate- or glucose-limited chemostat
samples.

Interestingly, all the indicators of high cellular energy status (i.e., AEC, GEC, ATP, GTP,
and IMP [IMP being a key intermediate in de novo purine nucleotide biosynthesis])
show a strong positive correlation with a cluster of transcripts encoding proteins

FIG 2 Changes in intracellular nucleotide concentrations during the control chemostat cultures using
strains BY4741-112-138 (138) and BY4741-112-148 (148) and either acetate or glucose as the carbon source.
(a) PCA analysis summarizing the differences in nucleotide content of cells grown in the different chemostat
conditions. The scores plot (top left panel) shows distinct grouping of the acetate (a), glucose (g), and
glucose-treated acetate (a-g) chemostat samples, while the loadings plot (bottom left panel) highlights the
underlying differences in nucleotide abundances. Nucleotide abundances distinguishing group a from
group g are in the shaded zone 1, and those separating group a-g from group a or g are in zone 2. (b)
Abundance profiles for example nucleotides from these shaded zones are provided to the right (see Data
Set S2 in the supplemental material for all profiles).
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significantly enriched in functions associated with the biogenesis of the translational
machinery and with those proteins involved in purine and pyrimidine nucleotide
biosynthesis (cluster 3 in Fig. 3). This cluster shows significant similarity to the cell
growth and anabolic supercluster genes (A, A.B, and B) previously identified as being
expressed in the oxidative phase of a respiratory oscillation cycle (22) (Fig. 3c). Con-
versely, a general negative correlation was observed between the high-energy nucle-
otides and transcription associated with the generation of precursor metabolites and
energy, glycogen metabolism, and the mitochondrion (cluster 4 in Fig. 3), and this
cluster exhibits a significant similarity to the reductive phase supercluster (D) of a
respiratory oscillation (22). The abundances of CDP, UDP, UDPG, and UTP exhibit a
strong positive correlation with transcript cluster 4, which is characterized by similar
expression levels between the acetate and glucose steady-state growth conditions, but
marked repression on the addition of glucose to the cultures growing on acetate as the

c)
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FIG 3 Correlations between gene transcription and intracellular nucleotide abundance in the control chemostat cultures using strains BY4741-112-138 (138)
and BY4741-112-148 (148). (a) Clustered image map from sPLS analysis of nucleotide (x-axis) and transcript (y-axis) abundance data showing the most highly
correlated nucleotide and transcript pairings, clustering 1,609 transcripts into six cluster groups (ct) (sPLS threshold of 0.8). (b) Abundance profiles for the
transcripts in groups 1 to 6 in samples SS1-SS2 (glucose chemostats) and SS1-G3 (acetate chemostats). (c) Functional classification of genes in cluster groups
(ct) 1 to 6 using GO enrichment analysis (only headline significant GO terms are shown); comparison with the consensus respiratory oscillation cluster group
membership from Machne and Murray (22) (A, A.B, and B � anabolic, oxidative; D � catabolic, reductive; see reference 22 for other group definitions); analysis
of transcription initiation promoter category as reported in Rhee and Pugh (34) (TATA�, TATA-less; TATA�, TATA-containing; TFIID, TAF1-enriched; SAGA,
TAF1-depleted; NA, not assigned); transcription factor (TF) regulation predictions (yeastract database [35]); and comparison to the promoter nucleosome
dynamics category assigned in Nocetti et al. (21) (for nucleosomes, static � dyad range 0 in reference 21; Remod.� dyad range �5 in reference 21). The
numbers in brackets are significance P values from Fisher’s exact tests for category enrichment. Complete GO and yeastract analysis results are provided in Data
Set S3.
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principal carbon source (Fig. 3a). Transcript clusters 1 and 2 also exhibit repression
following this glucose treatment, but they tend to be more highly expressed during
steady-state growth on acetate than on glucose and correlate most highly with cAMP
and the lower-energy nucleotide monophosphates plus ADP, GDP, and CTP. These
clusters are enriched for functions associated with the TCA cycle, oxidation-reduction,
and the mitochondrion (Fig. 3). Thus, this analysis suggests a distinction between the
repression of reserve energy metabolism correlated with the higher-energy uridine
nucleotides on the one hand (cluster 4), and the downregulation of mitochondrial
respiration correlated with low-energy nucleotides on the other hand (clusters 1 and 2).

