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Increasing the amount of physical activity (PA) in older adults that have shifted to a 
sedentary lifestyle is a determining factor in decreasing health and social costs. It is, 
therefore, imperative to develop objective methods that accurately detect daily PA types 
and provide detailed PA guidance for healthy aging. Most of the existing techniques have 
been applied in the younger generation or validated in the laboratory. To what extent, 
these methods are transferable to real-life and older adults are a question that this paper 
aims to answer. Sixty-three participants, including 33 younger and 30 older healthy adults, 
participated in our study. Each participant wore five devices mounted on the left and right 
hips, right knee, chest, and left pocket and collected accelerometer and GPS data in both 
semi-structured and real-life environments. Using this dataset, we developed machine-
learning models to detect PA types walking, non-level walking, jogging/running, sitting, 
standing, and lying. Besides, we examined the accuracy of the models within-and 
between-age groups applying different scenarios and validation approaches. The 
within-age models showed convincing classification results. The findings indicate that 
due to age-related behavioral differences, there are more confusion errors between 
walking, non-level walking, and running in older adults’ results. Using semi-structured 
training data, the younger adults’ models outperformed older adults’ models. However, 
using real-life training data alone or in combination with semi-structured data generated 
better results for older adults who had high real-life data quality. Assessing the transferability 
of the models to older adults showed that the models trained with younger adults’ data 
were only weakly transferable. However, training the models with a combined dataset of 
both age groups led to reliable transferability of results to the data of the older subgroup. 
We show that age-related behavioral differences can alter the PA classification performance. 
We demonstrate that PA type detection models that rely on combined datasets of young 
and older adults are strongly transferable to real-life and older adults’ data. Our results 
yield significant time and cost savings for future PA studies by reducing the overall volume 
of training data required.
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INTRODUCTION

According to the World Health Organization, the aging population 
is increasing rapidly throughout the world (World Health 
Organization, 2017). This growth in age leads to increasing 
demands for healthcare services and, consequently, more burden 
on societies, particularly when older people are trapped in a 
physically inactive lifestyle (King and King, 2010). Spending 
too much time on sedentary behavior, such as sitting and 
lying, has been linked with an increased risk of various physical 
and mental health disorders, such as chronic diseases, obesity, 
diabetes, and depression (Bélair et al., 2018; Panahi and Tremblay, 
2018; Lavie et  al., 2019). Physical activity (PA) is one of the 
main determinant factors for healthy aging (Voss et  al., 2016). 
PA contributes to maintaining the functional ability and 
independence of older adults and preventing or mitigating the 
challenges related to their health status (Gokalp and Clarke, 
2013; Taylor, 2014).

An extensive body of literature focused on traditional methods 
to study the PA behavior of older adults by using questionnaires 
(Resnick et  al., 2008; Verweij et  al., 2010; Choi et  al., 2017; 
Martín-María et  al., 2020; Takahashi et  al., 2020). However, 
these self-reporting methods are prone to individuals’ recall 
bias or under/overestimating the duration of activities that 
have been undertaken and therefore are unable to assess PA 
behavior reliably as it is actually occurring during human’s 
daily life (Celis-Morales et  al., 2012; Schaller et  al., 2016). 
With the advent of wearable mobile sensor technology, sensor-
based methods have been shown to be  a powerful tool in 
addressing the limitations of self-assessed methods by providing 
valid and reproducible measurements of PA (Liu et  al., 2017). 
However, although sensor-based studies provide essential 
contributions to the PA field, several shortcomings can still 
be  identified, according to the systematic literature search of 
our recent review (Allahbakhshi et  al., 2019).

First, from a general perspective, existing studies on objectively 
measured PA primarily focused on PA level/intensity (Krüger 
et  al., 2017; McCarthy et  al., 2017; Ramires et  al., 2017). At 
the same time, evidence shows that to increase the amount 
of PA in older adults, providing specific and detailed information 
about PA has a more significant impact on actual behavior 
change compared to providing more general PA recommendations 
(Taylor, 2014). In other words, among the four main dimensions 
of PA, including frequency, intensity, time, and type, focusing 
on the type of PA and detecting activities, such as sitting, 
walking, and so on, is of more relevance than mere intensity 
detection in older adults (Lindemann et  al., 2014). Another 
critical factor is that most of the existing studies that developed 
PA type detection (PATD) models used data collected under 
controlled conditions, such as laboratory settings (Bonomi et al., 
2009; Freedson et  al., 2011; Van Hees et  al., 2013; Liu et  al., 
2017). However, to examine the association between older 

adults’ PA and their health status, it is vitally important to 
study their PA behavior in daily life, i.e., in an ecologically 
valid context (Lindemann et  al., 2014). Furthermore, most of 
the classification models so far have been built based on data 
collected from limited samples (often less than 30) of healthy 
younger adults, who might have a different PA performance 
compared to older adults (Lindemann et  al., 2014; Schrack 
et al., 2016; Allahbakhshi et al., 2019); therefore, the transferability 
of classification models learned on younger samples to older 
populations also requires further investigation.

