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A B S T R A C T   

The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and 
its potential impact on global health. Classified by the World Health Organization (WHO) as 
variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, 
posing significant challenges to existing vaccine strategies. Despite widespread vaccination ef-
forts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving 
herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface 
protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown 
to enhance transmissibility and confer resistance to antibody-mediated neutralization, under-
mining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid 
molecular evolution under selective immune pressure, leading to the emergence of diverse var-
iants with distinct mutation profiles. This review underscores the urgent need for vigilance and 
adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 
mutations and ensure the long-term effectiveness of global immunization campaigns.   

1. Introduction 

RNA viruses, such as coronaviruses, influenza viruses, HCV and HIV, are renowned for their elevated mutation rates, attributed to 
their replication mechanisms and the absence of viral RNA polymerase proofreading activity [1]. Severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), belongs to the category of positive-sense 
single-stranded RNA (+ssRNA) viruses. With a diameter of approximately 120 nm, the CoV genome spans about 30,000 bases (27–32 
kb) [2]. Mutations act as the fundamental units of evolution, enabling the natural selection of advantageous traits, such as increased 
virulence, adaptability, and progression [3]. 

The global response to COVID-19 has prompted extensive investigations into the genetic evolution of the virus and the development 
of vaccines to mitigate its spread. The genetic diversity of coronaviruses is bolstered by their expansive genome, high mutation rate 
driven by viral polymerase infidelity, and frequent recombination events (up to 25 % of the total genome in vivo), rendering them 
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formidable pathogens [3]. 
Central to the infection process of SARS-CoV-2 is its spike (S) protein, crucial for host cell entry. Notably, the S gene, particularly the 

S1 and receptor-binding domain (RBD) coding regions, exhibits the highest nonsynonymous mutation rates across most coronaviruses 
[4–6]. This viral surface protein is pivotal for viral adhesion and cell entry and undergoes rapid molecular evolution as the primary 
target of the host immune system [7,8]. Adaptive mutations within the viral genome have the potential to alter the virus’s patho-
genicity, with even single amino acid changes profoundly impacting immune evasion and challenging vaccine development [9,10]. 
The virus has vigorously spread among humans since the pandemic due to continuous recombination and mutational processes in its 
genome [11,12]. The proliferation of SARS-CoV-2 among human populations during the pandemic is fueled by continuous genome 
recombination and mutational processes. Variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta 
(B.1.617.2), Omicron (B.1.1.529.1), and IHU (B.1.640.2), as well as variants of interest (Lambda and Mu), and those under surveil-
lance, present heightened contagiousness, reduced antibody neutralization, and evasion of detection or therapeutic efficacy [13–18]. 

This review provides an overview of SARS-CoV-2 variant emergence, highlighting specific mutations that enhance transmission. As 
the threat of emerging and re-emerging viruses like SARS-CoV-2 persists, understanding the role of viral and receptor genes and their 
associated mutations remains paramount for prediction and prevention strategies. It underscores the critical importance of current 
SARS-CoV-2 mutations in shaping the future success of traditional vaccine platforms. The ongoing evolution of SARS-CoV-2 mutations 
poses a significant challenge to the efficacy of traditional vaccine platforms, as mutations can diminish vaccine effectiveness and 
potentially compromise immune responses. Understanding the impact of these mutations on vaccine efficacy is essential for devel-
oping strategies to address the evolving landscape of COVID-19 and ensure the continued success of vaccination efforts worldwide. 

Fig. 1. The genomic structure of SARS-CoV-2, highlighting mutations found in various variants. The SARS-CoV-2 genome spans about 30,000 base 
pairs (bp) and includes ORFs (open reading frames) and structural elements, each serving specific functions. Notably, the S protein plays a crucial 
role in attaching to and entering host cells. It is noteworthy that SARS-CoV-2 variants exhibit numerous mutations resulting in changes to amino 
acids, particularly in the receptor binding domain and the S1/S2 subunit of the S protein. Research has shown that these alterations enhance the 
virus’s transmissibility. 
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1.1. Spike glycoprotein 

The S protein of SARS-CoV-2 comprises an N-terminal domain (NTD) S1 and a C-terminal membrane-proximal S2 subunit, with the 
S1 subunit further divided into S1A, S1B, S1C, and S1D domains. Specifically, the S1A domain recognizes carbohydrates like sialic 
acid, crucial for viral attachment to host cell surfaces and interaction with the human angiotensin-converting enzyme 2 (ACE2) re-
ceptor [19–21]. Additionally, the furin cleavage site, harboring the PRRA sequence motif between the S1 and S2 subunits, along with 
the S2 subunit’s second proteolytic cleavage site, S20, upstream of the fusion peptide, play pivotal roles in viral entry into host cells 
[22,23]. Notably, these cleavage sites correlate with the extreme mutation density observed in the S-protein region [24]. Furthermore, 
the NTD represents another mutation-prone region within the S protein. Conversely, nonstructural proteins (NSPs), including those 
encoded by ORF1a (NSP1-11), ORF1b (NSP12-16), ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10, typically function as enzymes or 
proteins involved in virus replication, methylation, and initiating host immune responses [24–26]. Notably, mutant hotspots within 
NSP1 ORF1a/ORF1ab and ORF8 have been associated with alterations in virulence and infectivity [27–30]. Particularly, NSP1 is 
critical for interfering with type I interferon induction in the host and promoting virus replication [31]. Fig. 1 depicts the genome 
structure of SARS-CoV2, including open reading frames and highlights the locations of mutations across the genome. 