Gene transcription positively correlating with the abundance of high-energy
nucleotides tends to occur from promoters found in remodellable chromatin
locations. Nocetti et al. (21) observed that the dynamic range in the transcription of
genes during a respiratory oscillation cycle is closely related to the extent of reposi-
tioning of �1 nucleosomes taking place at their promoters, and also to the use of the
transcriptional coactivators SAGA or TFIID. Thus, in their experimental system, acute
nucleosome remodelling occurred preferentially at SAGA promoters and facilitated
dynamic changes in the expression of genes required for growth. Snf2p, the ATP-
dependent catalytic subunit of the SWI/SNF chromatin-remodelling complex, was
identified as playing a fundamental role in both the nucleosome repositioning and
growth-associated gene expression. To determine whether the changes in gene ex-
pression identified in the chemostat growth conditions used in this study are associated
with any particular type of promoter, we tested the transcription clusters identified
above (Fig. 3a and b) for significant overrepresentation of control by the remodellable
promoters as defined by Nocetti et al. (21) and for previously published associations
with TFIID or SAGA (34) (Fig. 3c). Transcript cluster 3, which positively correlates with
the high-energy nucleotide markers (ATP, GTP, GEC, AEC, and IMP) was found to be
significantly enriched for genes transcribed from remodellable promoters, and also for
promoters which are both TATA-less and TFIID dominated (Fig. 3c). In contrast, cluster
4, showing a negative correlation, is enriched for TATA-containing SAGA-dominated
promoters, and also promoters not assigned to any category by Rhee and Pugh (34),
and which do not show enrichment for the remodellable class of promoters (Fig. 3c).
Interestingly, analysis of the promoters controlling transcription in cluster 3 using
yeastract (35) (Data Set S3) identified significant enrichment for regulation by the
TORC1-dependent transcriptional activator Sfp1p and by the SWI/SNF complex (Snf6p,
Snf2p, and Swi3p) and its associated recruitment factor Swi5p. Regulation of cluster 4
is predicted to be dominated by the general stress response transcription factors
Msn2p/Msn4p and Sok2p (Fig. 3c).

Induction of ATP cycling increases transcription from promoters regulated by
SWI/SNF during steady-state growth on glucose, but not on acetate. During
growth on glucose, a total of 944 transcripts were identified as being significantly
changed in their abundance profiles following induction of the ATP-cycling pathway in
strain BY4741-112-151 relative to the control (Data Set S4). Changes in the abundances
of intracellular nucleotides taking place during this time period are summarized in
Fig. 4; they indicate a general decrease in abundance of ATP but an increase in GTP and
GEC. Hierarchical clustering of the transcript abundance data identified two clusters
of genes whose expression increased at the point where changes in ATP and GTP
abundance, and in GEC, are detected in strain BY4741-112-151 during the transition
from SS1 to SS2 (clusters 1 and 3 in Fig. 5). Strikingly, the transcripts in cluster 3 encode
proteins that are enriched for functions associated with nucleotide binding (GO:
0000166 4.69E-09) and ribosome biogenesis (GO:0042254 7014E-08), and there is a
significant overlap between the members of this cluster and transcript cluster 3, which
correlates with the high-energy nucleotides in the control chemostat analysis in Fig. 3
(82 transcripts, P � 1.01E-47; Fig. 5b). Transcription factor predictions indicate signifi-
cant regulation of the transcripts in this cluster by the SWI/SNF chromatin remodelling
complex (Fig. 5c). It is also enriched for genes exhibiting dynamic nucleosome reposi-
tioning during the respiratory oscillation cycle and shows significant overlap with the
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cell growth and anabolic supercluster genes (A, A.B, and B) in this cycle. No particular
enrichment for SAGA- or TFIID-dependent promoters was observed.

The abundance of GTP increases by 50% from SS1 to SS2 following induction of the
ATP-cycling pathway, and there is an increase in the GEC (Fig. 4). ATP, however, notably
decreases during this period, accompanied by an increase in cdiAMP, but the AEC is
maintained. Therefore, there is a common correlation between the abundance of the
transcripts shared between cluster 3 in Fig. 5 and cluster 3 in Fig. 3 only with GTP and
GEC. Consistent with the increase in GTP and cdiAMP, the transcription of four genes
(ADE1, ADE6, ADE2, and ADE5,7) encoding enzymes for de novo IMP biosynthesis is
upregulated following the induction, together with IMD2, GUA1, and ADE12 encoding
enzymes for the conversion of IMP to GMP or AMP (Data Set S4). Transcript cluster 1 is,
in fact, enriched for purine-containing compound biosynthesis (GO:0072522 3.95E-04),
and there is evidence for its regulation by SWI/SNF from remodellable promoters
(Fig. 5c). This cluster is also enriched for stress response genes and for genes with
functions in the cell periphery and phosphate metabolism (Data Set S4). Genes whose
transcription decreased relative to the control, particularly from T2 onwards, are found
in cluster 2 but are not significantly enriched for any notable functions.

Induction of the futile consumption of ATP in cells grown in carbon-limited che-
mostats using acetate as the carbon source generated changes in nucleotide compo-
sition similar to those observed on glucose (increased cdiAMP, GTP, and GEC and
decreased ATP) but did not result in the same changes in gene transcription (Fig. S2
and Data Set S4). Induction of ATP cycling led to a ca. 50% reduction in biomass in the

FIG 4 Induction of the ATP-cycling pathway during steady-state growth on glucose produces changes in both ATP and GTP abundance.
(a) PCA of normalized nucleotide abundances (scores and loadings plots) identify the changes taking place that distinguish the induced
ATP-cycling chemostats, which are illustrated in detail in panel b). All nucleotide abundance profiles are available in Data Set S2.