From a methodological perspective, supervised machine 
learning (ML) algorithms are the most common methods in 
sensor-based PATD (Adaskevicius, 2014; Bayat et  al., 2014; 
Brondeel et al., 2015; Spinsante et al., 2016; Allahbakhshi et al., 
2019). The idea behind these algorithms is learning from 
training data in which the PA type of each observation is 
known and then applying this learned model to detect the 
PA types of a new unknown dataset. However, there are two 
main challenges for supervised ML algorithms. First, ML assumes 
the data distribution of the training dataset will never change, 
whereas this rarely happens in reality due to different physical 
characteristics and activity performance of the individuals 
involved in the data collection. Thus, developing a robust ML 
activity recognition model requires a significant amount of 
accurately labeled training data. Another challenge, therefore, 
lies in collecting accurate PA ground truth data in an unobtrusive 
way, which is time-consuming and challenging, especially for 
the aging population, as it requires a massive amounts of 
human workload for data annotation (Diethe et  al., 2016; 
Barbosa, 2018). Thus, providing PATD models that can 
successfully be transferred to new, unseen datasets—in particular 
unlabeled data collected on older adults—is essential as it helps 
reducing the cost and time for data labeling and classification 
model development and training.

The current study aims to address the identified shortcomings 
and builds upon our previous work, where we  studied real-life 
PATD in younger adults using accelerometer and global 
positioning system (GPS) data (Allahbakhshi et  al., 2020). In 
this paper, we  aim to investigate to what extent our activity 
recognition ML algorithm developed on the younger sample 
can be  transferred for predicting the PA types in a sample of 
older adults. To this end, we collected a new dataset of healthy 
older adults and conducted extensive analyses both within and 
between the two age groups by considering different scenarios 
(e.g., semi-structured vs. real-life). Through our experimental 
validation, we  highlight the limitations of existing methods in 
assessing the PA behavior of older adults, and we  show how 
the transferability of PATD models to older age groups can 
be  improved.

MATERIALS AND METHODS

Procedure
The experimental study consists of two stages, each concerned 
with one age group. Stage 1 involved collecting labeled PA type 
data by 33 healthy young participants (Table  1) who performed 

Abbreviations: GPS, Global positioning system; L1SO, Leave one subject out; 
ML, Machine learning; PA, Physical activity; PATD, Physical activity type detection; 
YandO-trained-btw-age, Young and old-trained-between-age; Y-trained-btw-age, 
Young-trained-between-age.
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seven daily PA types, including lying, sitting, standing, walking 
on level ground, non-level walking, jogging/running, and cycling, 
in two different outdoor environments (semi-structured and 
real-life). The detailed protocol for the data collection has been 
reported elsewhere (Allahbakhshi et  al., 2020). In Allahbakhshi 
et  al. (2020), the PATD was also evaluated on younger adults 
by developing and testing random forest ML classification models 
using accelerometer and GPS data from an individual sensor 
position (individual model) or alternatively integrating sensor 
data from five different sensor positions (general model) in 
different scenarios. The developed classification models achieved 
a high classification performance and transferability on real-life 
data. Stage 2 of the current study involved collecting PA labeled 
data from 30 healthy, community-dwelling older adults using 
a procedure equivalent to Stage 1, aiming to evaluate and improve 
the transferability of the developed classification models trained 
on data of younger adults in Allahbakhshi et  al. (2020), on 
new data collected from older adults.

In a procedure equivalent to Allahbakhshi et  al. (2020), 
we  collected labeled data from older adults in two protocols, 
semi-structured and real-life. The older participants conducted 
the same semi-structured protocol as the younger adults did 
in Allahbakhshi et  al. (2020) in an outdoor environment. 
However, we  eliminated the cycling activity from the list of 
requested activities for older adults in both protocols due to 
safety reasons. To simplify the data collection process and 
avoid putting too much burden on the older participants, 
we  adjusted the real-life protocol. Contrary to younger 
participants that performed the real-life protocol in an outdoor 
environment of choice as part of their daily life, we  asked 
older adults to perform the activity protocol in a pre-specified 
area where they could perform all the requested PA types. 
However, they were free to perform the activities in their own 
way and at their own speed, just like to younger participants. 
During the real-life data collection, an observer followed the 
older adults and labeled their data, whereas younger participants 
self-annotated their real-life data using a smartphone app. 
We  asked the older adults to perform the walking activities 
in a leisure area on two different types of surfaces (paved vs. 
gravel), including 5 min of walking on pavement and a 2 min 
walk on a gravel surface to include as much variation as 
probably existing in the younger adults’ leisure walking data.

