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The comprehensive experimental analysis of a metabolic constitution plays a central
role in approaches of organismal systems biology. Quantifying the impact of a changing
environment on the homeostasis of cellular metabolism has been the focus of numerous
studies applying various metabolomics techniques. It has been proven that approaches
which integrate different analytical techniques, e.g., LC-MS, GC-MS, CE-MS and H-NMR,
can provide a comprehensive picture of a certain metabolic homeostasis. Identification of
metabolic compounds and quantification of metabolite levels represent the groundwork
for the analysis of regulatory strategies in cellular metabolism. This significantly promotes
our current understanding of the molecular organization and regulation of cells, tissues and
whole organisms. Nevertheless, it is demanding to elicit the pertinent information which
is contained in metabolomics data sets. Based on the central dogma of molecular biology,
metabolite levels and their fluctuations are the result of a directed flux of information from
gene activation over transcription to translation and posttranslational modification. Hence,
metabolomics data represent the summed output of a metabolic system comprising
various levels of molecular organization. As a consequence, the inverse assignment of
metabolomics data to underlying regulatory processes should yield information which—if
deciphered correctly—provides comprehensive insight into a metabolic system. Yet,
the deduction of regulatory principles is complex not only due to the high number of
metabolic compounds, but also because of a high level of cellular compartmentalization
and differentiation. Motivated by the question how metabolomics approaches can provide
a representative view on regulatory biochemical processes, this article intends to present
and discuss current metabolomics applications, strategies of data analysis and their
limitations with respect to the interpretability in context of biological processes.
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INTRODUCTION
Systems biology has become a rapidly growing research field
aiming at a comprehensive representation of complex biologi-
cal systems. Metabolomics plays a central role in systems biology
as it provides essential information about the metabolome, i.e.,
the metabolic constitution and the dynamic behavior of metabo-
lite levels. The combination of chromatographic techniques and
mass spectrometry detection has enabled the rapid and precise
high-throughput analysis of up to hundreds, or even thousands,
of metabolic compounds from the same sample (Hall et al.,
2002). Yet, the full scientific potential of metabolomics tech-
niques is still limited due to a considerable variation in annotation
confidence (Creek et al., 2014). As discussed by Creek and co-
workers, one possibility to gain relatively high confidence is
the comparison of multiple physicochemical properties of an
authentic pure chemical standard to those of the metabolite of
interest. Techniques like the comprehensive GCxGC—time of
flight mass spectrometry (GCxGC-TOFMS), where two columns
with orthogonal separation characteristics are combined, yield
a much higher peak capacity (Almstetter et al., 2012) and may

help increase the identification confidence by resolving co-eluting
compounds. But also on the level of mass spectrometry such co-
elutions might be resolved, for instance by applying techniques
of tandem-MS or MSn (Mei-Ling et al., 2006). The resulting
data matrix, which typically comprises compounds of the central
carbon/nitrogen metabolism, i.e., sugars, amino acids, organic
acids and lipids, characterizes a metabolic homeostasis or its
perturbation-induced dynamics (Kaplan et al., 2004; Leon et al.,
2013; Aldridge and Rhee, 2014). Chemical derivatization broad-
ens the spectrum of metabolites which can be assessed by GC
techniques making them become volatile and thermally stable
(Roessner et al., 2000). A commonly used method is a two-
step derivatization comprising oximation and silylation. While
the in oximation step sugars are stabilized in an open ring con-
formation, the silylation step stabilizes molecules by replacing
hydrogen in functional polar groups, e.g., the hydroxyl group,
by a trimethylsilyl group [-Si(CH3)3] (Hill and Roessner, 2013).
While GC-MS particularly enables the quantification of volatile
and uncharged compounds, Liquid chromatography coupled to
mass spectrometry (LC-MS) is the method of choice to analyse
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semi- or non-volatile and thermally unstable compounds
(Hopfgartner and Varesio, 2013). Both GC-MS and LC-MS might
be applied to analyse isomeric compounds, but the high chro-
matographic resolution of GC, and particularly GCxGC, make
it a suitable analytical technique to resolve structurally closely
related compounds (Meinert and Meierhenrich, 2012). In LC-
MS, structural information about molecules can be obtained by
collision-induced dissociation (Jennings, 2000). Different tech-
niques in mass spectrometry as well as their characteristic features
are summarized elsewhere (e.g., see Weckwerth, 2011), but it
can be generalized that the combination of those techniques is
expected to increase the coverage of a metabolome significantly.