Guanine Nucleotides Determine Yeast Gene Expression ®

January/February 2019 Volume 10 Issue 1 e02500-18 mbio.asm.org 9

https://mbio.asm.org


acetate-limited chemostats on transition from SS1 to SS2 (Fig. S1), but this was not
accompanied by marked changes in transcription of growth-related genes. Of the 525
differentially expressed transcripts identified, 299 correspond to antisense transcripts
(cluster 2 in Fig. S2). GO analysis indicates enrichment for functions associated with
respiration encoded by the corresponding genes on the sense strand (GO:0005739
mitochondrion 1.48E-06; GO:0055114 oxidation-reduction process 1.33E-06). Whether
the suggested interference in respiration by antisense transcription is related to the
observed reduction in biomass is unknown.

The transcriptional response to glucose is dampened by futile ATP consump-
tion. Glucose is the preferred carbon source for yeast growth and, when provided to
cells growing exclusively on a nonfermentable carbon source such as acetate, rapidly
causes repression of the transcription of genes required for catabolism of the less
favorable energy sources, and induces the transcription of genes required for growth
(1, 8). The changes in gene transcription observed for clusters 2/4 and 1 in Fig. 3,
respectively, are consistent with this change in carbon and energy metabolism. In the
acetate-limited chemostats, comparison of the effects of glucose addition on gene

ct GO Oscillation
group

Promoter category TF regulation Nucleosomes

1 Response to stress (1.92E-04)
Purine-containing compound biosynthetic 
process (3.95E-04)

D (1.10E-04) - Ace2p, Snf6p, Rpn4p, Sfp1p,Sin4p, Sok2p (<2E-08) Remod. (6.84E-04)

2 Response to acidic pH (2.21E-04) - - Fhl1p, Skn7p, Hmo1p, Stp1p, Hap2p, Crz1p (<2E-07)

3 Nucleotide binding (4.69E-09)
Ribosome biogenesis (7.14E-08)

A (1.80E-15)
B (4.39E-04)

- Sfp1p, Snf2p, Cst6p, Snf6p, Ace2p, Swi5p, Swi3p 
Tup1p (<1E-09)

Remod. (4.11E-05)

4 Heat shock binding protein (5.52E-05) - - Snf2p, Snf6p, Ace2p, Rpn4p (<1E-05) -

5 Positive regulation of sister chromatid
cohesion (3.54E-05)

n (4.10E-04) - Rlm1p, Hsf1p, Ric1p (<5E-05) -

a)

c)

ct 2 ct 3ct 1

ct 4 ct 5 b)

FIG 5 Induction of the ATP-cycling pathway during steady-state growth on glucose leads to coherent changes in gene expression. (a) Transcripts identified
as being significantly differently expressed between chemostats of the control strain BY4741-112-148 (148) and the ATP-cycling strain BY4741-112-151 (151)
were clustered (Data Set S4), and (b) the clusters were tested for significant overlap with those identified in Fig. 3. The grid presents the number of transcripts
shared between each pairwise comparison of clusters, and the color corresponds to the P value of a Fisher exact test analyzing the enrichment. (c) Clusters
were further functionally characterized as described in the legend to Fig. 3c (Data Set S4).
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transcription between the control and NTP-cycling strains identified 616 transcripts
which behaved significantly differently in the ATP-cycling conditions, but only 13
during GTP cycling (Data Set S4). Both ATP abundance and AEC were consistently
lower in the ATP-cycling cultures than in the corresponding control strain during
the period following glucose addition, while cAMP, GMP, AMP, pApA, and cdiAMP
were higher (Fig. 6). This coincided with a reduction in the extent of repression of
a cluster of genes enriched for functions associated with carbon metabolism
(cluster 2 in Fig. 7), and also with a decrease in the upregulation of genes enriched
for functions associated with cell growth and proliferation (cluster 1 in Fig. 7). In the
GTP-cycling chemostat cultures, only the GMP, pGpG, and cdiGMP nucleotides
exhibited notable differences in abundance, and their glucose-dependent transcrip-
tional reprogramming was unaffected (Fig. S3).

Induction of the futile consumption of GTP produces only limited changes in
the transcriptome. Induction of the GTP-cycling pathway generated markedly fewer
changes in the transcriptome than induction of ATP cycling in both the glucose and
acetate chemostats: 77 transcripts were identified as being significantly changed in
abundance relative to the control when grown on glucose, and only 53 during growth
on acetate (Fig. S4 and S5 and Data Set S4). Both AEC and GEC remained unaffected by
induction in either carbon condition; however, during the progression from SS1 to SS2
in the glucose-limited chemostats, ATP and GTP concentrations both fell, while that of
CTP increased.