Device
We used the uTrail (firmware versions 6.49 and 6.50) tracking 
device for the data collection on older adults (Figure  1A), 

the same device that was also used in Allahbakhshi et  al. 
(2020) for younger adults. The uTrail is a small wearable 
custom-built device that includes an audio sensor, a GPS sensor 
(uBlox UC530M) that was set to a sampling rate of 1 Hz, and 
an accelerometer set to a sampling rate of 50 Hz that contains 
three magnetic field channels and three acceleration channels 
(ST Microelectronics LSM303D; Allahbakhshi et  al., 2018).

Device Placement
The selection of device wearing locations on the body was 
motivated based on existing studies focusing on a reliable 
detection of major daily PA types using accelerometer data. 
For example, the most popular accelerometer placement is on 
the waist or hip because it is near the body trunk and can 
thus better represent human movement (Liao et  al., 2015). 
Moreover, findings show that wearing the device on the thigh 
and chest can help discriminate between sedentary PA types, 
such as sitting and standing (Skotte et  al., 2014), and sitting/
standing versus lying (El Achkar et  al., 2016), respectively. 
Barshan and Yüksek (2014) showed that the knee or leg position 
could provide the best results for detecting daily PA types 
compared to other parts of the body, such as arms and waist 
(Barshan and Yüksek, 2014). Therefore, we  selected hips, knee, 
chest, and pocket (representing the thigh position) as the body 
locations for the device placement.

In total, we  mounted five uTrail devices on different body 
locations (Figure  1B), including left hip inside left pocket 
(Figure  1C), right hip (Figure  1D), right knee (Figure  1E), 
and chest (Figure  1F). Two elastic straps, each holding the 
uTrail, were adjusted around their chest and below their right 
knee. For the hip positions, we  fixed the uTrail devices to 
their waistband using the device clip.

We applied a direct observation approach for activity 
annotation using the “aTimeLogger” free app installed on a 
smartphone for both semi-structured and real-life protocols.

Participants
A total of 30 healthy older adults aged above 65 participated 
in the data collection (Table  1). They represent a subset of 
the Mobility, Activity, and Social Interactions Study (MOASIS), 
an ambulatory assessment study involving 30 days of sensing 
using the uTrail device in a sample of N = 153 adults aged 
65+ (Röcke et  al., 2018). As inclusion criteria, participants 
were required to be  physically and cognitively healthy (MMSE 
≥27), walk and run without walking aids (self-report), and 
accept the instructions of the study protocol. The study was 
carried out following the rules of the Declaration of Helsinki 
of 1975 and in compliance with the ethical guidelines of the 
Faculty of Arts and Social Sciences of the University of Zurich. 
All participants provided written informed consent.

Data
The total amount of labeled data collected for older adults 
was about 115 h, consisting of an average of 50 h for the semi-
structured protocol and 65 h for the real-life protocol, respectively 
(Table  2). In order to have matching PA types between the 

TABLE 1  |  Physical characteristics of the participants involved in the study.

Physical characteristics
Mean (SD) Younger 

adults
Mean (SD) Older 

adults

No. (F/M) 33 (13/20) 30 (17/13)
Age (year) 29 ± (5.6) 72 ± (4.8)
Height (cm) 173 ± (10.05) 167 ± (10.12)
Weight (kg) 67 ± (9.8) 70 ± (15.8)
BMI (kg.m-2) 22 ± (1.9) 24.5 ± (3.8)
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two age groups, we  discarded the cycling activity data from 
the younger adults’ dataset and updated the amount of their 
data collected in the previous study (Allahbakhshi et  al., 2020) 
accordingly. The detailed information regarding the distribution 
of each activity class per age group and per protocol is available 
in the Supplementary Appendix 1.

Data Preprocessing
We preprocessed the accelerometer and GPS data using the 
approach presented in (Allahbakhshi et  al., 2020). We  then 
derived, as explained in (Allahbakhshi et  al., 2020), a set of 
85 time and frequency domain features from the accelerometer 
data, as well as two GPS features (average speed and elevation 
difference) from the GPS data, all within overlapping 2 s time 
windows. A flowchart of the accelerometer and GPS signal 
processing steps is available in the Supplementary Appendix 2.