1.2. Tropism 

The tropism of SARS-CoV-2 for different cell types is influenced by the expression levels of key host proteins involved in virus 
binding and entry [32]. Apart from ACE2, other receptors such as CD209L/L-SIGN, CD209/DC-SIGN, CD209L, CLEC4M, CLEC4G, BSG, 
and ASK (ACE2/ASGR1/KREMEN1) have been implicated in virus entry and fusion, alongside various proteases including furin, 
transmembrane serine protease 2 (TMPRSS2), cathepsin L (CTSL), cathepsin B (CTSB), elastase, and trypsin [33–35]. Notably, while 
CTSL is uniformly expressed in all strain assessments, the levels of ACE2 and TMPRSS2 exhibit variation, suggesting a potential 
correlation between their distribution in the lungs or trachea and SARS-CoV-2 tropism [35–37]. Some COVID-19-related deaths have 
been attributed to inflammation and organ damage caused by the immune system rather than direct pathogen-induced effects [38]. 
Additionally, studies have indicated that immunosuppression with corticosteroids may prevent fatalities from severe SARS-CoV-2 
infection [39,40]. 

2. Variants of concern (VOCs) 

2.1. Alpha VOC 

The Alpha variant (B.1.1.7 lineage) harbors 17 mutations in the virus genome, with nine mutations, including N501Y, in the S 
protein, notably enhancing viral attachment to host cells via increased affinity for ACE2 receptors [41,42]. Emerging in the United 
Kingdom at the end of December 2020, the Alpha variant exhibits increased transmissibility and severity compared to ancestral 
variants, quickly becoming the dominant strain [43–45]. Moreover, a new variant combining B.1.1.7 with the E484K mutation has 
significantly enhanced serum antibody levels, potentially affecting immunological responses and the longevity of neutralizing anti-
body responses [46]. Epidemiological studies have indicated higher mortality rates and increased ICU admissions among individuals 
infected with the Alpha variant, contributing to its rapid spread and heightened disease severity [47–49]. 

2.2. Beta VOC 

First identified in South Africa in October 2020, the Beta variant (B.1.351 lineage) contains ten mutations in the S protein, 
including K417 N, E484K, and N501Y, which augment ACE2 receptor binding affinity and enhance transmissibility [42,45,50]. 
Notably, the Beta variant poses challenges for existing therapies and vaccines, showing resistance to monoclonal antibody therapy, 
convalescent sera, and revaccinated sera, leading to reduced neutralization [51]. Evidence suggests that Alpha and Beta variants 
increase transmissibility, particularly among younger age groups and children [52]. 

2.3. Gamma VOC 

Originating in Brazil in early January 2021, the Gamma variant (B.1.1.28 lineage) shares 12 mutations in the S protein, including 
N501Y, K417 N, and E484K, associated with enhanced infectivity and severity compared to earlier strains [47,53,54]. Notably, the 
Gamma variant exhibits increased virulence and enhanced neutralization resistance against monoclonal antibody therapies, 
post-vaccination sera, and convalescent sera [51]. 

2.4. Delta VOC 

First reported in India in December 2020, the Delta variant (B.1.617.2 lineage) has seven mutations in the S protein, including 
L452R and T478, which enhance ACE2 receptor binding affinity and contribute to increased transmissibility and disease severity 
compared to previous variants [55–58]. The Delta variant represents a significant concern due to its rapid spread and increased 
mortality rates among infected individuals. 
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2.5. Epsilon variant of concern (VOC) 

Previously classified as a variant of interest (VOI), the Epsilon variant, also known as the B.1.427 lineage, emerged in California in 
January 2021 and has since been designated as a VOC. This variant harbor two mutations in the spike (S) protein, namely L452R and 
D614G. Moreover, the B.1.429 lineage, a subtype of the Epsilon variant, bears four mutations in the S protein (S131, W152C, L452R, 
and D614G), with L452R being situated in the receptor-binding domain (RBD) in both variants [59–61]. The B.1.429 lineage is 
presumed to exhibit higher transmissibility compared to previous circulating variants, with an estimated 20 % increase in viral 
transmissibility, significantly impacting neutralization [62,63]. Epsilon variants have shown increased transmissibility by up to 24 %, 

Table 1 
Some of the important spike Mutations of SARS-CoV-2 variants.  