FIG 6 Operation of the ATP-cycling pathway constitutively reduces ATP abundance and AEC throughout the transition
from steady-state growth on acetate to growth on glucose. (a) PCA of normalized nucleotide abundances (scores and loadings
plots) identify the changes taking place that distinguish the induced ATP-cycling chemostats and the glucose-supplemented
conditions, which are illustrated in detail in panel b. All nucleotide abundance profiles are available in Data Set S2.
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DISCUSSION

The effects of induction of the ATP-cycling pathway in this study, viewed in the
context of the correlations observed between changes in nucleotide levels and the
transcriptional programs occurring in cells growing in the control chemostats, support
the proposal that yeast gene transcription is responsive to cell energy status (Fig. 8).
Our data indicate, for the first time, a significant role for GTP and/or GEC in the signaling
process. Since peptide bond formation during protein synthesis predominantly requires
GTP, rather than ATP, this suggests a way for the cell to effect a direct linkage between
nutritional status and the rate and extent of protein synthesis. This places GTP as a hub
molecule whose fluctuations in abundance depend on the interplay between nutrient
supply and the rate of protein synthesis and influence the regulation of gene expres-
sion (Fig. 8b).

Three main observations are indicative of the coordination of gene expression by
changes in intracellular nucleotide use and composition. First, during continuous
growth in chemostats, the transcription of genes required for glucose-dependent yeast

ct GO Oscillation
group

Promoter 
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TF regulation Nucleosomes

1 Cytosolic ribosome (6.51E-70)
De novo IMP biosynthesis (2.26E-05)
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Cst6p, Spt20p, Rpn4p, Mga2p, Ric1p, Rlf2p, Sds3p, Sin3p, 
Sir2p, Spt10p, Snf2p, Gcr1p, Hsf1p, Rap1p, Spt23p, Sfp1p, 
Fhl1p, Fkh1p, Ifh1p, Pho4p, Hfi1p, Swi5p, Hmo1p, Hap2p, 
Gts1p,Dal82p (<1E-15)

Remod (9.09E-04)

2 Carbohydrate metabolic process (5.74E-15)
TCA cycle (2.29E-09)
Pyridine nucleotide metabolism (2.1E-08)
Gluconeogenesis (3.18E-07)
Cellular respiration (4.62E-07)

D  (4.84E-56)
B.D (2.48E-09)

- Hsf1p, Msn2p, Msn4p, Sok2p, Sfp1p, Rpn4p, Mga2p, 
Bas1p, Mig3p, Spt23p, Cin5p, Adr1p, Cat8p, Aft1p, Swi5p, 
Arr1p, Oaf1p, Zap1p, Gis1p, Pdr1p, Rlm1p, Mig1p, Rgm1p 
(<1E-15)

-

3 - - - Tec1p (<1E-15) -

4 Alpha-amino acid biosynthesis (1.71E-06) B  (4.35E-05) - Cdc73p, Gln3p, Hap4p, Gzf3p (<5E-06) -

5 - - - - -
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FIG 7 Induction of the ATP-cycling pathway partially inhibits the glucose repression of transcription following the addition of glucose to cultures growing at
steady state on acetate. (a) Transcripts identified as being significantly differently expressed between chemostats of the control strain BY4741-112-148 (148)
and the ATP-cycling strain BY4741-112-151 (151) were clustered, and (b) the clusters were functionally characterized as described in the legend to Fig. 3c. Data
Set S4 provides full details of cluster membership and the enrichment analysis results.
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cell proliferation was highly correlated with nucleotide indicators of high-energy status
such as ATP, GTP, and IMP (Fig. 3 and 8). Second, the transcription of genes with
functions associated with anabolic growth processes was upregulated following induc-
tion of the ATP-cycling pathway during growth on glucose and showed similarity to
sets of genes previously identified as being associated with the oxidative growth phase
of a respiratory oscillation cycle (Fig. 5 and 8). Finally, the reprogramming of gene
expression that immediately follows release of cultures from dependence on the use of
a less favorable nonfermentable carbon source (acetate) by the addition of glucose was
partially inhibited during induction of ATP cycling (Fig. 7). This included reductions in
the extent of both carbon catabolite repression and induction of ribosome biogenesis.
Interestingly, induction of the GTP-cycling pathway under the same conditions could
not reproduce these effects, and the consequences of inducing the ATP pathway
during steady-state growth on acetate were notably different from those observed on
glucose. Transcription of the bacterial pathway genes is comparable in each case
(Fig. S1), but we cannot exclude posttranscriptional effects that may lead to differing
fluxes through each engineered pathway. The design of the expression systems—
where the bacterial synthetase and hydrolase enzymes are carried together on a
plasmid that contains no internal regions of homology and whose selection depends
on two auxotrophic markers (Fig. 1)—is expected to preclude the generation of
subpopulations of cells that have lost either the plasmid or one or both of the bacterial
genes. Such events are unlikely to generate subpopulations of any significant size over
the moderate number of postinduction cell doublings used in the chemostat experi-
ments (approximately six); however, this has not been formally assessed.