The time and frequency domain features from accelerometer 
data are the same and extended features, respectively, as those 
introduced by Kwapisz et al. (2011) and Bao and Intille (2004), 
which have already been shown to be  informative for PATD 
models using accelerometer data. They include as:

	1.	 Time domain features: mean, standard deviation, and range 
of three axes and total acceleration, correlation among three 
axes, kurtosis, skewness, and average absolute difference of 
three axes, number of observations falling within each of 
10 bins of the three axes, and time interval between local 
peaks and number of peaks of three axes.

	2.	 Frequency domain features using FFT: power spectral density, 
energy of the signal, mean of the first three dominant 
frequencies, and amplitude of the first three dominant 
frequencies of three axes and total acceleration.

We aggregated the labeled PA types into six classes, including 
lying, sitting, standing, walking, non-level walking, and running. 
We used ArcGIS v.10.6.1 and the R statistical computing software 
for the data analysis (R Core Team, 2013).

Classification Model Development
As in the previous study (Allahbakhshi et  al., 2020), we  used 
a random forest classifier for the PA type classification. Random 
forests are a representative of so-called ensemble classifiers, 
which build a classification model by aggregating the predictions 
of multiple individual classifiers and thus tend to be  more 
flexible and robust compared to individual models. More 
specifically, RF is a bagging ensemble classifier that builds 
multiple individual decision trees in a parallel way; each model 
is built based on a random subset of the training feature data 
(Zhang and Ma, 2012).

We created three different training datasets, one using data 
from the semi-structured protocol only, one using data from the 
real-life protocol only, and one using the combined dataset of 
both the semi-structured and real-life protocols. We  used the RF 
classifier to build the classification models in different scenarios, 
which featured a particular combination of training dataset, validation 
method, and test data (Table  3). For each scenario, we  examined 

A

B C ED F

FIGURE 1  |  The uTrail device specification and placement, (A) the uTrail device, (B) the location of uTrail devices on participant’s body, (C) left hip and left pocket, 
(D) right hip, (E) right knee, and (F) chest.
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both single (accelerometer data only) and multi-sensor (accelerometer 
and GPS data) approaches to build the RF classification models. 
We  built a general model that was trained with data obtained 
from all five sensor positions (chest, left hip, right hip, left pocket, 
and right knee) and also five individual models, each trained with 
data from a particular single-sensor position.

To assess whether classification performance differences exist 
between the two age groups, we  built two within-age models, 
each using data from one age group (Table  4). To assess the 
transferability of the PA classification models trained with 
younger adults’ data on data from the older group, we  built 
the Young-trained-between-age (Y-trained-btw-age) models. To 
assess how the transferability of the classification models on 
the data of older adults can be  improved, we  created the 
Young and Old-trained-between-age (YandO-trained-btw-age) 
model, which was trained with a combined dataset of both 
age groups and tested on the older adults’ data.

Evaluating the Effects of the Validation 
Strategy and the Classifiers Used
In order to evaluate the effects of choices concerning the 
methods used for PA type classification, we  further evaluated 
the effect of the choice of cross-validation strategy, and the 
effect of the classifier algorithm used on the classification results 
that can be  obtained. The corresponding results are reported 
in the Supplementary Appendix 3. The codes developed during 
the current study are available from the GitHub repository: 
https://github.com/Hoda-Bakhshi/PA-tracking-sensor-data.

RESULTS

We present the overall accuracies of the within-and between-age 
RF models—both for the general model (using data from all sensor 
positions) and the individual, single-sensor models—as evaluated 
using both the Leave-one-subject-out (L1SO) cross-validation strategy 
and validation with the real-life dataset, for the three scenarios 
given in Table 3. For the sake of brevity and conciseness, we show 
the classification results of only the general models in Sections 
Results for Within-Age Models and Results for Between-Age Models. 
The figures showing the classification results of the individual 
models are available in the Supplementary Appendix 4.

Results for Within-Age Models
In Scenario 1-A, using L1SO cross-validation (with training 
data) and accelerometer data only, all models generated with 
older adults’ data except the chest model performed worse 
than the models trained with younger adults’ data (Figure  2). 
For example, the general model of older adults achieved 82% 
accuracy, whereas the general model of younger adults came 
to 86% accuracy. In both within-age models, the general models 
outperformed the individual models. Among the individual 
models, the knee position scored highest with 77 and 82% 
accuracy in the within-age model for older and younger adults, 
respectively. Both within-age models trained with semi-structured 
data showed a significant weak classification transferability on TA
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the real-life dataset. However, the within-young-age models 
achieved higher overall accuracy than the result obtained by 
the within-old-age model when tested on the real-life data.

Adding GPS features to the accelerometer features improved 
the classification performance for both within-age models 
validated by L1SO by up to 7% (Figure  3). However, similar 
to the accelerometer-based models, the classification performance 
decreased for all within-age models when tested on the real-
life data (Figure  3).

