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A B S T R A C T

The novel coronavirus outbreak of 2019 reached pandemic status in March 2020. Since then, many countries have
joined efforts to fight the COVID-19 pandemic. A central task for governments is the rapid and effective identi-
fication of COVID-19 positive patients. While many molecular tests currently exist, not all hospitals have im-
mediate access to these. However, CT scans, which are readily available at most hospitals, offer an additional
method to diagnose COVID-19. As a result, hospitals lacking molecular tests can benefit from it as a way of
mitigating said shortage. Furthermore, radiologists have come to achieve accuracy levels over 80% on identifying
COVID-19 cases by CT scan image analysis. This paper adds to the existing literature a model based on ensemble
methods and 2-stage transfer learning to detect COVID-19 cases based on CT scan images, relying on a simple
architecture, yet complex enough model definition, to attain a competitive performance. The proposed model
achieved an accuracy of 86.70%, an F1 score of 85.86% and an AUC of 90.82%, proving capable of assisting
radiologists with COVID-19 diagnosis. Code developed for this research can be found in the following repository:
https://github.com/josehernandezsc/COVID19Net.
1. Introduction

2019 witnessed the outbreak of a new virus, named COVID-19,
caused by a coronavirus strain identified as SARS-CoV-2. In March
2020, the situation evolved to a global health crisis, as the WHO
announced the COVID-19 outbreak to be a pandemic. Timely identifi-
cation of COVID-19 patients became a priority to fight this pandemic and
several methods, such as molecular tests, are at the front line to detect
positive cases. While reverse transcriptase polymerase chain reaction
(RT-PCR) test has an accuracy of around 90% (week 3 after symptoms)
[1], the need to provide proper identification of affected people calls for
alternate methods such as CT scans analysis, especially in hospitals that
lack molecular tests1 but may have a CT scan readily available [2], thus
mitigating said shortage. Medical professionals are resorting to this
method to determine the presence of COVID-19 infection. Radiologists
have reached an accuracy of around 90% with this method on low-dose
CT scan [3]. Nevertheless, other studies suggest a lower accuracy, less
than 80%, and a mean recall value of 80% [4]. Reliable artificial intel-
ligence (AI) models have come to show accuracy levels higher than 80%
in most cases as will be detailed later. However, most of these models
require a huge amount of CT scans images to be trained on. Refs. [5]
tests is mainly due to logistics
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model with an accuracy of 89%.

AI’s performance and benefits in medicine have been demonstrated
time and again [6]. Transfer learning, widely used for pattern recognition
tasks, has been recently applied to design intelligent systems capable of
accurately identifying COVID-19 patients through CT Scan imagery. Ref.
[7] developed artificial intelligence algorithms to identify positive
COVID-19 patients by combining CT imaging and clinical information
reaching an accuracy of 83.5%. Additionally, Ref. [8] proposed an AI
system that can diagnose novel coronavirus pneumonia to assist radiol-
ogists performing diagnosis, achieving 92.49% accuracy on the test set.
Regarding ensemble methods, one approach used chest X-Ray images to
develop a transfer learning-based ensemble classifier for pneumonia
identification. The authors emphasize the higher performance achieved
by these when compared to individual models [9]. A similar approach for
COVID-19 identification was developed, also showing significant results,
on ensemble techniques [10].

The advantages of using ensemble methods are analyzed and dis-
cussed in this article. By exploring the differences in performance levels
between soft, hard and weighted voting schemes, we demonstrate the
superior accuracy provided by a weighted voting scheme, which
mismanagement by various local governments in several countries from Latin
oronavirus pandemic, also due to the shortage of PCR test kits in the region [30].
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resembles a generalized linear model with a binomial link function.
Additionally, valuable findings were obtained while tuning the decision
threshold. We found evidence of a performance boost in reducing the
decision cut-off point by less than 0.05. Moreover, the use of raw output
scores, instead of a binary classification, was found to be more effective
by enabling the prioritization of critical cases and setting a risk status for
cases near the threshold.

Starting with the results by Ref. [5]; this work expands on the use of
transfer learning and ensemble methods to achieve three main tasks. (1)
Build a model using transfer learning technique on state-of-the-art
ImageNet pretrained models combining them into an ensemble than
can be easily replicated by researchers and deep learning practitioners
that may benefit from the current work helping to fight the novel coro-
navirus outbreak. (2) Achieve competitive performance by reaching an
accuracy of at least 85%. (3) Present the limitations of dealing with small
datasets in visual recognition tasks and expanding on how to overcome
them.