The ATP cycling-dependent changes in gene expression observed during steady-
state growth on glucose are associated with increased GTP and GEC following induc-
tion. Changes in GTP, GEC, or cdiAMP were found to correlate most consistently with
the changes in gene transcription, and we exclude cdiAMP, since a previous study
revealed minimal effects on yeast gene transcription (36). Induction of intracellular
concentrations of cdiAMP more than 5 times higher than the maximum observed in this
work significantly changed the expression of only 75 S. cerevisiae genes during batch
growth in YNB minimal medium containing 0.5% glucose (36). An important role for
GEC and GTP in signaling metabolic status in S. cerevisiae has previously been proposed
from an analysis of carbon and energy starvation in recombinant strains of S. cerevisiae
engineered to ferment xylose (37). A decrease in guanine nucleotides is also a key
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FIG 8 High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of
gene transcription. (a) Summary of the data indicating coordination of anabolic gene transcription with GTP/GEC. (b) GTP
as a hub signaling molecule whose fluctuations in abundance depend on the interplay between nutrient supply and the
rate of protein synthesis. GTP-binding proteins (regulatory GTPases or components of the actin cytoskeleton) are
candidates for the observed modulation of gene transcription.
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signal for the initiation of meiosis and sporulation in yeast (38), and imbalances in
guanine nucleotide pools are known to adversely affect cell metabolism and viability
(39–41). Systems for sensing and responding to changes in intracellular guanine
nucleotide composition therefore clearly exist, and this study provides evidence that
they also participate in adjusting gene transcription to cellular energy status. The genes
that are the target of this regulation under the experimental conditions used here tend
to be those previously identified as possessing remodellable promoters and to be
regulated by the SWI/SNF chromatin remodelling complex, suggesting that one of the
signal outputs may be to promote the clearing of nucleosomes from susceptible
promoters (21). Our data do not preclude a regulatory role for ATP and AEC sensing.
Indeed the changes in gene transcription identified during the glucose derepression
experiment more closely correlate with these nucleotides (discussed below). This
observation of differing effects under different growth conditions suggests a network
of regulation linking high-energy purine nucleotide abundance to gene transcription.

The influence of guanine nucleotide status on gene transcription could potentially
be mediated by changes in the activation state of GTPases involved in the regulation
of transcription in response to nutrient supply, for example Ras1p/Ras2p or Gtr1p/Gtr2p
(1, 2, 6, 13). Evidence for an influence of guanine nucleotide pools on the level of active,
GTP-bound, Ras2p has previously been reported (13, 15–17), and activation of the
Ras2/cAMP/PKA pathway could produce the increase in expression of genes involved
in ribosome biogenesis observed in the glucose chemostats in this study (Fig. 5).

Another possible route of control could be the balance between GTP and ATP inside
the cells and its influence on transcription start site selection by RNA polymerase. One
of the clusters of transcripts upregulated in the glucose-grown ATP-cycling chemostat
cultures is significantly enriched for gene products which bind purine nucleotide
triphosphates (cluster 3 in Fig. 5 and Data Set S4), raising the possibility that transcrip-
tion of the genes encoding these binding proteins could in some way be sensitive to
the prevailing levels of GTP (and/or ATP) in the cell. Interestingly, de novo purine
biosynthesis is also upregulated under these conditions consistent with previous
observations supporting transcription on demand for the genes in this pathway,
controlled via sensing of key metabolic intermediates in the de novo pathway (42).

The eukaryotic cell cytoskeleton has also been proposed as an integrative sensor of
metabolic status, capable of responding to, and influencing, intracellular concentra-
tions of ATP and GTP through its use of these nucleotides as the energy source for
polymerization and through its physical association with numerous metabolic enzymes,
the translational apparatus, and mitochondria (43–45). While this is currently only an
intriguing hypothesis, a cytoskeletal influence on gene transcription mediated through
interactions with upstream kinases and transcription factors can also be imagined.