Despite identification confidence clearly being the limiting
factor, the output of a GC- and LC-MS platform yields a com-
prehensive view of a metabolic homeostasis and its response to
genomic or environmental perturbation. Beyond, there are fur-
ther analytical techniques, such as UV, IR, FT-IR, and FT-ICR
spectroscopy (Van Agthoven et al., 2013), nuclear magnetic res-
onance (NMR) (Simmler et al., 2014) or capillary electrophoresis
(Kuehnbaum and Britz-Mckibbin, 2013), which can even enlarge
this metabolic information space and increase its confidence. The
metabolic coverage yielded by metabolomics approaches depends
on the organism and sample type being analyzed. While the
prokaryotic metabolome of E. coli comprises about 750 metabo-
lites (Nobeli et al., 2003), eukaryotic metabolomes have been
described to range from more than 1000 (e.g., yeast Herrgard
et al., 2008) over several thousands (e.g., humans Duarte et al.,
2007) up to tens or even hundreds of thousands in plants (Hall
et al., 2002). Particularly in eukaryotic organisms, the interpreta-
tion of metabolomics data is complex not only due to the high
number of metabolic compounds but also because of a high
level of cellular compartmentalization, different cell types, tissues
and organs. In a metabolomics study on the alga Chara australis
the subcellular localization and dynamics of 125 metabolites was
analyzed revealing a stress-induced asynchronous fluctuation of
metabolite levels in the vacuole and cytosol (Oikawa et al., 2011).
Based on their findings the authors suggested that metabolite lev-
els are regulated separately in intracellular compartments. Also in
higher plants, several studies have focused the subcellular anal-
ysis of metabolite dynamics and underlying fluxes (Masakapalli
et al., 2010, 2013; Klie et al., 2011; Krueger et al., 2011; Nägele
and Heyer, 2013; Szecowka et al., 2013; Arrivault et al., 2014).
As it is a characteristic feature of eukaryotic cells, the experimen-
tal analysis of subcellular organization of metabolism cannot be
over assessed. Due to the high information content of studies
resolving the subcellular level, it is possible to unravel unexpected
features of metabolic regulation. A concrete example for the need
of subcellular resolution is the existence of plastidial and cytoso-
lic pathways for carbohydrate oxidation, i.e., glycolysis or the
oxidative pentose phosphate pathway (PPP). In a study of subcel-
lular flux analysis in a heterotrophic Arabidopsis cell suspension
using steady-state stable isotope labeling, it has been shown that
multiple data sets can be fitted successfully to models with an
altered subcellular compartmentation of the PPP (Masakapalli
et al., 2010). With their approach, the authors provide evidence
for the importance of experimental data on the subcellular level
in order to reduce the uncertainty about the interpretation of

biochemical regulatory processes. Another comprehensive exam-
ple for subcellular analysis of leaf metabolism in Arabidopsis
was provided recently by using a strategy of 13CO2-labeling to
resolve time-dependent patterns and kinetics in the metabolome
(Szecowka et al., 2013). Changes in isotope patterns of 40 pri-
mary metabolites were analyzed using LC- or GC-MS comprising
central carbohydrates, organic, and amino acids as well as phos-
phorylated intermediates, e.g., from the Calvin-Benson cycle.
While many of the experimental findings were according to previ-
ous expectations, several unexpected features of labeling kinetics
could be unraveled due to the subcellular resolution (Szecowka
et al., 2013). Finally, the authors conclude that information about
metabolite compartmentation is a prerequisite for modeling pho-
tosynthetic and/or other metabolic processes in multicellular
eukaryotic tissues.