2. Dataset

The dataset used in this research was provided by Ref. [5]. The au-
thors who provided the dataset collected 746 CT scan images, composed
by 349 COVID-19 positive and 397 COVID-19 negative images. We
would like to emphasize the diligence in the aforementioned authors’
work in manually selecting images from 760 medRxiv and bioRxiv
COVID-19 preprints posted from Jan 19th to Mar 25th. For each CT
image, the associated caption was read to judge whether it was a positive
case for COVID-19 or not. If caption was not available, this was inferred
from the text analyzing the image. As images that are included in papers
experience a degradation in their quality, the images gathered from pa-
pers were used for training, while original CT images donated from
hospitals were used for testing and validating the model.

Table 1 shows the number of images in each set and class and Fig. 1
shows 8 randomly chosen samples.Wewill be using the same data split as
proposed by the authors.

3. Methods and techniques

3.1. Data preparation

As deep neural models require a great amount of training data,
pattern recognition models are not an exception. Since CT scan images do
not suffer generally from rotation or vertical flips, we took as trans-
formations random resized crop and random horizontal flip. The first one
randomly selects a multiplier (from 0.08 to 1) to apply to the original size
to select the cropping window size and an aspect ratio (from 0.75 to 1.33)
before being resized. Random horizontal flip randomly flips horizontally
an image with a probability of 0.5.

Besides data augmentation, it is important to preprocess images to
specific parameters as previously trained models are optimized for data
normalized in a specific range. For this reason, images are resized to 256
� 256 pixels to be later resized to 224 � 224 in the random resized crop
transformation. Finally, images are normalized from 0 to 1 by dividing
their pixel channels’ values by 255 (RGB 8-bit images are represented by
pixels values ranging from 0 to 255 on each of their 3 channels). To keep
original quality of validation and test set, images were only resized and
standardized, with no augmentation involved.
Table 1
CT scan images distribution.

COVID-19 NON-COVID-19 Total

Train 191 234 425
Validation 60 58 118
Test 98 105 203

746

2

The selection of the data augmentation methods presented are based
on the proven effectiveness and the simplicity in interpretation of such
methods [11]. Also, as we do not expect images to be presented, for
example, with a 90� rotation or with sharp variations in brightness or
contrast, such transformation techniques could lead to an increase in
irrelevant augmented data. Finally, the parameters from the trans-
formations are the ones commonly used in pretrained models such as
Inception v3.
3.2. Model architecture

Our model is comprised of a 2-stage transfer learning training process
and a stacked ensemble method. For this we used six ImageNet pre-
trained convolutional neural networks: VGG16 [12], ResNet50 [13],
Wide ResNet50-2 [14], DenseNet161, DenseNet169 [15] and Inception
v3 [16]. The classifier and fully connected layers are replaced by custom
build layers. Specifically, VGG16 (with batch normalization) last fully
connected layer was replaced by a layer consisting of 128 neurons with
ReLU activation and a 0.5 dropout rate2 before being finally connected to
a single neuron, responsible for the binary classification. Remaining
neural networks had their fully connected top layer completely replaced
by layer consisting of 256 neurons (except for the case of the Dense-
Net161 model which was initially fully connected to a layer containing
512 neurons) followed by a single dimension batch normalization func-
tion, ReLU activation and 0.5 dropout rate. Finally, output is connected
to a layer consisting of 64 neurons with ReLU activation and 0.4 dropout
rate to fully connect them to the decision neuron. It is important to un-
derline the usage of the batch normalization layer. Batch normalization
not only speeds up the training process and improves model general-
ization, but also helps reduce sensitivity to bad parameters initialization
which could undermine models’ training process [17]. Table 2 shows the
different classifier architectures per pretrained model.

Ensemble models have the advantage of leveraging the information
from several classifiers and combining them into a more robust model.
Variance and bias are also reduced, thus minimizing the expected error.
Additionally, a feature space region that may have been incorrectly
learned by a classifier can still be correctly classified by using the pattern
learned from another classifier, leveraged by the ensemble model. These
characteristics make ensemble models a solid option for approaching
complex classification and regression tasks [11].