Type of VOCs Main circulating 
region 

Emerging 
time 

Key mutations Influences of mutations References 

Alpha (B.1.1.7) UK December 
2020 

N501Y Increase binding affinity and transmissibility [41,42] 
E484K Increase binding affinity and transmissibility Increase 

capacity of immune escape 
69-70del  
D614G Reinfection 

Increase binding affinity and transmissibility 
Beta (B.1.351) South Africa October 2020 K417 N Increase binding affinity and transmissibility Increase 

capacity of immune escape 
[42,45, 
50] 

E484K Increase binding affinity and transmissibility Increase 
capacity of immune escape 

N501Y Increase binding affinity and transmissibility 
D614G Reinfection 

Increase binding affinity and transmissibility 
Gamma 

(B.1.1.28) 
Brazil January 2021 K417 N Increase binding affinity and transmissibility Increase 

capacity of immune escape 
[47,53, 
54] 

E484K Increase binding affinity and transmissibility Increase 
capacity of immune escape 

N501Y Increase binding affinity and transmissibility 
H655Y Increase the capacity of immune escape 

Delta (B.1.617.2) India December 
2020 

L452R Increase binding affinity and transmissibility [56–58] 
T478K Increase binding affinity and transmissibility 
K417 N Increase the capacity of immune escape. 

Epsilon (B.1.427) 
Epsilon 
(B.1.429) 

USA January 2021 L452R Increase binding affinity and transmissibility 
Immune escape capacity, and SARS-CoV2 infectivity 

[59–61] 

D614G Increased binding affinity and transmissibility Increased 
SARS-CoV2 infectivity 

S131 Increase the infectivity of the variant 
W152C Increase binding affinity and transmissibility 

Increase capacity of immune escape 
L452R Increase binding affinity and transmissibility, immune 

escape capacity, and SARS-CoV2 infectivity. 
D614G Reinfection 

Increase binding affinity and transmissibility 
Kappa (B.1.617.1) India December 

2020 
L452R Increased capacity of immune escape 

Increased SARS-CoV2 infectivity 
[68,69] 

E484Q Increased capacity of immune escape 
Increased SARS-CoV2 infectivity 

Omicron 
(B.1.1.529.1) 

South Africa November 
2021 

N501Y Increase binding affinity and transmissibility [73–75] 
D614G Reinfection 

Increase binding affinity and transmissibility 
K417 N Increase the capacity of immune escape 

Increase binding affinity and transmissibility 
S477 N Increase binding affinity and transmissibility 
G339D Increase the capacity of immune escape 
G496S Increase the capacity of immune escape 
N440K Increase the capacity of immune escape 
E484A Increase the capacity of immune escape and infectivity 

Increase binding affinity and transmissibility 
Q493 R/K Increase the capacity of immune escape 

Increase binding affinity and transmissibility 
Y505H Increase the capacity of immune escape and infectivity 

IHU (B.1.640.2) France November 
2021 

N501Y Increase binding affinity and transmissibility [81,82, 
83] E484K Increase binding affinity and transmissibility 

Increase capacity of immune escape 
D1139H Increase binding affinity and transmissibility 
D614G combined 
with T859 N 

Increase binding affinity and transmissibility  
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attributed to elevated viral shedding, largely associated with the L452R mutation, which stabilizes the interaction with the ACE2 
receptor [64–66]. 

2.6. Kappa variant of concern (VOC) 

The Kappa variant, initially identified in India in December 2020 and initially categorized as a variant of interest (VOI), became a 
VOC by the end of March 2021. By that time, the Kappa variant had accounted for over half of the sequences recorded from India [67]. 
Similar to the Epsilon variant, Kappa bears eight mutations in the S protein (T951, G142D, E154K, L452R, E484Q, D614G, P681R, and 
Q1071H), with the notable mutations L452R and E484Q located in the RBD [68,69]. 

Fig. 2. The phylodynamics of the pandemic coronavirus worldwide: (A) A time-stamped maximum likelihood phylogeny depicting a representative 
subset of 4255 complete genomes of SARS-CoV-2 sampled from December 2019 to March 2024 from the GISAID database. Variants of concern 
(VOCs) are highlighted using various color schemes. This visualization was created by Nextstrain using data sourced from GISAID. (B) The dis-
tribution frequencies of VOCs across the globe are indicated using distinct color schemes. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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2.7. Omicron variant of concern (VOC) 

The Omicron variant, also known as lineage B.1.1.529.1 (BA.1), was designated as the fifth VOC by the World Health Organization 
(WHO) in November 2021, first identified in South Africa and subsequently replaced by the BA.2 sub-lineage in Denmark [70,71]. This 
variant carries numerous mutations, some of which are of particular concern. Cases of the B.1.1.529 lineage increased across all re-
gions of South Africa, with evidence suggesting an increased risk of reinfection associated with this variant [72]. Omicron harbors 
approximately 34 mutations in the S protein, including A67V, Δ69–70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, 
S371L, S373P, S375F, K417 N, N440K, G446S, S477 N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, 
H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F [73–75]. Notably, fifteen of these mutations (G339D, 
S371L, S373P, S375F, K417 N, N440K, G446S, S477 N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H) are located in the 
RBD [73–75]. The rapid dissemination and high replication rate of the Omicron variant, estimated to be approximately 70 times faster 
than the Delta variant and previous strains, can be attributed to the synergistic effects of multiple mutations, enhancing its binding 
affinity and ability to evade neutralizing antibodies [76–80]. 