The above mentioned studies present reasonable and compre-
hensive approaches to assess complex systems in a proportion-
ally detailed manner. However, there exists a clear discrepancy
between the number of metabolites which are absolutely quanti-
fied (∼10–100) or identified and (relatively) quantified (∼100–
1000), and which are expected to be found in a metabolome
based on genome-wide predictions (∼103–105). Beyond the
objective of increasing the coverage and confidence of analytical
metabolomics platforms it is a particular challenge to interpret
the resulting experimental information in a biochemical mean-
ingful way which is the prerequisite for the successful generation
of a testable hypothesis. As outlined above, this is mainly due
to the high information content of underlying molecular and
structural organization being compiled in a metabolomics data
set. In this context, the following chapter strives to outline open
questions and different data evaluation strategies applied and
developed in the metabolomics research field.

DERIVING REGULATORY STRATEGIES FROM METABOLIC
SNAPSHOTS
The difficulty of interpreting comprehensive metabolomics data
sets can easily be retraced by a simple example: an experiment
comprising samples of two groups, e.g., a wild type (control
group) and a knock out mutant (treatment group), typically
results in m independent biological replicates each with n tech-
nical replicates for each group. Let p denote the number of
metabolites being quantified in the metabolomics experiment.
Then the summary of all experimental data within this experi-
mental design ends up in two data arrays each with p × n × m
dimensions. Assuming that technical variance of the method or
platform has been shown to be much lower than biological vari-
ance (vartech << varbiol), a technical mean value can be built
for each biological replicate and the data arrays reduce to data
matrices with p × m dimensions. Although “basic” univariate
statistical methods and tests immediately allow for a direct com-
parison of different data sets and provide a first idea of underlying
biological mechanisms, generated hypotheses frequently suffer
from ambiguity due to various biochemical explanations for one
metabolomic feature. The covariance matrix of a metabolomics
data set helps to quantify such an ambiguity. It is a statistical mea-
sure for how components, i.e., metabolites, are related to each
other (Equation 1).
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Cov(x, y) = 1

m − 1

m∑

i = 1

(xi − x̄)(yi − ȳ) (1)

x and y denote variables (here: metabolite levels) with a sam-
ple size m and a mean value x̄ and ȳ. Accordingly, a p × p
covariance matrix is derived from a p × m data matrix. This
quadratic relationship between the number of metabolites and
possible (metabolic) interactions exemplarily demonstrates why
even small metabolomics data sets, i.e., p < 10, are difficult to
interpret without appropriate mathematical methods: increas-
ing the metabolomic coverage of experimental approaches is
automatically linked to an exponential increase in possible expla-
nations which have to be considered. Thus, to find the most
reasonable and comprehensive biochemical explanation for all
resolved experimental data, the simultaneous application of vari-
ous statistical methods which confirm or even complement each
other has become a common approach. Basic statistical meth-
ods are well-established and numerous platforms and graphical
user interfaces (GUIs) have been developed to enable and facili-
tate the application of such methods [for an overview of available
tools and software packages see e.g., (Sugimoto et al., 2012) or
(Sheth and Thaker, 2014)]. Most of these statistical platforms
even go beyond and are capable of analysing, resolving and visual-
izing multivariate problems, applying methods like the principal
component analysis (PCA), the independent component anal-
ysis (ICA) (Steuer et al., 2007), or even the independent PCA
(Yao et al., 2012). Based on the (co-)variance information, these
multivariate techniques reduce the dimensionality of the dataset
while retaining as much as information, i.e., variance, as possible.
This yields abstract variables, i.e., components, which imply the
most pronounced and characteristic features of multivariate data
sets, thus enabling and facilitating the generation of biological
hypotheses. Complemented with other unsupervised and super-
vised statistical methods, e.g., hierarchical clustering, k-means
clustering and partial least squares discriminant analysis (PLS-
DA), molecular compounds contributing to the separation of the
samples by a varying degree, can be identified (Okada et al., 2010;
Westerhuis et al., 2010; Le Cao et al., 2011; Korman et al., 2012;
Sun and Weckwerth, 2012; Bellaire et al., 2014; Madala et al., 2014;
Uarrota et al., 2014).