These configurations of classification layers were chosen after per-
forming hyperparameter optimization runs, this includes the number of
neurons per layer (powers of two) and dropout rate. It was found that
more than two hidden layers led the model to overfitting. It is especially
important to recall that the dataset has a low number of images to train
on, making our model prone to overfitting. We also find it important to
emphasize the difference in architectures between the pretrained models.
The added layers are defined as the classification block of the neural
network; that is, they are fed by the final pooling layer on each neural
network. One difference, as shown in Table 2, is that the VGG16 model
has a shorter configuration. This is due to the fact that the added layer is
actually part of a larger pretrained classification block (consisting of
more than one layer) and a deeper block would make the model prone to
overfitting. The remaining pretrained neural models have a single layer
as part of their classification block, this is why we replaced the whole
block with the proposed configuration. Regarding the number of neu-
rons, we aimed to keep the second to last layer as small as possible
without any reduction in performance, further avoiding overfitting.

Finally, as shown in Fig. 2, we concatenate outputs from each model
2 The Rectified Linear Unit (ReLU) is an activation function commonly used in
artificial neural networks training tasks. It is responsible for emitting the output
signal of each neuron from one layer to the next one. Dropout regularization
technique aims to reduce overfitting by randomly (probability given by the
dropout rate) turning off neurons within a specific layer.



Fig. 1. Sample of CT Scan Images. Images on the left, within the red border, are positive COVID-19 cases. Images on the right, within the blue border, are negative
COVID-19 cases. Ground-glass opacities are usually found in positive COVID-19 cases. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 2
Fully connected layer architecture. The VGG16 model shown architecture is
added to the pretrained sixth layer in the classifier block.

VGG16 DenseNet161 ResNet50, Wide ResNet50-
2, DenseNet169, Inception
v3

Layer Parameter Layer Parameter Layer Parameter

Linear 128 neurons Linear 512 neurons Linear 256 neurons
ReLU – ReLU – ReLU –

Dropout rate ¼ 0.5 Dropout rate ¼ 0.5 Dropout rate ¼ 0.5
Linear 1 neuron Linear 64 neurons Linear 64 neurons

ReLU – ReLU –

Dropout rate ¼ 0.4 Dropout rate ¼ 0.4
Linear 1 neuron Linear 1 neuron

Fig. 2. Proposed model architecture. Variables yk, where k 2 f1;2;3;
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3

to create a stacked ensemble model. Since each output is a single node,
we are now left with a 6-dimensional vector which is connected to a
single neuron activated by a sigmoid function. Training runs with one
and two hidden layers comprised of 6 and 16 neurons were held, only to
show a clear overfitting of the ensemble model.
3.3. Model training

As mentioned earlier, the proposed model was trained on a 2-stage
process detailed by Algorithm 1. First, each pretrained model was
replaced by the previously mentioned architecture, their feature’s layers
were frozen, leaving only the fully connected layers available for
training, and parameters were randomly initialized by He uniform
initialization [18]. This model configuration was trained for 30 epochs in
its first stage. An epoch refers to one whole training cycle through the
4; 5;6g, represent the outputs for each of the pretrained models.
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training set. Within each epoch, the data is fed by batches. Once all of the
batches are fed and training is executed, an epoch is completed. Imme-
diately after, the second stage, also known as fine tuning, unfreezes the
whole model and trains it for 20 epochs (Inception v3 model was trained
for 30 epochs due to higher complexity and overall demonstrating better
performance). Neural networks are fed by batches for training and
testing, preprocessing3 and feeding them to the neural networks with a
batch size of 32 images. As a single output node for binary classification
activates a sigmoid function, the loss function is binary cross entropy. A
two-stage training method helps prevent the randomness from the
initialization in the output fully connected layer to disrupt the already
learned parameters from the pre-trainedmodels. This is done by allowing
those parameters to be only fine-tuned after the first stage has optimized
the output layer.