2.8. IHU variant of concern (VOC) 

The IHU variant, lineage B.1.640.2, named after the IHU Méditerranée Infection Institute, was first detected in France in November 
2021. This variant, likely of Cameroonian origin, was reported to carry 46 mutations and 37 deletions. Among these are 14 amino acid 
substitutions, including N501Y, E484K, F490S, D1139H, P681H, and D614G, combined with T859 N, along with nine deletions located 
in the S protein, rendering it more resistant to vaccines [81,82,83]. Table 1 illustrates the Variant of Concerns along with their key 
mutations. 

2.9. Temporal divergence of SARS-CoV-2 variants 

Understanding the temporal evolution of SARS-CoV-2 is paramount for deciphering its genetic landscape and the emergence of new 
variants over time. The period spanning from December 2019 to March 2024 has been marked by significant shifts in the genomic 
composition of the virus, reflecting its dynamic nature and adaptive strategies. Fig. 2 provides a visual representation of the phylo-
dynamics of SARS-CoV-2 variants, offering insights into the chronological divergence and global dissemination of different viral 
lineages. In Fig. 2A, a time-stamped maximum likelihood phylogeny presents a subset of 4255 complete genomes of SARS-CoV-2 
obtained from the GISAID database. This phylogeny delineates the evolutionary relationships among various viral strains sampled 
across the specified timeframe. Variants of concern (VOCs) are highlighted using distinct color schemes, aiding in the identification 
and tracking of genetically significant viral lineages. The visualization, created by Nextstrain using data sourced from GISAID, serves as 
a valuable tool for studying the evolutionary dynamics and genetic diversity of SARS-CoV-2. Additionally, Fig. 2B illustrates the 
distribution frequencies of VOCs across different regions worldwide. By mapping the prevalence of VOCs using distinct color schemes, 
this visualization offers insights into the global spread and geographic distribution of different SARS-CoV-2 variants. Analyzing the 
temporal and spatial distribution patterns of VOCs provides crucial information for understanding viral transmission dynamics and 
informing public health interventions. 

The temporal divergence of SARS-CoV-2 variants, as depicted in Fig. 2, underscores the ongoing evolution and adaptation of the 
virus in response to selective pressures, including host immunity and environmental factors. This evolutionary perspective is essential 
for anticipating future trends in viral evolution, guiding surveillance efforts, and informing the development of effective vaccination 
strategies tailored to the evolving landscape of SARS-CoV-2 variants. 

3. Spike protein mutations: implications for SARS-CoV-2 transmissibility and immune evasion 

Approximately one-third of the Spike (S) protein sequences exhibit susceptibility to mutations. Among the various mutations 
observed in the Receptor Binding Domain (RBD) of Variant of Concerns (VOCs), notable ones include N501Y, K417 N, K417T, E484K, 
L452R, T477K, E484Q, S477 N, Q498R, and E484A [84,85]. Notably, mutations within the Angiotensin-Converting Enzyme 2 (ACE2) 
receptor (S19P, K26R) and substantial RBD mutations (N501Y, E484K, S477 N) have been found to enhance viral transmissibility and 
binding affinity [86,87]. It is noteworthy that the interaction between the S-RBD and ACE2 is nuanced, influenced by factors such as 
temperature and conformational states of the Spike protein [88]. The RBD typically binds to ACE2 in the “up” conformation, rather 
than the “down” perfusion trimer. Moreover, all reported VOCs contain mutations in both the RBD and N-terminal domain (NTD), with 
the N501Y mutation being particularly prevalent in Alpha, Beta, Gamma, and Omicron variants, augmenting the affinity of the S 
protein for ACE2 and thereby facilitating viral entry into host cells. Studies have indicated that individual mutations, such as N501Y, 
significantly enhance the affinity between the RBD and ACE2, substantially increasing transmissibility [89]. Notably, variants like Beta 
and Gamma, despite carrying mutations like N417/K848/Y501-RBD, exhibit lower binding affinity to ACE2 compared to variants with 
N501Y and E484K mutations [90,91]. 

The B.1.351 variant, in addition to the N501Y mutation, carries K417 N and E484K mutations, potentially contributing to increased 
transmissibility [84,92]. Similarly, the K417 N mutation, present in the Delta Plus sublineage and the Omicron variant (BA.1), un-
derscores the potential for cross-neutralization by antibodies targeting this site [93,94]. The location of E484 within the RBD’s re-
ceptor binding motif (RBM) is crucial, as it interacts with the K31 domain on ACE2, influencing binding affinity [95,96]. Furthermore, 
the E484K mutation confers resistance to antibody-mediated neutralization, posing challenges for immunity [84,97,98]. Notably, 
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variant P.1 carries mutations like K417T, E484K, and N501Y, impacting antibody-mediated neutralization and transduction efficiency 
akin to the B.1.351 variant [99,100]. Variants like B.1.617.2 and B.1.427/B.1.429 harbor mutations like L452R, which affect 
neutralization and infectivity [101–103]. Of particular interest is the B.1.617.1 lineage, characterized by the “double mutant” E484Q 
and L452R mutations, conferring immune evasion capabilities [104–106]. The Omicron variant, with its numerous deletions and 
mutations, exhibits enhanced transmissibility and antibody escape [107–109]. 

