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Abstract

Nonparametric tests do not rely on data belonging to any

particular parametric family of probability distributions,

which makes them preferable in case of doubt about the

underlying population. Although the two‐tailed sign test is

likely the most common nonparametric test for location

problems, practitioners face serious drawbacks, such as its

lack of statistical power and its inapplicability when in-

formation regarding data and hypotheses is uncertain or

imprecise. In this paper, we generalize the two‐tailed sign

test by embedding fuzzy hypotheses caused by un-

certainty/imprecision regarding linguistic statements on

fractions of underlying quantiles. By achieving this objec-

tive, (1) crucial limitations of the common two‐tailed sign

test are mitigated/overcome, (2) various further strengths

are incorporated into the sign test (e.g., meeting the trade‐
off between point‐ and interval‐valued hypotheses, fa-

cilitated formulation of fuzzy hypotheses, standardization

of membership functions), and (3) shortcomings that often

come along with fuzzy hypothesis testing are avoided (e.g.,

higher complexity, fuzzy test decision, possibilistic inter-

pretation of test results). In addition, we conduct a com-

prehensive case study using a real data set on the

psychosocial status during the COVID‐19 pandemic. The

results of the case study clearly indicate that the general-

ized two‐tailed sign test is preferable to the two‐tailed sign

test with point‐ or interval‐valued hypotheses.
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1 | INTRODUCTION

Nonparametric tests are techniques of statistical inference that do not require the underlying
distribution to meet specific assumptions, which is why they are also referred to as distribution‐free
tests. These tests serve as alternatives to parametric tests that can only be applied when the data
comply with certain assumptions and criteria. For instance, the common parametric one‐/two‐sample
t‐test and one‐/two‐way analysis of variance (ANOVA) can be substituted by the nonparametric sign
test, Mann–WhitneyU ‐test, Kruskal–Wallis test, and Friedman test, when there is any doubt about
the underlying distribution (see, e.g., Grzegorzewski1).

In this paper, we focus on the sign test due to its importance and intuitive way of application
when testing for quantiles. Against this backdrop, we highlight some benefits of the classical sign
test (see, e.g., Grzegorzewski and Spiewak2 and Chukhrova and Johannssen3): First, the sign test is
versatile in application because it just makes few general assumptions about the underlying dis-
tribution. Thus, there are no problems resulting from biased verification of specific assumptions as
the sign test is distribution‐free. Second, it tests for robust measures of location, that is, for
quantiles. Third, the sign test does not require a large sample size. Fourth, the sign test is also
applicable to ordinal data and paired‐sample data such as pre‐ and post‐treatment observations.

However, these advantages are offset by a few disadvantages (see, e.g., Chukhrova and
Johannssen4). Besides the well‐known loss of a good performance for small significance levels in
combination with very small sample sizes, recent literature especially criticizes its exclusive appli-
cation to classical problems where data and hypotheses are crisp, and thus a considerable rigidity
regarding real‐life scenarios characterized by imprecision or uncertainty. To mitigate and/or to
overcome this drawback, some authors have implemented techniques of fuzzy statistics into the
classical sign test by utilizing concepts of fuzzy set theory (see for basic concepts the appendix of this
paper, and moreover, we refer the interested reader to standard text books like Buckley,5,6 Klir and
Yuan,7 Kruse and Meyer,8 Ross,9 and Zimmermann10). Most of these approaches are introduced to
deal appropriately with fuzziness (or its interval‐valued subtype) in data and/or hypotheses for-
mulation (see, e.g., Shafiq et al.11). On the one hand, some authors have considered fuzzy or interval‐
valued data caused by the imprecision of observations (see Grzegorzewski,12,13 Grzegorzewski and
Spiewak,2,14 Hesamian and Taheri,15 Hesamian and Chachi,16 Kahraman et al.,17 Momeni and
Sadeghpour‐Gildeh18). On the other hand, a few authors consider the hypotheses as fuzzy or interval‐
valued caused by fuzzy quantiles like the fuzzy median (see Grzegorzewski and Spiewak2,14) or by
imprecision of linguistic statements on quantiles (see Hesamian and Chachi,16 Hesamian and
Taheri,15 and Momeni and Sadeghpour‐Gildeh18). Recently, Chukhrova and Johannssen3 have in-
troduced a sign test for quantiles with fuzzy categories and/or fuzzy hypotheses, where fuzziness is
caused by imprecision of linguistic statements on fractions of underlying quantiles. In comparison
with the above mentioned approaches, the latter approach is characterized by a high degree of

• practicability due to the facilitated formulation of fuzzy hypotheses regarding fractions
instead of quantiles (e.g., H0: The population proportion is about x%), since the basis of the
sign test is the exact binomial test;
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• generality, that is, specification of crisp and fuzzy areas in hypothesis formulation, consideration of
the indifference zone by its gradual fuzzification, and thus flexible implementation of point‐valued,
interval‐valued or fuzzy hypotheses (see Chukhrova and Johannssen19);

• standardization of modeling of membership functions for popular quantiles (such as the
median or quartiles) in automated procedures like knowledge extraction from Big Data;

• convenience regarding the final (crisp) test decision that is in line with the classical test
decision where the null hypothesis is either rejected or not rejected, and the generalized
p value allows a common probabilistic interpretation.

However, Chukhrova and Johannssen3 only consider the one‐tailed case, which is appro-
priate for testing whether the population proportion deviates from a reference value in one
direction (left or right), but not in both directions as the most popular case in practice, the two‐
tailed one. Assumed that the direction of interest is unknown, the two‐tailed case is to prefer to
its one‐tailed counterpart, as it is easy in application (albeit more complex in derivation) and
thus indispensable for new knowledge extraction, especially for given uncertainty/imprecision
regarding the quantile of interest.

It is also worth noting that the recent literature is solely focused on comparisons of newly
developed, that is, interval‐valued or fuzzy, approaches with the respective classical, mostly
point‐valued, approach. However, this is only one side of the coin and there is the lack of an
overall comparison regarding all these three closely related approaches. While in the one‐tailed
case of the sign test a common point‐valued formulation of the null hypothesis H0 leads to the
same test conclusion as the respective interval‐valued alternative, there is a discrepancy be-
tween both approaches in the two‐tailed case, and thus a trade‐off with respect to their ad-
vantages and disadvantages. In contrast, the fuzzy approach, as a generalization of point‐ and
interval‐valued approaches, could balance a disparity regarding precise/imprecise linguistic
statements in hypothesis formulation, information value about the underlying distribution and
the magnitude of the decision measure (e.g., the p value). Consequently, there is the need for a
comparative study on the two‐tailed sign test with point‐ or interval‐valued hypotheses and its
generalized version with fuzzy hypotheses.