Algorithm 1. Individual models training algorithm
Algorithm
n
re
3 Transformations applied d
etwork. As described in sect
sized and normalized.
epend on which set is being f
ion 3.1, validation and testing s
Input:
 COVID-19 CT Scan Images dataloader_batch

Preprocessing:
If set is
training_set:
Resize image to dimensions
(256 � 256)

Random crop and resize to
dimensions (224 � 224)

Perform random horizontal flip

Normalize pixel values to [0, 1]
range

Standardize pixel values
Else:

Resize image to dimensions
(224 � 224)

Normalize pixel values to [0,1]
range

Standardize pixel values
Endif
Models training:

Models ¼ {VGG16,
ResNet50, Wide
ResNet50-2,
DenseNet161,
DenseNet169, Inception
v3}
For model in Models:

Freeze feature
layers

lr ¼ 1e-3

For epoch ¼ 1 to
30:
For img in dataloader_batch:

Update model
parameters
End

If validation_accuracy does not improve for 10 epochs
then:
lr ¼ lr x 0.1

End
End

Unfreeze feature
layers

lr ¼ 1e-4

For epoch ¼ 1 to
20:
For img in dataloader_batch:

Update model
parameters
End
(continued on next column)
ed into the neural
et images are only

4

(continued )
b

Algorithm
4 Generalization term added
y adding a penalty to higher
to the loss function in order to
values of the parameters bein
If validation_accuracy does not improve for 10 epochs
then:
lr ¼ lr x 0.1

End
End

End

Output: Trained models
Regarding the optimizer for ensemble model, the method used
included the Adam algorithm with decoupled weight decay [19], also
known as AdamW optimizer. It has been proven that the Adam optimizer
with L2 regularization4 generally fails to converge to a global optima,
since its regularization term fails to be equivalent to weight decay as in
Stochastic Gradient Descent (SGD) optimization, instead converging
quickly and uniformly to a local optima. This is why the SGD with mo-
mentum optimization has been the optimizer of choice for many
state-of-the-art neural networks. On the other hand, the AdamW opti-
mizer correctly adds the weight decay after the moving averages are
calculated. This greatly prevents models to overfit (the model no longer
being able to generalize enough to accurately predict from new data),
especially when dealing with small datasets.

Learning rate was set to 1e-3 for the first stage and 1e-4 for the second
stage, to account for fine tuning, avoiding taking large gradient descent
steps to prevent feature layers values from varying significantly. This is
one of the most important hyperparameters in neural networks: learning
rate controls how much the model’s parameters are updated in response
to the network’s error. Selecting a proper learning rate is of utmost
importance since a value too high could cause the objective function to
diverge while a value too low could make learning too slow and the loss
function could converge to a local optimum. To ensure a more robust
control of the learning network, we set a learning rate scheduler for both
stages, based on validation accuracy behavior, with a patience value of
10 and a reduction factor of 0.1. In this way, when the training reaches a
point in which after 10 epochs no improvement is seen, the learning rate
is reduced to 10% of its original value. This further improves the training,
avoiding overfitting by gradually reducing learning rate when the in-
crease in validation accuracy seems to have come to a stall.

It is important to note that we tested cosine annealing learning rate
scheduler on both SGD with momentum [20] and AdamW optimizers,
but found no significant improvements over the initial learning rate
scheduler. Further testing on these schedulers and optimizers combina-
tion is recommended to properly find evidence (or lack thereof) for im-
provements under the trained dataset. Finally, to avoid training for
excessive epochs, we set a best model checkpoint based on validation
accuracy for the second stage, this way the trained parameters which led
to the highest validation accuracy while training, are the ones used by the
model once the training is over.

The aforementioned training specifications were applied to each of
the six individual models. Finally, after the second stage is completed,
outputs concatenated and all models frozen, the ensemble single output
neuron is trained for 15 epochs, using an AdamWoptimizer, learning rate
of 1e-3 and best model checkpoint. It is important to note that while some
initializations required the model to be trained on more than 15 epochs
to reach convergence, most of the time it was quickly achieved within the
first 10 epochs.

To test this model against an ensemble baseline, we built a voting
classifier based upon the results from the six models. For this, we pro-
vided two voting methods: hard voting, in which final class label is
predicted by a majority rule voting of all six estimators predicted labels;
and soft voting, where scores from all six estimators are averaged and
prevent overfitting
g optimized.
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rounded to the nearest integer to give out the final prediction [11]. In
both methods, a progressive validation of estimators in an ensemble was
produced: models were sorted, based on their validation accuracy from
highest to lowest, and their ensemble’s new accuracy was registered. The
highest validation accuracy ensemble was selected, and performance
metrics were calculated on the holdout test set.

The proposedmodel was trained on an instance with 61 GB RAM, four
Intel Xeon vCPU running at 2.7 GHz and one NVIDIA K80 GPU with 12
GB of memory. Deep learning library PyTorch was used for data pre-
processing and model training on Python 3.6.6.5

4. Experimental results

Initial hyperparameters for models, including construction of fully
connected layer, number of epochs per stage, learning rate, scheduler
configuration and optimization method, were found through controlled
iterations on each model based on reported final performance on the
validation set.