Mutations such as S477 N and E484K further enhance binding affinity and immune evasion, thereby affecting the virus’s infectivity 
[86,110]. Notably, the rare mutation Q498R, though not currently prevalent, has been observed to increase ACE2 binding, potentially 
impacting viral transmissibility [87,111,112]. Moreover, mutations like N460K, G339D, and G446S, along with deletions and mu-
tations in Omicron, contribute to resistance against monoclonal antibodies, further complicating therapeutic strategies [113,114]. The 
D614G substitution, pervasive across VOCs, is associated with increased infectivity, likely due to its effect on furin cleavage and S 
protein stability [42,115–117]. Additionally, mutations like S477 N and P681R, found in variants like Delta and Omicron, influence 
viral replication and entry into host cells [118,119]. 

These mutations underscore the dynamic nature of SARS-CoV-2 evolution, with implications for transmission dynamics, immune 
evasion, and therapeutic strategies. Understanding the interplay between Spike protein mutations and viral phenotype is crucial for 
devising effective public health interventions. 

4. Host cell receptors in SARS-CoV-2 infection: implications for host susceptibility and viral entry 

Variations in the Angiotensin-Converting Enzyme 2 (ACE2) receptor have emerged as potential factors influencing virus-host in-
teractions, thereby modulating host susceptibility and the severity of COVID-19 [120,121]. Notable ACE2 variants such as S19P, I21V, 
E23K, K26R, T27A, N64K, T92I, Q102P, and H378R have been associated with increased susceptibility to SARS-CoV-2, while variants 
like K31R, N33I, H34R, E35K, E37K, D38V, N33I, Y50F, N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355 N, Q388L, and D509Y 
may confer protective effects by reducing binding to the Spike (S) protein [122]. Biochemical analyses have confirmed altered affinity 
for the S protein, with variants like K31R and E37K exhibiting reduced binding, while variants such as K26R and T92I demonstrate 
increased affinity compared to the wild-type ACE2 [122,123]. Additionally, mutations such as S19W, T27W, and N330Y have been 
found to enhance SARS-CoV-2 S-RBD binding [122,123]. However, certain ACE2 mutations, including Y180, L456, R460, P500, A501, 
S502, L503, F504, H505, N506, S507, Y207, E208, V209, N210, G211, V212, Y215, D216, Y217, P565, T567, H373, H374, E375, 
M376, G377, H378, I379, A380, Y381, F315, H401, V404, G405, and M408, have been identified as highly destabilizing ACE2-S 
interactions, while others like 98, A99, Q102, N103, and G104 correlate with stabilizing ACE2-S complex formation [124]. 

Moreover, the transmembrane glycoprotein CD147 has emerged as another potential receptor for SARS-CoV-2, particularly in cells 
with low expression levels of ACE2, providing an alternate mechanism for viral entry [124,125]. Furthermore, interactions with novel 
SARS-CoV-2 S binding proteins, including NID1, CNTN1, and APOA4, have been identified, with APOA4 exhibiting comparable af-
finity to ACE2 [126,127]. Additionally, various receptors and proteases, such as ASK (ACE2/ASGR1/KREMEN1), CD209/CD-SIGN, 
CD209L/L-SIGN, CLEC4G, BSG, and proteases like furin, TMPRSS2, GTSL, CTSB, elastase, and trypsin, have been implicated as 
important factors in S-host cell binding [127–129]. 

4.1. Impact of SARS-CoV-2 variants on clinical presentation 

The clinical spectrum of SARS-CoV-2 infection ranges from asymptomatic cases to severe illnesses affecting multiple organ systems, 
including the nervous, digestive, cardiovascular, and respiratory systems [130]. Host factors, including immune status due to 
vaccination or prior infection, play a significant role in determining disease severity, alongside viral mutations that give rise to distinct 
strains [129,131,132]. Variants with specific genomic features may exhibit varying degrees of virulence and tissue tropism. For 
instance, strains with a preference for alveolar replication may lead to pneumonia and acute respiratory distress syndrome, while those 
favoring replication in the respiratory mucosa, such as Omicron, may manifest with nasal congestion, cough, and sore throat [133, 
134]. The Gamma variant has been associated with symptoms like anosmia and dysgeusia, while the Delta variant, characterized by 
higher viral loads, may cause changes in olfactory discrimination and affect the gastrointestinal system, resulting in symptoms like 
nausea, vomiting, and diarrhea [135–137]. 

Studies have shown that the Delta variant, in particular, exhibits increased virulence compared to the original Wuhan strain and 
even the Alpha variant [138,139]. Animal studies suggest that Delta mutations promote cell-to-cell fusion and syncytia formation, 
contributing to increased pathogenicity [140]. The clinical manifestations and severity of disease can also be influenced by mutations 
affecting interferon production and immune evasion mechanisms [141]. In contrast, the Omicron variant tends to cause milder 
symptoms compared to Alpha and Delta variants, with a lower likelihood of severe illness and death [142,143]. However, the Delta 
variant remains associated with more severe respiratory infections and a higher demand for specialized hospital care [142,143]. 