In this paper, we extend the methodology proposed by Chukhrova and Johannssen3,19 for
the two‐tailed case and develop the generalized two‐tailed sign test for quantiles with fuzzy
hypotheses caused by uncertainty/imprecision regarding linguistic statements on fractions of
underlying quantiles. In addition, we compare the two‐tailed sign test with point‐ or interval‐
valued hypotheses to the generalized test and discuss the advantages/disadvantages of all three
approaches regarding their complexity, versatility and practicability.

To emphasize the benefits of the proposed generalized two‐tailed sign test for quantiles in
comparison with point‐ and interval‐valued approaches, we conduct a comprehensive case study
using a real data set on the psychosocial status during the COVID‐19 pandemic. In particular, we
perform the two‐tailed sign test with point‐valued, interval‐valued and fuzzy hypotheses, and com-
pare the obtained results in terms of test performance and implications for psychosocial status during
the COVID‐19 pandemic. Moreover, we supplement the results of the generalized two‐tailed sign test
by considering the respective results obtained in the one‐tailed case.

The paper is organized as follows. Section 2 introduces the two‐tailed sign test with point‐ or
interval‐valued hypotheses. In Section 3, the generalized two‐tailed sign test with fuzzy hy-
potheses is proposed. Section 4 presents an extensive case study based on a real data set with
regard to the psychosocial status during the COVID‐19 pandemic. Finally, in Section 5 the
paper concludes with an overview of study results.

7414 | CHUKHROVA AND JOHANNSSEN



2 | TWO ‐TAILED SIGN TEST WITH POINT ‐ OR
INTERVAL ‐VALUED HYPOTHESES

To make statements about an unknown quantile M with M   of an underlying population
(with c.d.f. presumed as continuous and strictly increasing in vicinity of M), we apply a
common step‐wise test procedure that consists of the following four steps:

1 Hypotheses formulation.
2 Determination of sample size n and level of significance α.
3 Drawing a random sample and computation of test statistic.
4 Decision making by means of the p value.

Thus, in the first step, we formulate two‐tailed preliminary hypotheses H′0 and H′1 over the real
numbers as complementary statements on M , say the median, with a hypothesized value M*:

H M M H M M′ : = * vs ′ : *0 1 ≠ (1)

In Figure 1, H′0 and H′1 are illustrated graphically. The letters l and r in H′l1 and H′r1 point to the left
and right position of the respective interval‐valued subset of H′1 in relation to the hypothesized
valueM*. Since noncomplementary hypotheses have less relevance for a test of significance, we do
not consider them in the following.

In addition, both hypotheses can be alternatively reformulated to complementary statements
on the fraction q of interest with parameter space Θ (0, 1)≔ and a hypothesized fraction value,
say 0.5 as in the case of the sign test on the median (see also Figure 2):

H q H q

H q H q

: The population proportion corresponds to 50% ( : = 0.5)

: The population proportion does not correspond to 50% ( : 0.5)

0 0

1 1 ≠
(2)

Consequently, the null hypothesis H0 is simple and the alternative hypothesis H1 is com-
posite as in the case of preliminary hypotheses H′0 and H′1.

It should be noted that a simple null hypothesis allows the formulation of statements only
regarding one quantile (here, the median). In contrast, a composite H0 would provide the
possibility to test on a set of quantiles simultaneously and thus lead to an additional gain of
information regarding the population of interest. Moreover, an interval‐valued approach can

FIGURE 1 Representation of preliminary hypotheses H′0, H H H′ = ′ ′l r1 1 1∪

FIGURE 2 Representation of reformulated hypotheses H0, H H H= l r1 1 1∪
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map both situations with certainty in the formulation of the hypothesized quantile value, that
is, as a crisp real number M*, and also with some uncertainty/imprecision regarding linguistic
statements on the fraction q of the underlying quantile. For instance, given an uncertainty level
of 20% regarding the 50%‐quantile, we can specify the hypotheses like

H q H q

H q H q q

: The population proportion is between 40% and 60% ( : 0.4 0.6)

: The population proportion is not between 40% and 60% ( : < 0.4, > 0.6)

0 0

1 1

 

In the following, we propose to formulate interval‐ instead of point‐valued statements on q

using two hypothesized fraction values q q,l r0 0 and q q,l r1 1 for H0 and H1, respectively, that is,

H q q q H q H q q q q q q q q: vs : < , > with = =l r l r l l r r0 0 0 1 0 1 1 1 0 0 1  ∉ ⇔ (3)

(see also Figure 3).
Following the classical test theory, we define subsets of the parameter space Θ as crisp

disjoint sets H0, H1, I (i.e., it holds H H I = Θ0 1∪ ∪ ) with indicator functions m q( )H0
, m q( )H1

,
m q( )I (see Table 1, row 1–3). Here, the sets H0, H1, I correspond to both hypotheses and the
indifference zone. The sets H0 and H1 are nonempty, but the set I is empty due to the com-
plementary formulation of hypotheses. While the set H0 is formulated as a real interval q q[ , ]l r0 0 ,
the sets H1 and I are unions of two disjoint real intervals H l1 , H r1 and Il, Ir , respectively, which
are located to the left (subscript l) or to the right (subscript r) of the set H0. It is worth noting
that an interval‐valued specification of H0 simplifies to a point‐valued specification for q q=l r0 0 .

FIGURE 3 Representation of reformulated interval‐valued hypotheses H0, H H H= l r1 1 1∪

TABLE 1 Subsets of the parameter space and their indicator functions

Set H0 q q q q{ Θ| }l r0 0   





m q

q q

q q q

q q

( ) =

0 if 0 < <

1 if

0 if < < 1

H

l

l r

r

0

0 0

0

0
 

Set H1 H H q q q q q= { Θ| < , > }l r l r1 1 1 1∪ 





m q

q q

q q q

q q

( ) =

1 if 0 < <

0 if

1 if < < 1

H

l

l r

r

1

1 1

1

1
 

Set I I I q q q q q q q= { Θ| < , < }l r l l r r1 0 0 1  ∪ 









m q

q q

q q q

q q q

q q q

q q

q( ) =

0 if 0 < <

1 if <

0 if

1 if <

0 if < < 1

= 0 ΘI

l

l l

l r

r r

r

1

1 0

0 0

0 1

1


 


∀
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According to the four‐step test procedure given above, in the second step, the sample size n,
n  , and the appropriate significance level α, α (0, 1) , have to be specified. Although the
determination of n is up to the practitioner/researcher, it should not be set too small, otherwise
problems arise due to increased probabilities of the type II error and situations where H0 can
hardly be rejected. For instance, at the 5% level of significance, n 6 is necessary before any
conclusion can be drawn (see Dixon and Mood20).