The metrics recorded to evaluate our model’s performance were ac-
curacy, recall, specificity, precision, F1 score and area under the ROC
curve (AUC) [21]. Accuracy and loss plots (see Fig. 3) show interesting
results when combining the two stages in a single plot. Both plots show
the evolution of accuracy and loss on each epoch. These plots are used
while training a neural network to assess the fitting behavior of the
model. For example, a model with a validation accuracy plot which stops
increasing, while the training set’s accuracy continues to increase, can be
evidence of overfitting. This kind of behavior should be avoided by the
use of generalization techniques such as the ones previously described.
As soon as the second stage starts, both training and validation accuracy
show a performance bump of around 10% on average, this can be
explained by the fine tuning of the pretrained feature layers adjusting to
the new layers. However, loss plots show a different behavior. Training
loss shows a decrease of up to 70% when comparing convergence ach-
ieved in the first versus the second stage. Nevertheless, validation loss
shows little evidence of decreasing, remaining almost stationary during
training. This is due to the scarcity in validation data, where scores near
the decision threshold (0.5) are correctly adjusted at the expense of
highly confident correct scores nearing the threshold, farther away from
the true label. Binary cross entropy loss function penalizes higher dif-
ferences between model output and true value more strongly, due to the
log function behavior. For example, for a positive label sample, a change
in model output from 0.45 to 0.55 represents a decrease of 0.09 in loss
and an increase in accuracy of almost 1%, while a change inmodel output
from another positive sample from 0.9 to 0.7 means an increase of 0.10 in
loss with no change in accuracy. Changes in individual samples have a
more profound effect when dealing with small validation sets.

As it can be seen from Fig. 3, the second stage was key to reach the
performance levels achieved. At this point, the pretrained model pa-
rameters are finely adjusted along with the classification block which
was already trained in the first stage. This allows for each of the ensemble
models to shift from the pretrained classes to the new classes, by learning
the features from the latter ones. The effect is finally reflected on the
performance increment obtained.

Table 3 shows the metrics for each of the six models, the ensemble
baseline model and the proposed model. As we can see, although the best
of the six pretrained models, based on accuracy is DenseNet161 deep
convolutional neural network, the ensemble soft-voting baseline method
fails to overcome performance metrics from the best pretrained model.
Moreover, the ensemble hard-voting baseline method yields less encour-
aging results, remaining 0.5% below the soft-voting ensemble. It is
important to bear in mind that this voting scheme averages the scores
5 The approximate inference time on this configuration was of less than 1 s for
a batch of eight images, while a personal computer with a single 7th generation
Intel Core i5 CPU running at 2.3 GHz and 8 GB RAM took 14 s.
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from each model, thus giving an equal weight to each of these. We can
infer that, to make the soft-voting method at least as good as the single
best pretrained model, a weighted average should be taken into account.
This leads us to the proposed model previously described, where besides
applying a weighted average with an offset constant, the final result is
normalized by a sigmoid function.

Since this is a binary classification model, confidence intervals with a
confidence level of 95% by binomial proportion are obtained following
the Wilson method [22], as shown in Table 4. AUC confidence intervals
are determined using the DeLong method [23].

Further experimentation on raw model output, before the classifica-
tion threshold is applied, showed interesting results when setting a
slightly greater range for positive classification. As the raw output is the
product of a logistic regression, it can also be used to assess patients at
risk of being infected, considering patients with a score slightly below the
threshold of 0.5 to be possible COVID-19 positive. Furthermore, setting
the classification threshold to 0.45 yields an accuracy of 87.19%, a pre-
cision of 87.50%, a recall of 85.71%, a specificity of 88.57% and an F1
score of 86.60%, proving that the use of a threshold range (scores from
0.45 to 0.5 being considered COVID-19 risk cases) can improve model
performance, including recall, to increase beyond any previous models.
For the present article we will be considering the standard threshold of
0.5 to avoid any bias by fine-tuning the classification cutoff point with
the test set. Finally, the proposed model’s accuracy overcomes all other
models’, reaching 86.70%. The ROC plot and confusion matrix are shown
in Fig. 4 and Fig. 5.