In summary, the evolving landscape of SARS-CoV-2 variants underscores the dynamic interplay between viral genetics, host factors, 
and clinical outcomes, highlighting the importance of continued surveillance and adaptive public health strategies. 

4.2. Impact of mutations in variants of concern on COVID-19 vaccine effectiveness 

The significance of the S protein lies in its role in membrane fusion and binding to ACE2, which has led to its recognition as a crucial 
target for vaccine design [144]. The success in vaccine development against SARS-CoV-2 has been remarkable, with various vaccine 
platforms deployed to combat the pandemic. These include mRNA-based vaccines, inactivated whole virus vaccines, vector vaccines, 
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subunit vaccines, virus-like particles, and live attenuated vaccines. To achieve herd immunity and curb the spread of COVID-19, it is 
imperative to vaccinate adolescents and children, who contribute significantly to virus transmission. Vaccination efforts for this age 
group have shown promising results, with both Pfizer and Moderna vaccines demonstrating high efficacy and safety profiles [145, 
146]. Unvaccinated individuals face a higher risk of infection and severe outcomes from COVID-19 compared to those who are fully 
vaccinated. However, despite the mass vaccination campaigns, the emergence of SARS-CoV-2 variants poses challenges to vaccine 
efficacy, as seen with the N439K spike mutation [147]. Meta-analysis studies have indicated that full vaccination, especially with 
mRNA-based vaccines, maintains considerable efficacy against Alpha, Beta/Gamma, and Delta variants [146]. Furthermore, sera from 
individuals vaccinated with certain vaccines, such as the Sputnik V vaccine, have demonstrated robust neutralization activity against 
various VOCs [148]. Initially, widely used COVID-19 vaccines were developed based on the spike antigen of early virus strains, pri-
marily the Wuhan-Hu-1 reference sequence. Despite some minor changes observed in the Alpha variant, laboratory experiments 
showed moderate evasion from vaccine-induced antibodies for variants like Beta, Gamma, and Delta. The continuous evolution of 
SARS-CoV-2 underscores the need for ongoing research to develop more effective vaccination strategies against future variants. This 
includes exploring the possibility of annual updates to COVID-19 vaccines, similar to influenza vaccines, and the development of 
universal vaccines capable of providing protection against a broad range of variants. Understanding the evolutionary trends of the 
virus is crucial in devising strategies to combat the potential emergence of more infectious and lethal strains [149–154]. The emer-
gence of the Omicron variant, comprising various sub-lineages like BA.1, BA.2, BA.4, and BA.5, has presented a significant challenge 
due to its ability to infect vaccinated and previously infected individuals. Omicron variants exhibit extensive mutations in the spike 
receptor-binding domain (RBD) and the amino-terminal domain (NTD), resulting in poor neutralization by first-generation vaccines 
and pre-Omicron antibodies. Consequently, booster doses are crucial to maintain vaccine effectiveness against Omicron, although the 
duration of protection decreases over time. This rapid antigenic shift has prompted the development of second-generation vaccines 
specifically targeting Omicron variants or adopting universal vaccine approaches. Additionally, the incremental acquisition of mu-
tations during persistent infections contributes to antigenic drift, further complicating efforts to combat SARS-CoV-2 evolution 
[155–167]. 

In a phase 2 trial study, Gorilla adenovirus-based (GRAd) vaccines induced strong VOC-cross-reactive T-cell responses, highlighting 
promising aspects of cellular immunity [168]. Among vaccine platforms, mRNA-based vaccines like BNT162b2 (Pfizer BioNTech 
COVID-19 vaccine) and mRNA-1273 (Moderna) have shown better resilience to genetic alterations compared to other types of vaccines 
[169,170]. However, some mutations, such as D614G and P681R, have demonstrated moderate resistance to certain monoclonal 
antibodies targeting the RBD region, posing challenges for vaccine and monoclonal antibody-based therapies [171,172]. Additionally, 
variants carrying mutations like E484K have shown enhanced resistance to vaccine-elicited antibodies and monoclonal antibodies, 
thereby threatening the efficacy of specific vaccines [173,174]. 

The emergence of variants like B.1.617, carrying mutation E484Q, has shown enhanced entry and pathogenesis, along with 
resistance to neutralization by antibodies used in COVID-19 treatment and plasma from vaccinated individuals, indicating enhanced 
evasion of humoral immunity induced by both infection and vaccination [175]. Furthermore, multiple mutations observed in the spike 
protein of VOCs have been associated with high infectivity and resistance to pre-existing antibodies, convalescent plasma, or 
vaccine-induced immunity. Studies have shown strong resistance to neutralization by sera from individuals vaccinated with certain 
vaccines, such as AstraZeneca, against variants like B.1.1.7 and B.1.351 [176]. Additionally, the B.1.351 variant has moderately 
affected the neutralization ability of sera from individuals vaccinated with inactivated BBIBP-CorV and ZF2001 RBD recombinant 
vaccines [177]. 