In the third step, a random sample of size n is to draw from a continuous distribution,
where the random variables Xi, i n= 1, …, , are stochastically independent and the quantile of
interest M is defined by the constraint X M q q( ) [ , ]i l r0 0   . In addition, the continuous
variable Xi can be conveniently handled as categorical variable by means of a disjunctive coding
0/1 with respect to the category of interest: “negative signs” (C(−)) or “positive signs” (C(+)).
Using indicator function m X( ) {0, 1}C i(−)  or m X( ) {0, 1}C i(+)  , the test statistic can then be
defined by the number of Xi with X M< *i or X M> *i , i n= 1, …, , depending on the specified
success state m X q( ( ) = 1) =C i(−) or m X q( ( ) = 1) = 1 −C i(+) . For instance, considering the
membership of Xi to C(−) as success, the test statistic S m X= ( )i

n
C i=1

(−) is binomial‐distributed
with probability mass function



 


S s

n

s
q q( = ) = (1 − ) .s n s−

This also reveals that the sign test corresponds to an exact binomial test with power function
G q( )n c c, ,l r

, where cl and cr are the critical (rejection) values with c c n1 − 1l r   , c c,l r  . It
also holds

 





 


 


 






 




G q
n

m
q q

n

m
q q

n

m
q q

( ) = (1 − ) + (1 − )

= 1 − (1 − )

n c c

m

c
m n m

m c

n
m n m

m c

c
m n m

, ,

=0

−1
−

first term

= +1

−

second term

=

−

l r

l

r

l

r

     

(4)

The power function determines probabilities for a correct rejection of H0 (q H1 ) and prob-
abilities for a false rejection of H0 (q H0 ). It has as a rule an infimum for qm, that is,

G q G qinf ( ) = ( )
q

n c c n c c m
Θ

, , , ,l r l r
, and is monotonically decreasing in the area to the left of qm and

monotonically increasing in the area to the right of qm. Due to the monotonicity of the power
function in its respective domains q[0, ]m and q[ , 1]m , the argument value of the type I error
criterion E1, defined as the supremum of probabilities for false rejection of H0, is one of the edge
elements of the set H0, that is,

E n c c G q G q G q α( , , ) = sup ( ) = max { ( ), ( )}l r
q H

n c c n c c l n c c r1 , , , , 0 , , 0l r l r l r

0




Considering the symmetry of the power function in the case of a symmetrical specification of
q l0 and q r0 regarding the 50%‐point, we obtain

E n c c G q G q α( , , ) = ( ) = ( )l r n c c l n c c r1 , , 0 , , 0l r l r


as well as
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⋅

when q q= = 0.5l r0 0 holds (exemplary for a point‐valued formulation of H0).
Finally, in the fourth step, the p value of the two‐tailed event is to compare with the

predetermined α‐level for making a test decision. Applying the general definition of the p value
to the binomial test, we obtain
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(5)

and
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( )
= max

(1 − )
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=

=
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(6)

for left‐ and right‐tailed events, respectively, and

p n s p n s p n s( , ) = 2 min{ ( , ), ( , ), 0.5}c l r (7)

for a two‐tailed event. Considering the case of q q= = 0.5l r0 0 (point‐valued H0), the above
definition of the “one‐tailed” p values reduces to

 

 


 


 


p n s S s

n

m
p n s S s

n

m
( , ) = ( ) = 0.5 and ( , ) = ( ) = 0.5l q

n

m

s

r q
n

m s

n

=0.5

=0

=0.5

=

   
(8)

The null hypothesis is to reject, if the p value for the two‐tailed event is lower than or equal to
the given α‐level, otherwise H0 can not be rejected.

3 | GENERALIZED TWO ‐TAILED SIGN TEST WITH
FUZZY HYPOTHESES

As well known, due to the monotonicity of the power function of the two‐tailed sign test
in the area of H0, the type I error generally increases and thus also the p value, by
changing from point‐valued to interval‐valued statements in H0. Further, this increase is
the higher, the larger the width (w q q= −r l1 1 ) of interval‐valued H0, caused exemplary by
the higher uncertainty/imprecision regarding the 50%‐quantile. To overcome these
difficulties, a more promising way of modeling uncertainty/imprecision should be chosen
via using fuzzy sets theory, that is, formulation of H0 and H1 via fuzzy sets instead of crisp
sets as well as modeling of membership functions m q( )H0

, m q( )H1
instead of indicator

functions.
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The most important benefits of fuzzy formulations of hypotheses compared to the interval‐
valued approach are as follows:

• a gradual (and thus a more appropriate) modeling of uncertainty/imprecision regarding H0 and H1

• in general a reduction of the generalized type I error and the generalized p value
• better test results for smaller sample sizes

In the following, we extend the previous two‐tailed test problem to the case of fuzzy
hypotheses by utilizing the general approach of Chukhrova and Johannssen.19 Due to the fact
that a fuzzy hypothesis is a generalization of a crisp hypothesis, we derive a generalized two‐
tailed sign test following the four‐step procedure introduced in Section 2.

Therefore, in the first step, we consider fuzzy reformulated hypotheses H0 and H1 by
embedding fuzzy statements on the fraction q of interest. For instance,

H :0 The population proportion q is about 50% and rather lies between 40% and 60%

H q q( : = 0.5, 0.4 0.6)0  
H :1 The population proportion q is not about 50% and rather does not lie between 40%

and 60%
H q q q q( : < 0.4, < 0.5, > 0.5, > 0.6)1

In contrast to crisp reformulated hypothesis H0, fuzzy reformulated null hypothesis

H q q q q q q: ,l r l r0 0 0 1 1    (9)

with q q q q0 < < 1l l r r1 0 0 1   is proposed to be formulated using

1. all four hypothesized fraction values (e.g., here q q= = 0.5l r0 0 , q = 0.4l1 , q = 0.6r1 ),
2. fuzzy comparison operators like “fuzzy” lower/larger equal ( ,  ) besides crisp comparison

operators like “crisp” lower/larger equal ( , ),
3. gradual fuzzification of the indifference zone around the point‐ (interval‐)valued threshold

(e.g., q q[ , ) = [0.4, 0.5)l l1 0 and q q( , ] = (0.5, 0.6]r r0 1 , given 50%‐threshold).

In Remark 3.1, we comment on points 1–3 regarding the above modeling approach.

Remark 3.1.
1. In compliance with the theory proposed in Section 2, we consider in turn an in-

difference zone I , which can now be formulated also as a nonempty set, that is,
q q q q[ , ) ( , ]l l r r1 0 0 1∪ with q ql l0 1≠ , q qr r0 1≠ . This formulation is quite natural, espe-
cially for given symmetric uncertainty (e.g., q q q q| − | = | − | = 10%l l r r0 1 0 1 ) regarding
the 50%‐point. Furthermore, a symmetric modeling of I allows for an appropriate
representation of the given percentage of the uncertainty level in the support of H0, for
example, given an uncertainty level of 20% one would choose the width of H0 (i.e., the
length of the support of H0) as w q q= − = 0.2r l1 1 , thus it holds q q= = 0.5l r0 0 ,
q = 0.4l1 and q = 0.6r1 .