4.1. Activation heatmap visualization

To better understand each convolutional model individually, we can
identify the regions from CT scan images off of which the model was
based to finally infer the label. Grad-CAM [24,25] is a technique which
produces visual explanations for decisions by taking the values from the
gradients in the model’s final feature layer, for highlighting the impor-
tant regions taken by the model in their prediction.

As can be seen in Fig. 6, models often identify regions from the CT
scan mainly described as hazy, “ground glass” white spots which are the
main indication of the presence of COVID-19 in a patient. Although not in
all cases, a model manages to resort to the correct regions for inference
(as the VGG16 model on Fig. 6) the ensemble method we propose takes
into consideration the decision of other models that, as an alternative,
have been proven to detect correct regions from which to base their
inference. For instance, while DenseNet161 and VGG16 were the best
fitted models, based on accuracy and F1 score, the latter’s last layer is
seen to be poorly activated by the sample presented, contrasting with
other models which, working as an ensemble, provide the advantage of
correctly boosting performance. Indeed, this specialization of some
models to detect better certain CT scan images regions provides a robust
classifier when ensembled into a stacked model: contribution from each
output can be optimized to finally obtain a more accurate prediction by
weighting each model’s output for each case to finally agree on a
prediction.

Nevertheless, activation heatmaps are not only useful for model
interpretation. Refs. [26] demonstrate a useful application for activation
heatmaps in discriminative localization. In their research they show a
CNN activation heatmap effectively localizing specific image regions,
based on the classification classes. This feature can be used by physicians
to not only detect positive COVID-19 cases, but to also infer the affected
region. By having a visual interpretation of the classification results, as
seen in Fig. 6, physicians could avail themselves of this information to
focus treatment in the affected area. Moreover, this could potentially be
used in further investigation of the effects COVID-19 has in the human
body.



Fig. 3. Loss and accuracy plots of pretrained models training. These plots expose the accuracy bump right after the second stage starts at epoch number 30. Although
there seems to be evidence for overfitting behavior in the Inception v3 model (l), the remaining plots show little evidence of it, as the validation accuracy demonstrates
an increasing tendency. Overfitting is further avoided by the use of model checkpoints, which are specifically useful in the Inception v3 model.

Table 3
Models’ performance metrics.

Models Accuracy Precision Recall Specificity F1 Score AUC

VGG16 81.77% 79.05% 84.69% 79.05% 81.77% 90.15%
ResNet50 78.82% 80.22% 74.49% 82.86% 77.25% 87.19%
Wide ResNet50-2 81.77% 79.61% 83.67% 80.00% 81.59% 88.07%
DenseNet161 82.76% 85.39% 77.55% 87.62% 81.28% 89.56%
DenseNet169 80.79% 81.05% 78.57% 82.86% 79.79% 89.44%
Inception v3 80.30% 79.59% 79.59% 80.95% 79.59% 88.80%
Ensemble (Hard voting) 81.77% 82.80% 78.57% 84.76% 80.63% –

Ensemble (Soft voting) 82.27% 83.70% 78.57% 85.71% 81.05% 90.01%
Proposed Model 86.70% 88.17% 83.67% 89.52% 85.86% 90.82%

J.F. Hern�andez Santa Cruz Intelligence-Based Medicine 5 (2021) 100027
5. Discussion

In this study, an ensemble deep learning architecture was used to
design a classifier to diagnose COVID-19 cases following a 2-stage algo-
rithm. Our findings now provide evidence that support the superior re-
sults yielded by the use of an ensemble approach. It can be inferred from
the models’ performance metrics (Table 3) that the proposed ensemble
model outperforms each of the single pre-trained models. Furthermore,
voting ensemble models were developed and showed that there is not
enough evidence that regular hard and soft voting ensembles best the
individual pre-trained models. It is important to note that the main dif-
ference lies in the fact that the proposed model assigns coefficients to
each of the pre-trained models’ outputs in the same way as a generalized
linear regression model, following a binomial link function, does. This
allows the ensemble to assign weights to each pre-trainedmodel based on
their own effectiveness. Despite the fact that we didn’t expect the regular
6

voting ensemble method to fail to outperform the individual models, it
revealed the effect that weighted coefficients applied to each output had.