5. Impact of vaccine escape mutations on traditional vaccine efficacy and optimal vaccine platforms for resistance 

The emergence of mutations that confer resistance to traditional COVID-19 vaccines poses significant challenges to global vacci-
nation efforts [178,179]. Mutations like E484K and P681R have demonstrated enhanced resistance to vaccine-induced immunity, 
jeopardizing the efficacy of vaccines such as Pfizer-BioNTech BNT162b2 and Novavax [178–181]. The impact of these mutations on 
vaccine efficacy has garnered significant attention as the virus continues to evolve [178,179]. Recent data suggest that mRNA-based 
vaccines, such as Pfizer-BioNTech and Moderna, have demonstrated robust efficacy against various variants, including Alpha, Beta, 
Gamma, and Delta [182,183]. These vaccines have shown better resilience to genetic alterations and have maintained high levels of 
neutralizing antibodies against diverse Variants of Concern (VOCs). Moreover, mRNA vaccines have proven to be adaptable, with the 
potential for rapid modification to target specific mutations, making them promising candidates for addressing emerging variants 
[182–185]. 

Adenoviral vector vaccines, such as Johnson & Johnson’s Janssen vaccine and the AstraZeneca vaccine, have also shown efficacy 
against certain variants [186,187]. However, concerns have been raised about their effectiveness against variants carrying mutations 
like E484K, which confer resistance to vaccine-induced immunity [174–176]. Nonetheless, adenoviral vector vaccines offer advan-
tages such as ease of storage and distribution, making them valuable tools for global vaccination campaigns, especially in 
resource-limited settings [186–188]. Whole inactivated vaccines, such as Sinovac’s CoronaVac and Sinopharm’s BBIBP-CorV, have 
demonstrated efficacy against specific variants but may exhibit reduced effectiveness against others. Studies have shown varying levels 
of neutralizing antibody titers against VOCs, highlighting the need for ongoing monitoring and potential booster doses to maintain 
immunity [189–191]. Recombinant protein vaccines, such as Novavax’s NVX-CoV2373, have shown promising results in clinical trials, 
with efficacy against certain variants comparable to mRNA vaccines. These vaccines utilize protein subunits of the virus to stimulate an 
immune response, offering potential advantages in terms of safety and scalability [192,193]. 

Regarding mutations that could potentially hamper the effectiveness of current vaccines, several key variants have been identified. 
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Mutations in the spike protein, such as D614G, P681R, and E484K, have demonstrated resistance to certain monoclonal antibodies and 
vaccine-induced immunity, posing challenges for vaccination efforts. Variants like B.1.617, carrying mutation E484Q, have shown 
enhanced entry and pathogenesis, along with resistance to neutralization by antibodies used in COVID-19 treatment and plasma from 
vaccinated individuals [194–198]. 

6. Conclusion 

In conclusion, the ongoing evolution of SARS-CoV-2 variants presents a formidable challenge to global health and vaccination 
efforts. The emergence of variants of concern (VOCs) with heightened transmissibility and immune evasion capabilities underscores 
the urgent need for vigilance and adaptation in vaccine development strategies. The spike protein mutations, particularly within the 
receptor-binding domain (RBD), play a critical role in enhancing viral transmissibility and immune evasion. Variants like Delta, Beta, 
Gamma, and Omicron exhibit extensive mutations in the spike protein, rendering them poorly neutralized by first-generation vaccines 
and pre-existing antibodies. This necessitates the deployment of booster doses and the development of second-generation vaccines 
targeting specific variants or adopting universal vaccine approaches. While mRNA vaccines have demonstrated robust efficacy against 
various VOCs, concerns remain regarding the effectiveness of other vaccine platforms, particularly against mutations like E484K and 
P681R. Adenoviral vector vaccines, whole inactivated vaccines, and recombinant protein vaccines have shown varying levels of ef-
ficacy against specific variants, highlighting the importance of ongoing monitoring and potential adaptation of vaccination strategies. 
In terms of vulnerability to illness based on vaccine type, populations in countries where specific vaccines are predominant may face 
different levels of risk. For example, populations vaccinated primarily with adenoviral vector vaccines may have slightly reduced 
protection against certain variants compared to those vaccinated with mRNA vaccines. However, the overall impact may vary 
depending on factors such as vaccine coverage, population demographics, and public health measures. Furthermore, the impact of 
mutations on vaccine effectiveness underscores the dynamic nature of the virus and the need for continuous research and development 
to stay ahead of its evolution. Understanding the interplay between viral genetics, host factors, and clinical outcomes is crucial for 
devising effective public health interventions and ensuring the long-term success of vaccination campaigns worldwide. As we navigate 
the evolving landscape of SARS-CoV-2 mutations, collaborative efforts between researchers, public health officials, and vaccine 
manufacturers are essential to combat the pandemic and protect global health. 
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[49] L. Martínez-García, M.A. Espinel, M. Abreu, J.M. González-Alba, D. Gijón, A. McGee, et al., Emergence and spread of B.1.1.7 lineage in primary care and 

clinical impact in the morbi-mortality among hospitalized patients in Madrid, Spain, Microorganisms 9 (2021), https://doi.org/10.3390/ 
microorganisms9071517. 