2. Due to the generalization of the crisp set H0 to the fuzzy set H0, the fuzzy set H0 now
consists of a crisp and a fuzzy set, that is, H H H= C F

0 0 0∪ , which are denoted as crisp
and fuzzy areas of the null hypothesis. While crisp comparison operators refer to the
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crisp area of H0, fuzzy comparison operators provide an indication of the fuzzy area of
H0 (see Figure 4). The edge elements of the nonempty supports of H l

F
0 , H r

F
0 (with

H H H=l
F

r
F F

0 0 0∪ ) are thereby based on the hypothesized values q l1 , q l0 , q r0 , q r1 .
3. In contrast to the normal crisp area HC

0 , the fuzzy area HF
0 ≠ ∅, whose support

corresponds to the indifference zone, is subnormal. The membership functions u q( )l0

and u q( )r0 for this area are (strictly) monotonically increasing and decreasing
functions.

As for the formulation of fuzzy complementary hypothesis H1 (see Figure 4), we propose to
model this hypothesis in compliance with the definition of fuzzy H0 in turn under full fuzzification
of the indifference zone q q q q[ , ) ( , ]l l r r1 0 0 1∪ to the left and right of HC

0 , that is,

H q q q q q q q q: < , < , > , >l l r r1 1 0 0 1 (10)

where HC
1 is the crisp area q q(0, ) ( , 1)l r1 1∪ and HF

1 is the fuzzy area, whose support corresponds
to the indifference zone.

In addition, we recapitulate the general formulation of both fuzzy hypotheses, that is, the
definition of fuzzy sets H0, H1 and I (with H H I = Θ0 1∪ ∪ ), their crisp and fuzzy areas as well
as of the corresponding membership functions m q( )H0

, m q( )H1
, m q( )I for q Θ in Table 2.

Due to the fact that the fuzzy sets H0 and H1 are the unions of their crisp and fuzzy areas,

( ) ( )
( ) ( )

H H H

H H H

supp( ) = supp supp ,

supp( ) = supp supp ,

C F

C F

0 0 0

1 1 1

∪

∪

the membership functions m q( )H0
and m q( )H1

can be defined as follows:

{ }
{ }

m q m q m q m q

m q m q m q m q

( ) = ( ) = max ( ), ( )

( ) = ( ) = max ( ), ( )

H H H H H

H H H H H

C F C F

C F C F

0 0 0 0 0

1 1 1 1 1

∪

∪

Therefore, these complementary functions (i.e.,m q m q( ) = 1 − ( )H H0 1
) are piecewise monotonically

increasing and then monotonically decreasing (regarding H0) or vice versa (regarding H1). In the
case of q q q q= =l l r r1 0 0 1 , hypotheses formulation reduces to crisp complementary hypotheses
with m q m q( ) = ( )H H

C
0 0

, m q m q( ) = ( )H H
C

1 1
(due to H =F

0 ∅, H =F
1 ∅).

As for the shape of the membership functions m q( )H0
and m q( )H1

, we exemplary consider
piecewise linear and s‐shaped functions with u q( )l0 , u q( )r0 and u q( )l1 , u q( )r1 given in Table 3.
Figure 5 illustrates these membership functions and demonstrates the gradual fuzzification of the
indifference zone I (fuzzy complementary hypotheses). For a sensitivity analysis with regard to the

FIGURE 4 Representation of fuzzy reformulated hypotheses H0, H1
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impact of different shapes of membership functions (including piecewise linear and s‐shaped) in
the framework of fuzzy hypothesis testing, we refer to Chukhrova and Johannssen.21

In the second step, the practitioner/researcher determines the sample size n, n  , and the
magnitude of the α‐level, α (0, 1) . In the third step, the test statistic can be calculated via
 m X( )i
n

C i=1
(−) by using observations obtained from a random sample. Finally, in the fourth step,

the user compares the generalized p value for the two‐tailed event with the predetermined
α‐level to achieve a crisp test decision. Note that the criteria for decision making are the same
as in the case of crisp hypothesis testing.

TABLE 2 Fuzzy subsets of the parameter space and their membership functions

Set H0 q m q q m q

H q q q q

{( ; ( ))| Θ, ( ) [0, 1]}

ncl( ) = { Θ| }

H H

l r0 0 0

0 0 
  











m q

q q

m q q q

u q q q q

q q q

u q q q q

m q q q

q q

( ) =

0 if 0 < <

( ) if =

( ) if < <

1 if

( ) if < <

( ) if =
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As for the calculation of the generalized p value, we can use the results obtained in
Section 2 solely for the elements from the crisp area of H0. Therefore, the definition of the
p value is first to generalize with respect to the fuzzy area of H0. In particular, this
generalization shall be conducted in compliance with the definition of the generalized
type I error criterion,

{ }E n c c m q m q G q α( , , ) = sup ( ( ) − ( )) ( ) ,l r
q H

H H n c c1 , ,l r

0

0 1



(11)

which is given by the supremum of weighted probabilities for a false rejection of the null hypothesis
(see Arnold22,23). While the probabilities originate from the power function G q( )n c c, ,l r

, the weight
function is defined by the difference between the membership of an element q Θ to fuzzy H0 and
to fuzzy H1, that is, it holds m q m q( ) − ( )H H0 1

for all q Θ . Definition (11) can also be stated as
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against the backdrop that the domain for the supremum of weighted probabilities can logically be
restricted to elements of H0 that involve positive weights of the power function. Further, in com-
pliance with the classical sign test, the generalized type I error criterion E1 has a supremum for the
elements of the respective support of HC

0 at q q= l0 or q q= r0 , that is, { }G q G qmax ( ), ( )n c c l n c c r, , 0 , , 0l r l r
,

where G q G q( ) = ( )n c c l n c c r, , 0 , , 0l r l r
holds for q q=l r0 0 . This is due to (1) the monotonically decreasing

(increasing) power function G q( )n c c, ,l r
to the left (right) of its minimum,

G q G qmin ( ) = ( ),
q

n c c n c c m
Θ

, , , ,l r l r
(12)

as well as to (2) the relationship m q m q q H( ) − ( ) = 1 for all supp( )H H
C
00 1

 .

FIGURE 5 Fuzzy complementary piecewise linear and polynomial (s‐shaped) membership functions [Color
figure can be viewed at wileyonlinelibrary.com]

CHUKHROVA AND JOHANNSSEN | 7423

http://wileyonlinelibrary.com


Besides the supremum with respect to Hsupp( )C0 , E1 has another supremum for
q Hsupp( )F0 (given Hsupp( )F0 ≠ ∅). However, it is generally not representable in a closed
form caused by the reverse monotonicity of both the power and weight functions, which is why
it has to be calculated numerically, and after that, it is to compare with the supremum from the
support of the crisp area. Note that we obtain crisp hypotheses and therefore the results
presented in Section 2 when the support of the fuzzy area is an empty set.