Most of the studies that motivated the present research demonstrated
similar accuracy levels with different architectures (Table 5). Ref. [27]
proposed a M-Inception model to diagnose COVID-19 from CT scan im-
ages achieving an accuracy of 82.9% dealing with a limited dataset. Ref.
[28] developed a model capable of distinguishing COVID-19 from viral
pneumonia and healthy cases, reaching an accuracy of 86.7%. Ref. [29]
designed a Details Relation Extraction neural network (DRE-net) built on
a ResNet-50 structure which achieved an accuracy of 86%. Additional
approaches that combined clinical information also were found to
reproduce competitive results. Ref. [7] combined CT imaging and clinical
information to reach an accuracy of 83.5%. Furthermore, overall our
method was the one that obtained superior performance in terms of ac-
curacy, compared to other studies in the literature.

Recall metric provides us a way to measure and understand the



Table 4
Confidence intervals for models’ performance metrics with a 95% confidence
level.

Models Accuracy Precision Recall Specificity AUC

VGG16 [75.89,
86.48]

[70.31,
85.74]

[76.27,
90.50]

[70.31,
85.74]

[85.81,
94.49]

ResNet50 [72.69,
83.88]

[70.89,
87.11]

[65.05,
82.08]

[74.52,
88.87]

[82.40,
91.98]

Wide
ResNet50-2

[75.89,
86.48]

[70.83,
86.26]

[75.11,
89.69]

[71.35,
86.53]

[83.00,
93.13]

DenseNet161 [76.97,
87.33]

[76.60,
91.26]

[68.34,
84.68]

[79.96,
92.62]

[85.07,
94.06]

DenseNet169 [74.82,
85.62]

[72.03,
87.67]

[69.45,
85.54]

[74.52,
88.87]

[85.18,
93.69]

Inception v3 [74.28,
85.18]

[70.57,
86.38]

[70.57,
86.38]

[72.40,
87.32]

[84.16,
93.45]

Ensemble
(Hard
Voting)

[75.89,
86.48]

[73.87,
89.12]

[69.45,
85.54]

[76.67,
90.40]

–

Ensemble
(Soft
Voting)

[76.43,
86.91]

[74.83,
89.86]

[69.45,
85.54]

[77.76,
91.15]

[85.69,
94.33]

Proposed
Model

[81.34,
90.70]

[80.05,
93.27]

[75.11,
89.69]

[82.21,
94.05]

[86.61,
95.02]

Fig. 4. Receiver Operating Characteristic curve for the proposed stacked
ensemble model. This plot measures the classification performance at various
decision threshold values by showing the model’s ability at distinguishing both
classes. As the blue curve gets closer to the upper and left-hand boundaries, the
model shows a smaller Type I error. The red line illustrates the case in which the
model is unable to tell one class from the other, being no better than classifying
by chance. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 5. Confusion matrix for the proposed stacked ensemble model. The matrix
describes the detailed test set performance of the classifier by comparing how
each case was predicted against their true labels. From this matrix we can easily
see that there are 94 true negatives, 11 false positives, 16 false negatives and 82
true positives.
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model’s capacity to correctly identify positive COVID-19 patients. This
metric is of much importance given that each false negative can have a
detrimental effect on the patient’s health, rendering him or her as
healthy, while actually being infected. Although the proposed model
achieves a lower recall than the VGG16model, this comes at a bigger cost
for the latter: precision and specificity abruptly fall below 80%. On the
other hand, the proposed model reaches an 89.52% level of specificity,
reducing the occurrences of false positives. Whereas a higher recall is
desired, since the reduction of false negatives is of primary concern to
adequately identify all COVID-19 cases, the proposed model achieves a
considerably greater increase in precision and specificity. We will
exemplify how with absolute values from the test set: the decrease of 1%
in recall and increase of 10.5% in specificity can be understood as 1 less
positive COVID-19 case correctly identified, while 11 more negative
7

COVID-19 cases are correctly classified. This evidenced the importance of
recall-precision trade-off analysis even in cases where false negatives
need to be diminished.

Our findings on the use of a threshold range for classification revealed
an increase in the proposed model’s performance. Reducing the classi-
fication threshold by as little as 0.05 boosted the performance signifi-
cantly, increasing recall to over 85%. This evidences that the use of raw
output scores can be effectively used to adequately prioritize high risk
patients.