The reduction in glucose repression of gene transcription while the ATP-cycling
pathway is fully operative coincides with increased intracellular concentrations of AMP,
GMP, and cAMP (and cdiAMP) and with reduced ATP and AEC relative to the control
strain (Fig. 7). This attenuation of the repression response under suboptimal energy
conditions could make physiological sense, and it suggests a net inhibition of the
activity of the Snf1 and Snf3/Rgt2 pathways which are central to the repression of
gene transcription by glucose in S. cerevisiae (1, 8). However, Snf1p kinase activity is
proposed to be modulated by ADP, not AMP or ATP, and increased activity of the
Mig1p carbon-responsive repressor is predicted to result from less favorable energetic
conditions. How this could be achieved is, therefore, not clear, although it is worth
noting that the details of the in vivo regulation of Snf1p by adenine nucleotides remain
to be fully established. Interestingly, ACS1, encoding an acetyl-CoA synthetase isoform
expressed preferentially during growth on nonfermentable carbon sources (46), is
repressed to only ca. 60% of the extent seen in the control strain (Fig. S6). This would
be predicted to have consequences for nuclear acetyl-CoA abundance, with possible
downstream effects on nucleosome remodelling and gene expression. Acetyl-CoA has
been proposed as a sentinel metabolite capable of influencing chromatin structure,
where increased nucleocytoplasmic concentrations increase the level of histone acet-
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ylation which in turn promotes nucleosome clearance and expression from susceptible
promoter sequences (9, 23). The induction in transcription of growth-related genes in
response to glucose addition is also dampened specifically during ATP cycling (Fig. 7).
This suggests a reduced signaling through the TORC1 and PKA kinase pathways relative
to the control strain under these conditions and implies an influence of nucleotide
pools on these pathways.

We conclude that a fundamental understanding of the global regulation of eukary-
otic gene transcription will require a more detailed consideration of guanine nucleotide
abundance and how this is signaled to the genome.

MATERIALS AND METHODS
Plasmid constructs and yeast strains. The synthesis of cyclic diguanine monophosphate (cdiGMP)

or cdiAMP in Saccharomyces cerevisiae was achieved using the engineered constructs previously de-
scribed (36). For cyclic dinucleotide hydrolysis, synthetic genes designed with yeast codon usage to
encode amino acids 395 to 649 of the cdiGMP hydrolase SFV3559 from Shigella flexneri (31) or amino
acids 117 to 659 of the cdiAMP hydrolase YybT from Bacillus subtilis (32) were cloned into vectors
between promoter and terminator sequences of the yeast gene TDH3. The truncated YybT enzyme lacks
the two transmembrane helices present at the N terminus of the wild-type protein, and the C-terminal
portion of SVF3559 contains the EAL domain phosphodiesterase active site. The TetO7pr::synthetase
(with the VP16::TetR’ TetO7 transactivator sequence) and TDH3pr::hydrolase expression constructs were
finally combined as required in a centromeric vector pRS-LEU2-URA3 doubly marked with yeast LEU2 and
URA3 genes (36) to produce the plasmids listed in Table 1 and illustrated in Fig. 1. All centromeric
plasmids were transformed into the yeast laboratory strain BY4741 carrying an integrated copy of the
SSN6::TetR fusion construct from pCM242 (26) on plasmid pAH112 (36).

Verifying the activity of engineered strains by DOX induction in batch culture. Flasks (250 ml)
of YNB minimal medium (0.67% [wt/vol] yeast nitrogen base (Sigma) and 0.5% [wt/vol] ammonium
sulfate) containing 2% glucose and 5 �g/ml doxycycline (DOX) were inoculated to a starting optical
density at 600 nm (OD600) of 0.05 from overnight cultures. The inoculated cultures were incubated at
30°C with shaking at 200 rpm until reaching an OD600 of 0.4 to 0.5 before sampling for intracellular
nucleotide extraction. Extracts were analyzed using HPLC-UV.

Analyzing the effect of inducing increases in ATP or GTP consumption during steady-state
growth in carbon-limited chemostat cultures. Chemostat fermentations were performed in triplicate
under carbon-limited conditions in minimal media using either glucose or acetate as the carbon source
and providing only ammonium sulfate and essential trace nutrients as supplements. For cultures in
glucose-grown chemostats, precultures of each strain were prepared by inoculating YNB minimal
medium (0.67% [wt/vol] yeast nitrogen base [Sigma] and 0.5% [wt/vol] ammonium sulfate) containing
2% (wt/vol) glucose with a single colony picked from an agar plate and incubating at 30°C 200 rpm for
24 h. Fermentors (2 liters) containing F1 medium (47) (1,000 ml) with 0.25% (wt/vol) glucose were
inoculated with aliquots of the precultures to produce a starting OD600 of 0.05 and grown in batch
for 24 h (30°C, 750 rpm stirrer speed, aeration with 1 liter min�1 air). Cultures were then switched to
continuous mode, maintaining the pH at 4.5 and the dilution rate at 0.11 to 0.12 h�1. Biomass was
monitored offline at regular intervals by measuring UV absorbance at a wavelength of 600 nm, and the
purity of the cultures was routinely checked by phase-contrast microscopy. Initial steady-state culture
conditions (designated SS1) were deemed to have been established after more than five vessel volume
changes and with cultures exhibiting a constant biomass at which point, culture samples were taken for
analysis. For induction, DOX was added to the steady-state cultures to produce a final concentration of
5 �g/ml. Culture samples were harvested for analysis at 3, 6, and 9 h after induction, and a final sample
taken after the cultures had reached a new steady state (SS2), as determined by the passage of six vessel
volume changes and with cultures exhibiting a constant biomass.