Using the above results, we define the generalized p value for a left‐tailed, right‐tailed and
two‐tailed event as follows:
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where (15) corresponds to
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by an additional distinction between crisp and fuzzy areas. For q q=l r0 0 , the definition of
the generalized p value simplifies to
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(16)

where (16) holds when choosing q q= = 0.5l r0 0 .
Considering exemplary the last case (q q= = 0.5l r0 0 ), we propose to interpret the combined

test decision, that is, the generalized p value, in turn under separate consideration of crisp and
fuzzy areas. In particular, the p value
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related to the crisp area HC
0 of fuzzy H0 leads to a probabilistic p value, which corresponds to

the p value of the common test on the median with point‐valued formulated H0. In contrast, the
weighted p value
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related to the fuzzy area HF
0 of fuzzy H0 approximates the (maximum possible) probabilistic p value

of the common test on quantiles with interval‐valued H0 (formulated without median) by means of
appropriate extent constituted by fuzziness (relaxation) of hypotheses formulation. Thus, the fuzzy
test on quantiles is related to both tests (and their decisions) and combines them by means of the
generalized p value pg. As for the rejection of fuzzyH0 (based on p αg  ) in favor of fuzzyH1, we can
generally accept fuzzy H1 at the chosen level of significance α due to the significant result. Con-
sidering the nonrejection of fuzzy H0 (based on p α>g ), we fail to reject fuzzy H0 at the chosen level
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of significance α due to the nonsignificant result. Such a crisp decision making corresponds to
classical decision making either for point‐valued or interval‐valued H0.

In addition, we refer to the possibility of obtaining final exploratory results (following a
rejection of fuzzy H0) by considering the magnitude of the realization of the test statistic s:

• There is a deviation of the true quantile M to the left from the hypothesized quantile M*,
given s >

n

2
.

• There is a deviation of the true quantile M to the right from the hypothesized quantile M*,
given s <

n

2
.

It is important to note that such findings are not referred to as test results in the sense of
significant conclusions due to a possible type III error, which entails an incorrect decision of
direction following a rejected null hypothesis of a two‐tailed test (see Kaiser24).

4 | CASE STUDY: PSYCHOSOCIAL STATUS DURING THE
COVID ‐19 PANDEMIC

In this case study, we intend to investigate the psychosocial status during the COVID‐19
pandemic. For this purpose, we compare the results of the two‐tailed sign test with point‐
valued, interval‐valued and fuzzy hypotheses. To complete the statistical analysis, we
supplement the results of the generalized two‐tailed sign test by considering the respective
results when implementing one‐tailed fuzzy hypotheses introduced by Chukhrova and
Johannssen.3

4.1 | The data set

The data set, the COVIDiSTRESS global survey, underlying this case study is taken from
Yamada et al.25 Following COVIDiSTRESS global survey network,26 this survey is an inter-
national collaborative undertaking for data gathering on human experiences, behavior, and
attitudes during the COVID‐19 pandemic between March 30 and May 30, 2020. The survey
focuses on investigation of eight variables (see Table 4) regarding psychological stress, com-
pliance with behavioral guidelines to slow the spread of coronavirus type 2 as well as trust in
governmental institutions and their preventive measures.

The variables given in Table 4 are explained in more detail in the following:

• PSS‐10 is an instrument for assessing perceived stress and includes two subscales: perceived
helplessness (six items) and perceived self‐efficacy (four items). Psychological stress is as-
sociated with an increased risk of disease (see, e.g., Klein et al.27 and Bastianon et al.28).

• SPS‐10 is an instrument designed to measure the perceived availability of social support
and includes five subscales with two items each: emotional support or bonding, social
integration, affirmation of worth, material support, and orientation. Perception of social
support is one of the best predictors of psychological distress and quality of life (see, e.g.,
Ibarra‐Rovillard & Kuiper,29 Caron,30 Iapichino et al.,31 Steigen & Bergh32).
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• SLON‐3 is an instrument designed to measure the subjective emotional experience of
loneliness and includes three items. SLON‐3 is a subscale of the UCLA loneliness scale that
contains 20 items (see, e.g., Hughes et al.,33).

• BFI‐1–BFI‐5 are five subscales of the Big Five Inventory (see John34) with three items each.
The Big Five approach is a psychological concept for assessing personality (see McCrae and
John35). Central to this approach is the assumption that personality differences between
individuals, expressed in behavioral and experiential terms, are due to the five central
personality dimensions of Openness to experience, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism (this is why this approach is also called OCEAN model)
(see, e.g., Lang et al.36).

It is worth noting that the higher the score on the respective Likert scale (see third column of
Table 4), the higher the perceived stress (PSS‐10), the higher the perceived availability of social
support (SPS‐10), the higher the subjective emotional experience of loneliness (SLON‐3) or the
more distinct the respective psychosocial attribute (BFI‐1–BFI‐5). The respective scores were
surveyed for 27 European countries and 15 countries from other continents (North America,
South America, Asia, and Australia), the sample size per country varies between 216 (Ireland)
and 22,933 (Finland). For each country and each variable, descriptive statistics, such as scale
means, have been calculated, see tables 9–16 in Yamada et al.25

4.2 | Design and objective of this case study

In this case study, we examine the psychosocial status during the corona pandemic in Eur-
opean countries measured by means of eight variables of the COVIDiSTRESS global survey. As
the psychosocial status may be considerably different for various regions of Europe due to
structural factors, cultural circumstances and climatic aspects, it is not appropriate to analyze
all the European countries as a collective pool. For this reason, we divide the pool into three
subgroups according to European regions: Western, Eastern, and Southern Europe (see
Table 5). On the one hand, such a handling reduces the sample size, but on the other hand it
allows much more target group‐specific conclusions.

TABLE 4 Variables of the COVIDiSTRESS global survey

Variable Description Measurement

PSS‐10 Perceived stress for the past week PSS, 10 items, 5‐point Likert scale

SPS‐10 Available social provisions in critical/distressing
situations

SPS, 10 items, 6‐point Likert scale

SLON‐3 Short self‐report scale of loneliness for the last week SLON, 3 items, 5‐point Likert scale

BFI‐1 Big 5—Extraversion BFI Short, 3 items, 6‐point Likert scale

BFI‐2 Big 5—Neuroticism BFI Short, 3 items, 6‐point Likert scale

BFI‐3 Big 5—Openness to experience BFI Short, 3 items, 6‐point Likert scale

BFI‐4 Big 5—Agreeableness BFI Short, 3 items, 6‐point Likert scale

BFI‐5 Big 5—Conscientiousness BFI Short, 3 items, 6‐point Likert scale

Abbreviations: BFI, Big Five Inventory; PSS, Perceived Stress Scale; SLON, Scale of LONeliness; SPS, Social Provisions Scale.
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The scale means for the eight variables across the European countries are given in
Table 6. Since significant upwards or downwards deviations from a benchmark value are
associated with significantly stronger or weaker psychosocial effects, it is important to
investigate whether there are significant deviations in both directions, that is, to employ a
suitable two‐tailed test. Due to the division of the entire data set into three subgroups of
interest, we are confronted with rather small sample sizes (8–11 observations per subgroup)
and thus the nonparametric sign test is a reasonable choice to test for the median with
respect to a single subgroup. As the underlying sample sizes for each country are very large
(n 216 , on average n = 3,346, for each country), it is appropriate to assume a normal
distribution for the observations of the individual countries. Due to the symmetry of the
normal distribution, the mean corresponds to the median. Thus, we can use the respective
scale means as observed values within the subgroup of interest for testing on the median. As
for achieving a corresponding hypothesized median value M* with respect to the
investigated variable, it is reasonable to take the class midpoint of the underlying Likert
scale as a benchmark value (see also Table 6).