[50] S.R. Khetran, R. Mustafa, Mutations of SARS-CoV-2 structural proteins in the Alpha, Beta, Gamma, and delta variants: bioinformatics analysis, JMIR 
Bioinforma Biotechnol 4 (2023) e43906, https://doi.org/10.2196/43906. 

N. Faraji et al.                                                                                                                                                                                                          

https://doi.org/10.3389/fmicb.2020.02112
https://doi.org/10.1016/j.bbrc.2020.10.102
https://doi.org/10.1016/j.cell.2020.06.043
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref12
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref12
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref14
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref15
https://doi.org/10.1590/1678-4324-2023220261
https://doi.org/10.1128/cmr.00014-22
https://doi.org/10.3390/biomedicines9101303
https://doi.org/10.1007/s13337-021-00747-7
https://doi.org/10.1016/j.bjid.2021.101606
https://doi.org/10.3390/ijms21124549
https://doi.org/10.1128/jvi.00474-22
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref23
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref23
https://doi.org/10.1016/j.meegid.2021.104760
https://doi.org/10.1016/j.meegid.2021.104760
https://doi.org/10.1111/1348-0421.12945
http://refhub.elsevier.com/S2405-8440(24)06239-X/sref26
https://doi.org/10.1016/j.mgene.2021.100873
https://doi.org/10.1016/j.abb.2022.109124
https://doi.org/10.1016/j.tim.2020.04.001
https://doi.org/10.1016/j.pbiomolbio.2020.10.006
https://doi.org/10.1016/j.pbiomolbio.2020.10.006
https://doi.org/10.3390/v13040589
https://doi.org/10.1371/JOURNAL.PPAT.1009225
https://doi.org/10.3390/cells9071652
https://doi.org/10.3390/biology10010001
https://doi.org/10.1007/s00284-022-02807-7
https://doi.org/10.7554/eLife.61390
https://doi.org/10.1016/j.celrep.2021.109364
https://doi.org/10.1016/j.micpath.2022.105704
https://doi.org/10.1016/j.chest.2020.10.054
https://doi.org/10.1080/14787210.2021.1933437
https://doi.org/10.1038/s41467-020-15562-9
https://doi.org/10.1007/s00253-021-11676-2
https://doi.org/10.1016/j.cell.2020.03.045
https://doi.org/10.1016/j.celrep.2020.108234
https://doi.org/10.1016/j.celrep.2020.108234
https://doi.org/10.1002/prot.26042
https://doi.org/10.1016/j.chom.2021.01.015
https://doi.org/10.1136/bmj.n579
https://doi.org/10.1038/s41586-021-03426-1
https://doi.org/10.3390/microorganisms9071517
https://doi.org/10.3390/microorganisms9071517
https://doi.org/10.2196/43906


Heliyon 10 (2024) e30208

11

[51] R.P. Walensky, H.T. Walke, A.S. Fauci, SARS-CoV-2 variants of concern in the United States—challenges and opportunities, JAMA 325 (2021) 1037–1038, 
https://doi.org/10.1001/jama.2021.2294. 

[52] E. Volz, S. Mishra, M. Chand, J.C. Barrett, R. Johnson, L. Geidelberg, et al., Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature 593 
(2021) 266–269, https://doi.org/10.1038/s41586-021-03470-x. 

[53] D. Tian, Y. Sun, J. Zhou, Q. Ye, The global epidemic of SARS-CoV-2 variants and their mutational immune escape, J. Med. Virol. 94 (2022) 847–857, https:// 
doi.org/10.1002/jmv.27376. 

[54] P. Wang, M.S. Nair, L. Liu, S. Iketani, Y. Luo, Y. Guo, M. Wang, J. Yu, B. Zhang, P.D. Kwong, B.S. Graham, Antibody resistance of SARS-CoV-2 variants B. 1.351 
and B. 1.1. 7, Nature 593 (7857) (2021 May) 130–135. 

[55] M. Dhawan, A. Sharma, Thakur N. Priyanka, T.K. Rajkhowa, O.P. Choudhary, Delta variant (B.1.617.2) of SARS-CoV-2: mutations, impact, challenges and 
possible solutions, Hum. Vaccines Immunother. 18 (2022) 2068883, https://doi.org/10.1080/21645515.2022.2068883. 

[56] X. He, C. He, W. Hong, K. Zhang, X. Wei, The challenges of COVID-19 Delta variant: prevention and vaccine development, MedComm 2 (2021) 846–854, 
https://doi.org/10.1002/mco2.95. 

[57] A.S. de Souza, V.M. de Freitas Amorim, G.D.A. Guardia, F.F. Dos Santos, H. Ulrich, P.A.F. Galante, et al., Severe acute respiratory syndrome coronavirus 2 
variants of concern: a perspective for emerging more transmissible and vaccine-resistant strains, Viruses 14 (2022), https://doi.org/10.3390/v14040827. 
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