A similar protocol was followed for the acetate-grown chemostat experiments, except the initial
preculture was performed for 42 h in YNB minimal medium containing 0.5% (wt/vol) sodium acetate and
1% (wt/vol) glucose. This was used to inoculate batch growth in fermentors containing YNB minimal
medium with 0.5% (wt/vol) sodium acetate and 0.05% (wt/vol) glucose and then switched to continuous
mode using only 0.5% (wt/vol) sodium acetate as the carbon source and controlling the pH at 5.0 and
the dilution rate at 0.07 to 0.08 h�1. YNB was used in preference to F1 medium, since strains grew less
well in the latter when only acetate was present as the carbon source. After taking the induced
steady-state samples, designated SS2, an additional experiment was performed to analyze the response
to adding glucose to the respiring, induced cultures. Glucose (40% [wt/vol]) was added to each fermentor
(and to the feed for each fermentor) to produce a final concentration of 1.6% (wt/vol), and culture
samples were taken for RNA and intracellular nucleotide extraction at 15 min (designated G1), 30 min
(designated G2), and 60 min (designated G3) after glucose addition. All nucleotide extracts from the
chemostat experiments were analyzed using the LC-MS method.

Preparation of intracellular nucleotide extracts. Cell metabolism in culture samples was imme-
diately quenched by transferring culture aliquots (10 ml) directly to methanol (40 ml) cooled to below
�60°C on dry ice and standing for 2 min. Cells from quenched samples were harvested by centrifugation
at �20°C and extracted by resuspension in ice-cold 1 N formic acid containing 10% butan-1-ol, standing
on ice for 60 min. Cells were removed from extracts by centrifugation at �20°C, and the supernatants

Guanine Nucleotides Determine Yeast Gene Expression ®

January/February 2019 Volume 10 Issue 1 e02500-18 mbio.asm.org 15

https://mbio.asm.org


were filtered through a 0.45-�m filter and stored frozen at �80°C. Frozen extracts were evaporated to
dryness by freeze-drying and finally reconstituted in 200 �l water.

Analysis of intracellular nucleotides by HPLC-UV. Separation and quantification of intracellular
nucleotides by HPLC-UV were performed essentially by the method of Strauch et al. (48) using an Agilent
HP1100 HPLC. Briefly, aliquots of nucleotide extracts were separated at 20°C by anion-exchange
chromatography using a Partisil 10SAX column (10-�m particle size; 25 cm by 4.6 mm internal diameter).
Gradient elution was performed by the following gradient elution program using mobile phase A (MPA)
(7 mM potassium hydrogen phosphate [pH 4.0]) and mobile phase B (MPB) (0.5 M potassium dihydrogen
phosphate– 0.5 M sodium sulfate pH 5.4) and a flow rate of 1.5 ml/min: 0 to 5 min, 100% MPA; 5 to 10
min, 100% to 85% MPA; 10 to 15 min, 85% to 81% MPA; 15 to 20 min, 81% to 50% MPA; 20 to 25 min,
50% to 30% MPA; 25 to 30 min, 30% to 25% MPA; 30 to 40 min, 30% to 0% MPA (postrun equilibration,
100% MPA for 15 min). Eluting nucleotides were detected using a UV diode-array detector and quantified
by their absorbance at 254 nm in comparison to known standards. Quantified values in picomoles were
normalized to the cells present in 1 ml of a culture with an OD600 value of 1. All nucleotide standards
were purchased from Sigma, with the exception of cdiAMP, cdiGMP, pApA, and pGpG which came from
Biolog.