4.3 | Performing the two‐tailed sign test with point‐valued, interval‐
valued and fuzzy hypotheses

In general, the preliminary hypotheses of the two‐tailed sign test are given by (1), where
M* = 3 (for PSS‐10, SLON‐3) or M* = 3.5 (for SPS‐10, BFI‐1–BFI‐5). Considering the con-
ventional two‐tailed sign test on the median with point‐valued hypotheses, we obtain the
following reformulated hypotheses (see 2, and also Figure 6 for respective membership
functions):

H q H q: = 0.5 vs : 0.50 1 ≠

As for the case of interval‐valued hypotheses, we have to specify hypothesized fraction values
q q q q, , ,l r l r0 0 1 1 in the first step. For instance, when considering complementary hypotheses in
combination with an uncertainty level of 20% (40%) regarding the 50%‐quantile, it holds
q q= = 0.4l l0 1 (q q= = 0.3l l0 1 ) and q q= = 0.6r r0 1 (q q= = 0.7r r0 1 ). The reformulated interval‐
valued hypotheses are then defined as follows (see 3, and also Figure 6 for respective mem-
bership functions):

H q H q q

H q H q q

: 0.4 0.6 vs : < 0.4, > 0.6

( : 0.3 0.7 vs : < 0.3, > 0.7)

0 1

0 1

 
 

Formulating fuzzy hypotheses, we also have to specify q q q q, , ,l r l r0 0 1 1 . Since we test for the
median in the crisp area of H0, it is suitable to choose symmetric membership functions around
0.5‐value, that is, in the fuzzy areas of H H,0 1, like complementary polynomial (s‐shaped)
membership functions (see Section 3). The choice of s‐shaped membership functions can be
justified as follows (see Chukhrova and Johannssen3):

• The slope of the power function is not that steep in the fuzzy area of H0 (due to the symmetry
of the binomial distribution for q = 0.5 in combination with smaller values of n).
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• Given rather narrow widths of fuzzy areas of H H,0 1, piecewise linear, convex or concave
membership functions entail weight functions that are too steep within the indifference
zone. The slope of the weighted power function thus leads to suprema which are not
larger as in the crisp area of H0. In contrast, by employing s‐shaped membership
functions, these problems can be avoided, and moreover, a concave‐convex‐shaped
function is more appropriate to achieve a “smooth transition” within the fuzzy area
around 0.5‐value.

Assuming again an uncertainty level of 20% (40%) regarding the 50%‐quantile, it holds q =l0

q = 0.5r0 and q = 0.4l1 , q = 0.6r1 (q = 0.3l1 and q = 0.7r1 ). The reformulated fuzzy hypotheses
are then given by (see 9 and 10, and also Figure 6 for respective membership functions):

H q q H q q q q

H q q H q q q q

: = 0.5, 0.4 0.6 vs : < 0.4, < 0.5, > 0.5, > 0.6

( : = 0.5, 0.3 0.7 vs : < 0.3, < 0.5, > 0.5, > 0.7)

0 1

0 1

 
 

Example 4.1 (Calculation of the test statistic and p values for PSS‐10 in Eastern Europe).
Since the stress level of people has been shown to have increased during the COVID‐
19 pandemic (see, e.g., Statista37), and the variable PSS‐10 measures the extent of
the increased perceived stress level due to the pandemic situation, an interesting
question arises whether the stress level is slightly or strongly increased. Testing for
the extent of the stress level, we investigate if the true median of PSS‐10 is
significantly lower or higher than the hypothesized median value M* = 3,
exemplary for Eastern Europe.

As x M< *i holds for all i = 1, …, 8, the realization of the test statistic s is given by
s m x= ( ) = 8i C i=1

8
(−) . The p value in the point‐valued case is then calculated as follows

(see 7 and 8):










 










p
m

(8, 8) = 2 min 0.5
8

, 0.5 , 0.5 = 0.0078c
m

8

=0

8
8

The p value when formulating interval‐valued hypotheses, for example, for
q q= = 0.4l l0 1 and q q= = 0.6r r0 1 , can be obtained via (see 5–7):

FIGURE 6 Membership functions for point‐valued, interval‐valued and fuzzy approaches in the two‐tailed
case [Color figure can be viewed at wileyonlinelibrary.com]
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The generalized p value in the case of fuzzy hypotheses, for instance when
q q= = 0.5l r0 0 , q = 0.4l1 , q = 0.6r1 , is given by (see 15 and 16):
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The (generalized) p value in the case of interval‐valued and fuzzy hypotheses with
q = 0.3l1 , q = 0.7r1 can be calculated in an analogous way, and we observe
p (8, 8) = 0.1153c and p (8, 8) = 0.0126g , respectively.

In addition, Figure 7 shows basic functions of the (generalized) p values (without maximum
operator), which depend on the values of the population proportion q specified in point‐valued,
interval‐valued or fuzzy H0 (with q 0.4l1  and q 0.6r1  ) for left‐ and right‐tailed events. Note
that the (generalized) p value for a two‐tailed event is the doubled minimum of both respective
(generalized) p values for one‐tailed events.

The complete test results regarding point‐valued, interval‐valued, and fuzzy hypothesis
testing for all the variables and European regions can be found in Table 7 that is structured as
follows:

• There are three blocks, and each block is associated to a specific European region.
• The realization of the test statistic s for each of the eight variables is given by the first entry in
the first column of each block.
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• The first entries of columns 2–6 of each block show (generalized) p values for the cases of
point‐valued, interval‐valued, and fuzzy hypotheses.

Analyzing the results given in Table 7 leads to the following insights:

• The realizations of test statistics mostly have either the largest possible value (s n= ) or the
smallest possible value (s = 0). That is, we either observe x M< *i or x M> *i for nearly all
i n= 1, …, . As a consequence, the respective p values are mostly lower than 0.01 for s n= or
s = 0, that is, H0 can be rejected at the 1% significance level. This generally holds for point‐
valued hypotheses and mostly for fuzzy hypotheses (except for q = 0.3l1 and q = 0.7r1 ,
Eastern and Southern Europe), but only in one case for interval‐valued hypotheses (q = 0.4l1

and q = 0.6r1 , Western Europe). In addition, there are only six cases where the realization of
the test statistic differs from s n= or s = 0. Here, p values are above 5% (except for point‐
valued and fuzzy hypotheses for BFI‐2 in Western Europe) due to the very small underlying
sample size.