The abovementioned strategies of (multivariate) data analysis
are an integral part of most systems biology approaches com-
prising not only metabolomics but, mostly, also other data sets
derived from various “omics” techniques, for example transcrip-
tomics and proteomics (Weckwerth, 2008). Special software pack-
ages have been developed for the integrative analysis of various
experimental high-throughput data sets aiming at a comprehen-
sive regression analysis, correlation and visualization. An excellent
overview of software tools, platforms and workflows of computa-
tional tasks in systems biology was provided previously (Ghosh
et al., 2011). Although these platforms provide a wide variety of
statistical and mathematical methods, the final outcome which a
system biologist is interested in may always be similar: the iden-
tification of specific metabolic clusters and patterns, i.e., samples
with similar statistical characteristics, separating the control from
a treatment group. This finally provides us with an idea about
which metabolic steps or pathways are most likely affected by

FIGURE 1 | A typical systems biology workflow to derive and test

hypotheses from experimental high-throughput analysis.

the introduced perturbation and conclusions about biochemical
or molecular biological mechanisms can be drawn resulting in
a testable hypothesis (Figure 1). Numerous studies from various
fields of biological research have proven the applicability and use-
fulness of such computational workflows (Altaf-Ul-Amin et al.,
2014). But contemperaneously, deriving information on the reg-
ulatory interaction between levels of molecular organization has
been recognized to be accessible only to a very limited degree.
This is mainly due to the complex and non-linear relationship
which exists between levels of transcripts, proteins, and metabo-
lites. Hence, if the level of a metabolite changes due to a genomic
or environmental perturbation this may have various reasons:
(i) feed-back/forward regulation of enzymes (with non-linear
kinetics), (ii) posttranslational modification of enzymes/proteins
involved in the metabolite synthesis, interconversion or transport,
(iii) changes in the rate of protein biosynthesis and/or degra-
dation, and so on. As a consequence, drawing an unambiguous
conclusion directly from a set of metabolite levels on regula-
tory strategies in a metabolic network is hardly possible—except
for the particular case that (A) all components of the metabolic
network are known and biochemically characterized, or (B) all
relationships between levels of molecular organization can—
due to simplification—be considered as linear. Although during
recent years, a lot of information about genome-wide metabolic
network structures and regulatory principles has been unraveled,
comprising, to name only a few, molecular systems of prokaryotes
(Carrera et al., 2014), yeast (Sanchez et al., 2014), algae (Chang
et al., 2011), higher plants (Mintz-Oron et al., 2012; Hill et al.,
2013), human metabolism (Mardinoglu et al., 2013), and disease
and medicine (Vandamme et al., 2013), we are still far away from
being able to fulfill all—or at least most of the—requirements
being necessary for approach (A). In contrast, strategies of math-
ematical modeling enable the procedure of linearization which is
explained and discussed in the following paragraph.

LINEARIZATION OF METABOLIC FUNCTIONS
The linearization of non-linear functions around a certain state is
a frequently applied approach in mathematics, physics or control
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theory to approximate solutions of complex and chaotic systems
(Strogatz, 1994). In a very figurative context one could think of
a polynomial function y(x), containing several minima and max-
ima. Yet, instead of considering and analysing the function y(x)
for all x, we are only interested in the behavior of y(x) in one
certain point x0. In this point, the function is described by the
coordinates (x0, y(x0)). We can approximate the function y(x) by
drawing the tangent in (x0, y(x0). With this, we have approxi-
mated the original function by a linear function. In a metabolic
context, x0 would represent a certain steady-state metabolite
concentration while y(x) represents the so-called metabolite func-
tion taking the steady-state value y(x0). In the following para-
graphs, the time-dependent metabolic function will be re-written
as fM(t).

Comparing the linearized approximation with the original
function it becomes obvious that these solutions are only valid in
a very narrow and predefined interval of the fundamental func-
tion. However, they still provide a highly informative insight and
can help to trace back basic principles of the original function—
particularly if this function is highly complex. Ultimately, they
may allow for the simulation and prediction of the systems behav-
ior, thereby broadening the current knowledge about the origin of
the system’s complexity.