One of the main limitations of the present research was the small
dataset available. The results show that despite of this limitation, our
proposed model was capable of achieving an accuracy level over 85% by
the use of techniques such as regularization, learning rate schedulers and
data augmentation agreeing with the existing literature. [31] compares
the difference of using transfer learning with augmented data versus
non-augmented data within the same dataset. The authors found that
data augmentation proved to increase model accuracy in four out of the
five models tested. Although these methods helped the model to avoid
overfitting, one of the pretrained models, Inception v3, showed an
overfitting pattern on its accuracy plot (Fig. 3). However, the model
checkpoint implementation retrieved the parameters before the over-
fitting took place.

Another limitation of this study was the fixed dataset split configu-
ration used. As described in the Dataset section, images gathered from
papers were used for training and original CT scan images donated from
hospitals were used for testing and validating the model. This prevented
us from applying cross-validation to construct confidence intervals for
the performance metrics. Nevertheless, we determined confidence in-
tervals from binomial classification, as shown in Table 4, providing sta-
tistical significance to the metrics obtained.

Lastly, although procedures already exist for proper identification of
brain or lung injuries by CT scan, this is not the case for COVID-19, being
the reason why PCR tests are preferred for such diagnosis. Nevertheless,
in the absence of said tests, diagnosis by CT scan is possible and accurate,
when combined with information from the patient’s medical history.
This assessment was supported by a radiologist, confirming the effec-
tiveness of the proposed model in hospitals suffering from a shortage of
test kits.

Future research should focus on the use of ensemblemethods as a way
to enhance state-of-the-art architectures’ performance. Although several



Fig. 6. Grad-CAMþþ activation regions visualization for the first five pre-
trained models. The areas with higher intensity in the generated heatmap
(second and third columns) are the ones with the highest activation response
from the last convolutional layers on each pre-trained model. This provides a
better human-interpretable explanation of the decisions taken by the classifiers.

Table 5
Comparison of the proposed model with other deep learning algorithms devel-
oped using CT Scan images.

Algorithm Design Dataset Accuracy (%) Reference

M-Inception Positive cases: 195 82.90% [27]
Negative cases: 258

ResNet Positive cases: 219 86.70% [28]
Negative cases: 175
Viral Pneumonia: 224

DRE-Net Positive cases: 777 86.00% [29]
Negative cases: 708

Joint Model Positive cases: 419 83.50% [7]
Negative cases: 486

Ensemble model Positive cases: 349 86.70% Proposed method
Negative cases: 397
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advances in neural networks for COVID-19 diagnosis have been made, an
ensemble method would lead to a boost in performance, which could
become significant. Also, as more data is generated, training should be
performed on a larger number of samples, helping overcome one of the
limitations mentioned in this article, and leading to a more robust clas-
sifier that could be deployed and made publicly available for hospitals
that are lacking PCR tests to effectively provide a COVID-19 diagnosis.
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6. Conclusions

With the novel coronavirus outbreak now a global threat, the timely
identification of positive COVID-19 cases became of main concern,
helping ensure early treatment and proper pandemic control. The use of
transfer learning and ensemble architectures for training artificial neural
networks, as presented in this paper, provided a sound and effective
method for detecting COVID-19 cases based on chest CT scan images.

Although state-of-the-art pretrained models are capable of attaining
high performance, the addition of ensemble methods has proven to boost
models’metrics. The proposed model achieved performance levels above
those reached by radiologists [3,4], and are competitive with current
literature’s artificial intelligence models, ranging from 80% to 90% in
most cases, proving its effectiveness. We trained six pre-trained ImageNet
models in two stages, feeding each classifier with a dataset comprised of
746 CT scan images, 349 being COVID-19 positive and 397 being
COVID-19 negative. The ensemble was finally built by concatenating the
models’ outputs into a final activation neuron. We found that the use of
threshold ranges to assess the risk of a COVID-19 positive case yields a
higher performance without reducing specificity and precision. We also
found important to emphasize the added potential capacity of automa-
tizing CT scan analysis, greatly reducing its lead time and giving out a
probability of COVID-19 presence for the patient. This, enhanced by in-
tegrated applications, could speed up COVID-19 testing, providing results
in a very small timeframe and deriving only scores close to classification
boundary to a specialist.

If we cannot provide timely and proper COVID-19 diagnosis, our ef-
forts to hinder the expansion of the coronavirus could be thwarted. This
is especially relevant in developing countries where shortages of PCR test
kits can disrupt the efforts to combat the pandemic. We encourage re-
searchers in artificial intelligence to further improve on current litera-
ture’s methods, contributing in a joint effort to combat the novel
coronavirus pandemic.
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