As Scenario 1 used data collected using the semi-structured 
protocol, which was the same protocol for both age groups, 
we  compared the classification performance metrics of a 
participant who obtained the highest GPS contribution in 
Scenario 1-A, using L1SO cross-validation (with training data) 
for both age groups (Tables 5, 6). The classification metrics 
in both within-age models show that the activities non-level 
walking and walking achieved the lowest rates when using 
accelerometer data only and L1SO validation (with training 
data), and adding GPS features considerably improved the 
classification performance for these activities, particularly for 
the older participant (Tables 5, 6).

In Scenario 2, we  trained the classification models based 
on the combined dataset of semi-structured and real-life 
protocols. Similar to Scenario 1-A, using L1SO cross-validation 
(with training data) and accelerometer features only, individual 
models trained with younger adults’ data achieved a higher 
accuracy, except for the right-hip model that obtained the 
same results in both within-age models. Both age groups 
achieved the same classification performance of 81% accuracy 
for their general models. Contrary to Scenario 1-B, where 
the performance dramatically dropped with real-life data, 
this scenario (Scenario 2-B) showed a considerable 
classification transferability on the real-life dataset for 
all models.

Adding GPS features to the accelerometer features improved 
the classification performance for all models validated by L1SO 
of the training dataset (Scenario 2-A) up to 8 and 3% in the 
within-age model for older and younger adults, respectively. 
This also resulted in stable classification performance with 
real-life data (Scenario 2-B). Moreover, adding GPS features 
increased the classification performance by up to 4% for the 
older adults’ models using L1SO with real-life data (Scenario 
2-B) compared to with training data (Scenario 2-A), whereas 
conversely it reduced the classification accuracy up to 5% for 
the younger adults’ models.

In Scenario 3, where we  used only the real-life data for 
training the classifier (Scenario 3-A), all models trained 
with the data of older adults outperformed those trained 
with the data of the younger adults. Furthermore, GPS 
features contributed to improving the within-old-age models 
by up to 8%, while this number was limited to 3% for 
within-young-age models.

Results for Between-Age Models
This section reports to what degree models trained on data 
of younger adults can be transferred to the data of older adults 
(Table 4). In the Y-trained-btw-age model, we used the younger 
adults’ data for training and the older adults’ data for testing 
the classification model. In the YandO-trained-btw-age model, 
we  treated all data collected by older and younger participants 
as a single dataset, trained the classification models based on 
that, and then tested the developed models on unseen data 
of older adults.

Using L1SO cross-validation (with training data) and 
accelerometer data only in Scenario 1-A, all YandO-trained-
btw-age models using the combined training data performed 
better than the Y-trained-btw-age models, which used young 
for training and older for testing (Figure  4). Adding older 
adults’ data to the younger adults’ data increased the classification 
performance by 4% for the general model and by up to 8% 
for the individual YandO-trained-btw-age models. The knee 
models outperformed the other individual models with 76 and 
81% overall accuracy for the Y-trained-btw-age and YandO-
trained-btw-age models. Similar to the within-age models in 
Scenario 1-B, the between-age models showed a high classification 
transition error on real-life data. Moreover, some individual 
models scored higher in accuracy than the general models 
when tested on real-life data.

Adding GPS features (Figure  5) contributed to improving 
the classification performance by up to 6% for individual models 
and by 5 and 6%, respectively, for the general Y-trained-btw-age 
and YandO-trained-btw-age models validated by L1SO cross-
validation of the training dataset (Figure  5; Scenario 1-A). 
However, the ACC + GPS models also did not show convincing 
results with real-life data (Figure  5; Scenario 1-B).

In Scenario 2, using accelerometer data only (Figure  4), 
all models trained with combined data of both age groups 
scored higher in accuracy than the models trained with younger 
adult’s data only. Using L1SO cross-validation (with training 
data) and accelerometer data only (Scenario 2-A), as in Scenario 

TABLE 3  |  Scenarios for separating data into training and test datasets and the 
corresponding validation method.

Scenario no. Training dataset
Validation method and test 
data

Scenario 1 Semi-structured dataset (A) L1SO cross-validation on 
semi-structured data (B) L1SO 
cross-validation on real-life data

Scenario 2 Combined (semi-structured 
and real-life) dataset

(A) L1SO cross-validation on 
combined data (B) L1SO cross-
validation on real-life data

Scenario 3 Real-life dataset (A) L1SO cross-validation on 
real-life data

TABLE 4  |  The developed models to evaluate the classification performance 
differences within and between the two age groups.