FIGURE 7 (Generalized) p values using point‐/interval‐valued and fuzzy approaches for a left‐tailed event
(top) and a right‐tailed event (bottom), given q 0.4l1  , q 0.6r1  [Color figure can be viewed at
wileyonlinelibrary.com]
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Considering realizations of the test statistic, we observe the same p value for s n i= − and
s i= , i n= 0, …, , no matter we have point‐valued, interval‐valued or fuzzy hypotheses (see, for
instance, p values for s = 11 and s = 0 associated with PSS‐10 and SPS‐10 regarding Western
Europe). This fact is due to the axial symmetry of the respective underlying binomial dis-
tribution functions and of the respective weight functions. Further, the p values are the highest
for interval‐valued hypotheses; and generalized p values for fuzzy hypotheses are higher than
respective p values for point‐valued hypotheses (case by case comparison). It is worth noting
that the narrower the indifference zone, the lower the generalized p value in the case of fuzzy
hypotheses.

When we are able to reject point‐valued, interval‐valued or fuzzy null hypothesis, we can
derive the following statement: The true 50%‐, 40%–60%‐ (30%–70%‐) or approximately
40%–60%‐ (30%–70%‐) quantile deviates significantly from the hypothesized quantile M* = 3

(for PSS‐10, SLON‐3) or M* = 3.5 (for SPS‐10, BFI‐1–BFI‐5).
As for the content‐related interpretation with respect to single variables, we additionally

provide general implications for the psychosocial status during the COVID‐19 pandemic:

• People's stress level is (slightly) increased in Western and Eastern Europe.
• The perceived availability of social support is (strongly) pronounced for all three European regions.
• The subjective emotional experience of loneliness is (slightly) increased in Western and
Southern Europe.

• The personality dimension of extraversion is (strongly) pronounced for Western and
Southern Europe.

• The personality dimension of neuroticism is (weakly) pronounced for Western Europe.
• The personality dimensions of openness to experience, agreeableness, and conscientiousness
are (strongly) pronounced for all European regions.

Summarized, the psychosocial status during the COVID‐19 pandemic is similar for the con-
sidered European regions, but not the same. We observe similar effects regarding the perceived
availability of social support and the personality dimensions of openness to experience,
agreeableness, and conscientiousness during the pandemic situation. In contrast, there are
deviant effects for the European regions regarding people's stress level, subjective emotional
experience of loneliness and the personality dimensions extraversion and neuroticism.

The above statements without tendencies of direction (indicated in parentheses) are valid for all
quoted European regions at the 1% significance level, with exceptions for single tests that lead to
nonsignificant results (see second entry in each cell of Table 7, denoted by “−”). The statements
regarding tendencies of direction can be biased by the type III error (which is negligible as the
underlying sample sizes of the respective countries are very large). The expressiveness of the above
statements varies between performed tests, which is why we consider three levels of expressiveness:

• “+” describes a deviation of undefined magnitude from the 50%‐quantile;
• “++” describes a considerable deviation from the 50%‐quantile;
• “+++” describes a large deviation from the 50%‐quantile.

While the level “+” is applicable to the test on the median, the levels “++” and “+++” are related to
the fuzzy and crisp test on quantiles, respectively (see second entry in each cell of Table 7). In
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addition, Table 7 shows also deviant test results that are significant at common higher significance
levels (i.e., 5% or 10%) when the p value of the test on the median exceeds 1%.

Based on the obtained results and with respect to the different kinds of hypotheses, we can
summarize the following: Since the generalized p values are throughout considerably lower
than the p values in the interval‐valued case, the fuzzy test on quantiles is preferable to the
common two‐tailed sign test on quantiles. In addition, this test is also beneficial to the common
two‐tailed sign test on the median as it provides more information about the underlying
distribution at the cost of slightly increased generalized p values.

4.4 | Supplementary analysis to the case study by means of one‐tailed
fuzzy hypotheses

To complete the statistical analysis of the case study, a comparison with other related
approaches (besides the classical point‐ and interval‐valued approaches) would be appropriate.
However, a reasonable comparison with existing fuzzy sign tests is not viable since the
introduced two‐tailed generalized sign test is a pioneer regarding the formulation of fuzzy
hypotheses on fractions instead on quantiles on the one hand (see Grzegorzewski and
Spiewak,2,14 Hesamian and Taheri,15 Hesamian and Chachi,16 Momeni and Sadeghpour‐
Gildeh18) and it is based on crisp instead of fuzzy‐ or interval‐valued data on the other hand
(see Grzegorzewski and Spiewak,2,14 Grzegorzewski,12,13 Hesamian and Taheri,15 Hesamian
and Chachi,16 Kahraman et al.,17 Momeni and Sadeghpour‐Gildeh18). But, there is the pos-
sibility to supplement the case study by means of the fuzzy sign test with one‐tailed fuzzy
hypotheses introduced by Chukhrova and Johannssen.3

Following the approach of Chukhrova and Johannssen,3 first of all, we formulate the
respective one‐tailed fuzzy hypotheses in compliance with the reference values q q= = 0.5l r0 0 ,
q = 0.4l1 , and q = 0.6r1 in the two‐tailed case, assuming again an overall uncertainty level of
20% (i.e., 10% per test) regarding the 50%‐quantile, that is,

H q q H q q

H q q H q q

: 0.4, 0.5 vs : < 0.4, < 0.5 (left‐tailed case)

: 0.5, 0.6 vs : > 0.5, > 0.6 (right‐tailed case)

0 1

0 1

 
 

The imprecise linguistic statements in the hypotheses are then

H q

H q

: The population proportion is approximately (10% uncertainty level) lower than or 

equal to50%

: The population proportion is approximately (10% uncertainty level) larger than50%

0

1

in the left‐tailed case and

H q

H q

: The population proportion is approximately (10% uncertainty level) lower than or 

equal to 50%

: The population proportion is approximately (10% uncertainty level) larger than 50%

0

1
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in the right‐tailed case. Choosing in turn complementary polynomial membership
functions (see Figure 8 and Table 3), we can calculate the respective generalized p values in the
next step.