Analysis of intracellular nucleotides by LC-MS. Separation and quantification of intracellular
nucleotides by LC-MS were performed using an Agilent HP1290 LC system attached to an Agilent 6460
triple quad mass spectrometer by a method based on one devised for the analysis of thiopurine
nucleotides (49). Briefly, aliquots of nucleotide extracts were separated at 30°C by anion-exchange
chromatography using a Biobasic AX column (5-�m particle size; 5 cm by 2.1 mm internal diameter) and
the following gradient elution program using mobile phase A (MPA) (10 mM ammonium acetate in
water-acetonitrile [7:3] [pH 6]) and mobile phase B (MPB) (1 mM ammonium acetate in water-acetonitrile
[7:3] [pH 10.5]): 0% to 100% MPB in 5.75 min (postrun equilibration 100% MPA for 4.25 min) at a flow rate
of 0.5 ml/min. Nucleotides were detected in the mass spectrometer using the multiple reaction moni-
toring (MRM) mode with the following settings: capillary voltage, 3,500 V; nozzle voltage, 1,000 V; drying
gas flow, 10 liters/min; drying gas temperature, 325°C; nebulizer pressure, 10 lb/in2; sheath gas flow,
11 liters/min; sheath gas temperature, 350°C. Nitrogen was used as the sheath, nebulizer, drying, and
collision gases. Quantification was performed using the Agilent MassHunter software using calibration
curves generated from the contemporary analysis of known standards. Quantified values in picomoles
were normalized to the value for cells present in 1 ml of a culture with an OD600 value of 1 and then
processed to generate the same total value of common nucleotides in each sample for each chemostat
condition (growth in glucose or acetate). The following MRM mass transitions (listed as parent ion mass
to fragment ion mass) were used for detection and identification of the nucleotides in the positive ion
mode (except for UDP-glucose, which was detected in the negative ion mode): ATP, 508.1 to 136.0; ADP,
428.2 to 136.0; AMP, 348.2 to 136.0; cAMP, 330.2 to 136.0; cdiAMP, 659.4 to 136.1; pApA, 677.5 to 136.1;
GTP, 524.2 to 152.0; GDP, 444.2 to 152.0; GMP, 364.2 to 152.0; cdiGMP, 691.4 to 152.2; pGpG, 709.4 to
152.2; IMP, 349.2 to 157.0; UTP, 485.1 to 97.0; UDP, 405.1 to 97.0; UMP, 325.1 to 97.0; UDP-glucose, 565.3
to 323.0; CTP, 484.1 to 112.0; CDP, 404.2 to 112.0; CMP, 325.1 to 112.0.

Isolation of total RNA. Cells from culture samples were harvested rapidly by centrifugation, and the
cell pellets were flash frozen in liquid nitrogen and stored at �80°C until required. For RNA purification,
frozen cells were resuspended in TRIzol (Invitrogen) and lysed mechanically at 4°C by bead beating using
a FastPrep homogenizer (MP Biomedicals; five 1-min cycles of shaking at 6 m/s). DNA and protein were
removed from the lysed samples by extraction with chloroform (twice), and total RNA was purified using
RNeasy columns (Qiagen).

Transcriptomics analysis using RNAseq. Strand-specific transcriptome sequencing was performed
by a commercial sequencing provider using an Illumina HiSeq sequencer. Poly(A)-containing mRNA
molecules were purified and sequenced to provide a minimum of 15 million 50-bp single-end reads per
sample. Sequencing reads were mapped to the S. cerevisiae S288C genome sequence (modified to
include the heterologous genes introduced) using tophat v2.0.14 (50), employing the default settings
with the following exceptions: min-intron length � 25; max-intron length � 1,500. A universal set of
transcripts was assembled from all the data using stringTie (51), combining the result with the reference
genome annotation S288C_reference_genome_R64-2-1_20150113 (http://www.yeastgenome.org/).
Mapped reads were processed and analyzed in R (52). Reads mapping to features were counted using
Rsubread (53), and the transcript counts were TMM normalized and tested for differential expression
using the limma voom method (54, 55) with limma treat (56). Gene ontology (GO) analysis was performed
using goseq (57), and principal components analysis was realized using pcaMethods (58). To identify sets
of differentially expressed transcripts in each chemostat experiment, the null hypothesis that the change
in transcript abundance relative to the preinduced/pretreated time point was equal in each control and
NTP-cycling strain pair was assumed, e.g., [NTP.SS2 � NTP.SS1] � [Ctrl.SS2 � Ctrl.SS1] � 0 or [NTP.G3 �
NTP.SS2] � [Ctrl.G3 � Ctrl.SS2] � 0. A limma treat transcript fold change threshold of 1.25 was used. The
analysis was performed for each postinduction/posttreatment time point, and the transcripts identified
as being significantly (q � 0.05) differently expressed in each experiment were combined. The abun-
dance profiles of significant transcripts were clustered, and each cluster was subjected to GO analysis,
regulatory interaction enrichment analysis using yeastract (35), and enrichment analysis for membership
of functionally associated groups obtained from the literature using Fisher’s exact test.

Other data analysis. Correlations between nucleotide and transcript abundance data were analyzed
using the mixOmics R package (mixOmics: Omics data integration project [http://mixomics.org/]).
Nucleotide abundances were log2 transformed prior to correlation with normalized RPKM transcript
abundance values obtained from the limma voom normalized count data. Pearson correlations were
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calculated using “correlation” and “ward” as the distance and clustering settings, respectively, and
applying the threshold values stated in the text (minimum, 0.7).

Accession number(s). RNAseq data are available in the ArrayExpress database (http://www.ebi.ac
.uk/arrayexpress) under accession number E-MTAB-5174.
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	Induction of ATP cycling increases transcription from promoters regulated by SWI/SNF during steady-state growth on glucose, but not on acetate. 
	The transcriptional response to glucose is dampened by futile ATP consumption. 
	Induction of the futile consumption of GTP produces only limited changes in the transcriptome. 
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