Model Training dataset Testing dataset

Within-old-age Older adults Older adults
Within-young-age Younger adults Younger adults
Y-trained-btw-age Younger adults Older adults
YandO-trained-btw-age Younger and older adults Older adults
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1-A, the knee models were the best among the individual 
models. The general YandO-trained-btw-age model with 80% 
accuracy obtained 10% more transferability on older adults’ 
data than the general Y-trained-btw-age model. This transferability 

difference between two general models increased to 16% with 
real-life data (Figure  4; Scenario 2-B).

ACC + GPS models (Figure  5) improved the classification 
performance for all models, using L1SO cross-validation with 

A

B

FIGURE 2  |  Distribution of overall accuracy for the general accelerometer-based RF classification models. (A) within-old-age models and (B) within-young-age 
models.
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training (Scenario 2-A) and real-life data (Scenario 2-B). 
However, adding GPS features to the accelerometer features 
resulted in more stable classification performance for YandO-
trained-btw-age models than for the Y-trained-btw-age models 
when tested on real-life data (Scenario 2-B).

Similar to the first two scenarios, the between-age models 
with age-combined data performed better than the between-age 
models with age-opposing data in Scenario 3, when trained 
and tested with real-life data only. Using multi-sensor data 
increased the classification performance by up to 7 and 4% 

A

B

FIGURE 3  |  Distribution of overall accuracy for the general accelerometer and GPS-based RF classification models. (A) within-old-age models and (B) within-
young-age models.
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in the YandO-trained-btw-age and the Y-trained-btw-age models, 
respectively.

DISCUSSION

The main aim of this study was to investigate the transferability 
of PATD models trained with younger adults’ data in detecting 
major daily living activity types of older adults representing 
postures (lying, sitting, and standing) and motion-related PA 
types (level walking, non-level walking, and running/jogging). 
Furthermore, we  explored various scenarios to evaluate the 
classification performance within and across the two age groups.

Within-Age Group PA Type Detection
Scenario 1
We built two within-age models in three different scenarios 
to compare the behavioral differences in two distinct age groups. 
The results show that when the same study setting is used 
for data collection for both groups, the younger adults’ models 
outperform the older adults’ models. Comparing the performance 
of the general models of the two participants who achieved 
the highest GPS contribution in Scenario 1-A in their respective 
age group, we found no confusion between motion and posture 
activities for both participants. Both general models trained 
with or without GPS data detected the activities lying, sitting, 
and standing with a high f-score of above 99%, showing no 
posture classification difference between older and younger 
participants. However, significant misclassification existed 
between the activities level walking and non-level walking, 
especially in accelerometer-only models.

Moreover, we noted that there was confusion between running 
and level/non-level walking activities for older adults who 

achieved low overall classification accuracy, which did not 
occur for the younger group. This is in line with the observation 
of Wang et  al. (2015) that there are behavioral differences in 
motion activity performance between older and younger adults, 
respectively. Moreover, it supports the results by Wang et  al. 
(2015) that older adults run slower than younger adults, which 
might be due to the consequences of aging, such as the reduction 
of muscle strength, agility, and endurance. Therefore, their 
running activity performance may generate similar movement 
data profiles to their walking behavior and mislead the classifiers. 
Adding GPS features showed a consistent contribution in 
improving both the performance of within-age models, 
particularly by reducing the confusion errors between level 
and non-level walking activities. However, adding GPS features 
to the accelerometer features produced more generalization 
errors for younger adults when tested with the real-life dataset 
(Scenario 1-B) because they performed the real-life protocol 
in different urban and leisure surroundings.

Scenario 2
Using the combined, accelerometer-only dataset for training 
the within-age models and L1SO cross-validation with training 
data (Scenario 2-A), the general accelerometer-only models 
of both age groups achieved the same overall accuracy. 
Adding GPS features, the older adults’ general model obtained 
3% more accuracy than the younger adults’ model. Besides, 
using L1SO cross-validation with real-life data (Scenario 
2-B), the older adults’ general model outperformed the 
younger adults’ model and was strongly transferable to the 
real-life dataset, mainly when adding GPS features to the 
accelerometer features. Compared to the older adults’ real-
life dataset, there were more variations in the dataset for 
younger adults, explaining the overall decrease in accuracy 

TABLE 5  |  Classification metrics of an older participant (with the highest GPS contribution) in Scenario 1-A.

Activity types
ACC-based model ACC + GPS-based model

Precision Recall F1 Precision Recall F1

Lying 100 100 100 100 100 100
Non-level Walking 64.73 100 78.59 84.63 98.53 91.06
Running 90.70 99.15 94.74 94.40 100 97.12
Sitting 100 100 100 100 100 100
Standing 100 100 100 100 100 100
Walking 100 20.72 34.32 97.34 72.91 83.37

TABLE 6  |  Classification metrics of the participant from the younger age group (with the highest GPS contribution) in Scenario 1-A.