To exemplarily transfer this strategy to a systems biology
approach, we consider a time-dependent change in the concen-
tration of a metabolite M. Mathematically this can be expressed
by an ordinary differential equation (ODE). While the left side
of the equation describes the changes in M with changes in
time t, the right side of the equation describes all (reaction)
rates affecting the concentration of M. This can be summa-
rized by the metabolic function fM(t). The reaction rates again
depend on various parameters, variables and functions, such as
inhibitor/activator concentrations, thermodynamic constraints,
posttranslational modification, protein levels, and so on. This
automatically connects the regulation of metabolite levels to all
other levels of molecular organization (Figure 2). Each of the

FIGURE 2 | Definition of metabolic functions, fM (t), and examples for

regulatory processes. The dashed arrows indicate functional
dependencies and can be read like “is a function of.”

functions contains various non-linear elements, e.g., enzyme
kinetics (Michaelis-Menten/Hill/. . . ) or thermodynamic equa-
tions (Arrhenius/. . . ), resulting in a highly non-linear description
of the biological system. Applying the principle of linearization
allows for the characterization of such a non-linear system around
an experimentally analyzed metabolic (steady) state by replacing
the non-linear with linear functions. In a simple two-dimensional
example this can be illustrated by the tangent in one point of the
original metabolic function (Figure 3A). Mathematically this is
performed by differentiating the metabolic function with respect
to a reaction variable, such as time, metabolites or other parts
of the abovementioned molecular organization (see Figure 2).
If this is performed for all considered system variables at the
same metabolic steady-state, the partial derivatives are combined
in the so-called Jacobian matrix (Figure 3B). By inducing per-
turbations and analysing the deflection of the metabolic system,
characteristic features, like stability of stead-states or sensitivity of
fluxes, can be estimated and summarized in the Jacobian matrix
(Steuer et al., 2006; Chen and Chen, 2009; Reznik and Segre,
2010). While the mathematical theory behind these approaches
is fully established (Strogatz, 1994) and is commonly applied in
engineering sciences (Föllinger and Konigorski, 2013), the direct
integration of experimental (metabolomics) data is still challeng-
ing. In recent work, we have focused on the development of
methods for a direct integration of metabolomics data, merging
the covariance information with a genome-wide metabolic net-
work structure. Thereby, we could successfully link experimental
metabolomics data to strategies of subcellular compartmentation
(Nägele and Weckwerth, 2013) and regulation of enzyme activity
(Nägele et al., 2014). Listing all the presented approaches together
with many others from the research fields of biomathematics,

FIGURE 3 | Schematic representation of the linearization process of a

metabolic function. (A) Graphical draft of the linearization procedure of a
metabolic function, fM,i (Vk ), at a certain metabolic state, Vk,0. (B) The
Jacobian matrix J comprising all results of the linearization process, i.e.,
partial derivatives.
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theoretical biology, bioinformatics and cybernetics, will yield an
astonishing diversity of comprehensive models and strategies,
which have been developed during the last decades. One cen-
tral challenge of the next decades’ metabolomics research will
be the integration and application of many of these theoretical
platforms, to exploit the experimental high-throughput data as
efficient as possible.

CONCLUSION AND OUTLOOK
Summarizing the above mentioned findings, open questions and
approaches, metabolomics plays a central role in current sys-
tems biology research. Future work on the integration of different
experimental metabolomics techniques will broaden the coverage
of metabolomes. The interpretation of resulting multidimen-
sional data arrays in context of metabolic network information
at genome-scale will significantly promote our understanding of
complex metabolic networks. Combining and integrating sta-
tistical methods and strategies of mathematical modeling is a
promising approach to improve our skills in construing compre-
hensive metabolomics data with respect to biochemical regula-
tion in multi-layered and highly compartmentalized biological
systems. This will essentially contribute to a very profound knowl-
edge across all domains of life and provide us with new ideas and
perspectives to solve upcoming questions of global concern.
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