Activity types
ACC-based model ACC + GPS-based model

Precision Recall F1 Precision Recall F1

Lying 100 99.13 99.56 100 99.12 99.56
Non-level Walking 88.01 59.24 70.81 96.92 95.45 96.18
Running 99.12 99.12 99.12 100 98.25 99.12
Sitting 99.12 100 99.56 99.12 100 99.56
Standing 100 100 100 100 100 100
Walking 51.76 84.43 64.17 91.24 94.63 92.90
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in their classification models, especially when validated by 
L1SO cross-validation with real-life data (Scenario 2-B). The 
real-life environment used by older adults was limited to 
a particular area that was the same for all participants, 
while the younger participants were allowed to choose their 

own real-life environment to perform their activities. This 
contributed to increased variation in environmental factors, 
such as surface types used for level walking or steepness 
of slopes for non-level (uphill, downhill) walking, ultimately 
causing lower classification performance.

A

B

FIGURE 4  |  Distribution of overall accuracy for the general accelerometer-based RF classification models. (A) Y-trained-btw-age models and (B) YandO-trained-
btw-age models.
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Compared to our previous study (Allahbakhshi et  al., 2020), 
we  detected fewer activity types and achieved slightly lower 
classification performance for the younger participants. This might 
be  due to discarding the cycling activity, which resulted in less 
training data. Moreover, the cycling activity was the most 
distinguishable activity type as it produces distinctive movement 

profiles in the accelerometer data and recognizable cyclic patterns, 
especially in the knee sensor data (Allahbakhshi et  al., 2020).

Scenario 3
As another extension to our previous study, we added Scenario 
3 to show that using only real-life data could be  sufficient 

A

B

FIGURE 5  |  Distribution of overall accuracy for the general accelerometer and GPS-based RF classification models. (A) Y-trained-btw-age models and (B) YandO-
trained-btw-age models.
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to generate classification models with convincing results for 
predicting PA types collected in the real-life environment 
of an unseen participant. The discussion of Scenario 2 
mentioned the difference in real-life protocols for the two 
age groups, which explains why the classification models 
for older adults outperformed those for younger adults also 
in Scenario 3. Similar to Scenario 2, adding GPS features 
provided a higher contribution in improving the results for 
older adults since there was a lower number of missing 
values and noisy data in their real-life GPS data compared 
to younger participants. This supports one of the conclusions 
in our previous paper that the high performance of the 
developed PATD models can only be  achieved when high-
quality GPS and map-matching data are available 
(Allahbakhshi et  al., 2020).

Between-Age Group PA Type Detection
To examine the extent to which our classification models 
can predict older adults’ daily PA types, we  built and tested 
two between-age models. In general, the Y-trained-btw-age 
models trained with data of younger adults only were weakly 
transferable to the older adults’ data. Comparing the Y-trained-
btw-age models with within-old-age models, the developed 
Y-trained-btw-age models showed a dramatic decrease in 
Scenarios 2 and 3, mainly when evaluated with L1SO cross-
validation applied to the real-life dataset. However, they 
achieved lower transition errors and higher transferability 
on older adults’ data in Scenario 1. Therefore, we  conclude 
that the transition errors arise both from the age-behavioral 
differences between the two age groups and the variations 
in the real-life study settings.

Based on the results of Ermes et al. (2008) and our previous 
paper (Allahbakhshi et  al., 2020), we  realized that in order 
to improve the transferability of classification models for a 
real-life dataset, labeled real-life data should be  included in 
the training data (Scenario 2). We  applied the same logic to 
increase the transferability of our classification models to the 
data of older adults. We  developed the YandO-trained-btw-age 
models by creating an integrated dataset of both younger and 
older adults. The YandO-trained-btw-age models showed the 
most consistent accuracy with within-old-age models when 
evaluated by L1SO cross-validation of both training and real-
life data in Scenario 1, followed by Scenarios 3 and 2, respectively. 
We, therefore, conclude that the new models trained with 
combined datasets of both age groups generate robust models 
with reproducible classification performance when applied to 
data of older adults.

Individual Classification Models
The individual models underperformed the general models, 
where data from all sensor positions are used. The possible 
reasons for the lower performance of individual models 
could be the inability of a single-sensor position in providing 
sufficient information for detecting all daily PAs and the 
effects of signal noise and motion artifacts due to the 
non-rigid attachment of the sensors to the body, masking 

the intended signal. We applied different measures to reduce 
or eliminate these effects: For example, we asked participants 
to use tight clothing, such as pants with tight pockets (for 
the pocket/thigh position), placed sensors in locations affected 
minimally by body motion (hip positions) and strapped the 
devices firmly to their body (chest and knee positions). 
However, some cases possibly led to flipping or rotating 
the device during activity performance, affecting the data 
quality, and classification performance. For instance, some 
participants wore pants with big and loose pockets. Therefore, 
the material, tightness, size, shape, and orientation of the 
pockets would vary. This also explains why the pocket model 
performed worst compared to the other individual models. 
Besides, despite having full control over device placement 
during the semi-structured data collection, it happened that 
after some activities, such as running, the knee, and chest-
mounted devices, were slightly displaced or flipped due to 
the rapid leg or upper body movement. This might have 
caused further issues during real-life activity performance, 
where participants’ poor control of the device placement 
could result in unpredictable extraneous motion data and 
data quality issues.

Further, there was no instruction regarding how to perform 
the PAs during real-life data collection. Therefore, participants 
might have performed posture activities differently, influencing 
accelerometer data from different body locations (Hughes 
et  al., 2020). For example, staying in a sitting position with 
legs crossed rather than legs straight can change the 
accelerometer values for the knee-positioned sensor. 
Participants might have performed minor twitches during 
standing or sitting activities or laid in a lateral body position 
rather than staying in a prone, or supine position, affecting 
accelerometer signals to be  different in different body  
locations.

Among the individual classification models, the knee-
positioned models were the best in most of the validation 
scenarios and could achieve accuracy levels comparable to 
those of their corresponding general models. Even though there 
were a few cases where the chest or hip models achieved the 
same or slightly higher accuracy than the knee model, the 
number of occurrences in which the knee model outperformed 
other individual models was higher. This is possibly because 
the knee position can better measure the periodic leg motion 
and capture the signal characteristics representing the cyclic 
nature of certain types of motion activities, such as walking 
and running. Therefore, we  conclude that the knee model 
provides a minimal, non-intrusive device configuration with 
reliable activity type recognition accuracy for both younger 
and older adults.

Limitations and Future Work
This study has some limitations that should be  addressed 
in future research. A limitation of this work is the selection 
bias of the MOASIS study (Röcke et  al., 2018) that served 
as our sample, which focused on older adults with good 
physical and cognitive health. Involving older adults with 
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various functional levels, including those requiring walking 
aids, should be  considered in future research to capture 
more fully the heterogeneity of PA types and patterns in 
the older population. Though we  investigated the effects of 
various factors on activity recognition models, assessing the 
influence of environmental factors, such as weather, is missing 
and requires a separate study. We obtained a high classification 
performance for detecting daily PA types using the RF 
classifier. However, applying advanced technologies for 
preprocessing raw accelerometer data, such as the reduction 
of the integration drift (Zhao, 2018), might help to further 
improve the classification performance. Further, since 
we  applied the random forest method as a classifier, which 
performs feature selection throughout the classification 
process, we  did not apply any feature engineering method. 
However, as shown in Fujiki et  al. (2009), there might 
be  collinearity in accelerometer data from different body 
locations. Therefore, applying advanced classification models 
and feature engineering methods might help gain further 
insights into the most informative features derived from 
each sensor location and contribute to further improving 
the results of the present work. Finally, adjusting the 
classification models to perform in real-time, which would 
be  important in the context of health-monitoring systems, 
is another challenge that should be addressed in future studies.

CONCLUSION

In this study, we assessed the influence of age in the performance 
and transferability of PATD models, which has so far been 
understudied in the existing literature. Our results led to the 
following findings:

	1.	 The performance of PATD models is satisfactory if staying 
within-age groups and study settings.

	2.	 While most studies on PATD used only samples of younger 
adults who performed PAs in controlled conditions, 
we  showed that the transferability of classification models 
using such datasets is actually weak, particularly when applied 
in older adults and real-life settings.

	3.	 The transferability of PATD models to real-life data 
considerably improves by creating a training dataset with 
combined data of semi-structured and real-life settings.

	4.	 Creating a training dataset with a mixture of younger and 
older participants improves the transferability of PATD 
between-age models on older adults’ data significantly and 
brings it to the level seen in within-old-age group 
classification models.

	5.	 The ACC + GPS knee model provides the best single-device 
configuration for both age groups, supporting a non-intrusive 
model for long-term real-life PA monitoring, particularly 
for older adults.

	6.	 Overall, we  believe that our work has delivered insights 
that should help others who are designing PATD studies, 
in particular ones focusing on older adults and real-life 

settings, reducing the cost and time required for data labeling 
and classification model development and training.
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