Example 4.2 (Calculation of the generalized p values for PSS‐10 in Eastern Europe, one‐
tailed case). Using the category “negative signs,” we obtain the same realization of the
test statistic s as in the two‐tailed approach (see Example 4.1), that is, s = i=1

8

m x( ) = 8C i(−) (x M< *i holds for all i = 1, …, 8 with M* = 3). The generalized p value in
the case of one‐tailed fuzzy hypotheses is then given by (see 13 and 14):
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Comparing the results of the one‐tailed case with the respective results of the two‐tailed
case leads to the following conclusion: We obtain a significant result (α = 0.01) in the two‐
tailed case as well as in the one‐tailed case when testing for a significant direction, that is, in the
right‐tailed case, while there is no conclusion in the left‐tailed case due to a nonsignificant
result. It is worth noting that the generalized p value in the two‐tailed case corresponds to the
doubled smallest generalized p value in the one‐tailed case, that is, the significant generalized
p value in the two‐tailed case lies between the respective generalized p values in the one‐tailed
case (see Figure 7). Analogous conclusions can be applied to overall results of the case study in

FIGURE 8 Membership functions for the fuzzy approach in the left‐tailed and right‐tailed case [Color
figure can be viewed at wileyonlinelibrary.com]

CHUKHROVA AND JOHANNSSEN | 7437

http://wileyonlinelibrary.com


the framework of respective comparisons between one‐ and two‐tailed cases and are in line
with the classical test theory.

Thus, given that the theoretical direction of interest is unknown as in this case study, two‐
tailed formulated fuzzy hypotheses are indispensable for new knowledge extraction compared
to one‐tailed fuzzy hypotheses. The latter ones are rather appropriate for testing regarding one
particular direction of interest.

5 | CONCLUSIONS

In this paper, we have presented the generalized two‐tailed sign test for quantiles with fuzzy
hypotheses that mitigates/overcomes crucial drawbacks/limitations of the two‐tailed sign test
with point‐ or interval‐valued hypotheses. In particular, the following advantages of the pro-
posed generalized two‐tailed sign test arise for practical applications:

(1) Advantages compared to a test on a quantile (point‐valued formulation of H0):
• Moderate widening of null hypothesis gains in general more information about the

underlying distribution.
• Implementing fuzzy sets in hypotheses formulation enables modeling of uncertainty/

imprecision in statements to be tested.
• Fuzzy testing provides in general just a slight increase of the generalized type I error and

the generalized p value. Thus, the test performance is sufficiently good even for small
sample sizes in combination with moderate uncertainty levels.

(2) Advantages compared to a test on a set of quantiles (interval‐valued formulation of H0):
• Combined consideration of crisp and fuzzy areas of fuzzy H0 gains more information

about the underlying distribution.
• Statements in hypotheses are alternatively modeled by implementing fuzzy sets, whose

membership functions allow for a gradual and thus a more appropriate modeling of
uncertainty/imprecision.

• Fuzzy testing provides in general a considerable reduction of the generalized type I error
and the generalized p value. Thus, the test performance regarding small significance
levels in combination with very small sample sizes generally increases.

Beyond the above advantages, the generalized two‐tailed sign test enables interpretations of the
generalized p value in the common probabilistic way and ensures a crisp test decision, that is,
to reject or not to reject H0. These aspects are not self‐evident, because fuzzy tests often come
along with crucial difficulties in practical applications, and therefore lack a sound basis for
decision‐making that is most important for the practitioner.

Last but not least, the formulation of fuzzy hypotheses on fractions of underlying quantiles
is more intuitive and convenient for the practitioner/researcher. This is due to the fact that we
deal with the exact binomial test where the critical region (i.e., the theoretical measure) is
defined by means of hypothesized fractions of underlying quantiles, sample size and sig-
nificance level. As for the test statistic (i.e., the observed measure), we consider it as a crisp
quantity, since we do neither deal with uncertainty/imprecision in data nor implement fuz-
ziness in statements on quantiles. Instead, we propose a considerably simplified formulation of
uncertainty/imprecision in fractions that enables for standardization in modeling membership
functions for the most interesting quantiles such as the median.
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To show the benefits of the presented methodology in practical applications, we have
performed a comprehensive case study on the psychosocial status during the COVID‐19 pan-
demic. In particular, we have compared the results of the two‐tailed sign test with point‐valued,
interval‐valued, and fuzzy hypotheses. We have found that the fuzzy test on quantiles is
preferable to the two‐tailed sign test with interval‐valued hypotheses, because the generalized
p values are throughout considerably lower and the gain in additional information is higher. It
is also beneficial to the common two‐tailed sign test with point‐valued hypotheses as it provides
more information about the underlying distribution at the cost of slightly increased generalized
p values. As for implications for the psychosocial status during the COVID‐19 pandemic, we
have drawn conclusions regarding people's stress level, perceived availability of social support,
subjective emotional experience of loneliness, and five personality dimensions (extraversion,
neuroticism, openness to experience, agreeableness, and conscientiousness).

Summarized, since the generalized two‐tailed sign test on quantiles adequately meets the
trade‐off between the formulation of point‐ and interval‐valued hypotheses in the framework of
the crisp two‐tailed sign test, its generality, versatility, and practicability is improved. It should
also be underlined that although the paper is devoted to the two‐tailed sign test, the presented
methodology can be transferred to further nonparametric and parametric tests.
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APPENDIX A: BASIC CONCEPTS OF FUZZY SETS
This Appendix is adapted from Chukhrova and Johannssen3 (see also Chukhrova and
Johannssen38,39).

Considering the classical (crisp) set theory, sets are defined as collections of elements
u   , where each u either belongs to or does not belong to a crisp set A ⊆ . Thus, a crisp set
A is described by an indicator function m : {0, 1}A  → with

m u
u A
u A

( ) =
1 if
0 ifA


∉

While crisp sets allow only for differentiating between membership (1) and nonmembership (0)
of single elements u to a set A, fuzzy sets enable various degrees of membership by generalizing
indicator functions m : {0, 1}A  → to membership functions m : [0, 1]A  → . A fuzzy set A in
 is then given by a set of ordered pairs

A u m u u{( ; ( ))| }A  ≔

A fuzzy set A is referred to as

• normal, if there exists an u   such that A m uhgt( ) = sup ( ) = 1
u A ,

• subnormal, if A0 < hgt( ) < 1 for all u   ,
• convex, if m λu λ u m u m u( + (1 − ) ) min( ( ), ( ))A A A1 2 1 2 for all u u,1 2   and λ [0, 1] ,

where hgt denotes the height of a fuzzy set A. The (crisp) set of all fuzzy subsets of  is denoted
by ( )  .

Given two sets A B, ( )   withm u m u( ) ( )A B for all u   , then A is a fuzzy subset of B
(A B⊆ ). If there is at least one u   withm u m u( ) < ( )A B , then A is a proper fuzzy subset of B
(A B⊂ ).

Since the membership function is the crucial part of fuzzy sets, operations with fuzzy
sets are defined by means of their membership functions. In this paper, we make use of
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basic set‐theoretic operations on fuzzy sets like complement, intersection, and union
defined as follows:

m u m u A U

m u m u m u A B U

m u m u m u A B U

( ) = 1 − ( ) (complement of a normal fuzzy set ( ))

( ) = min{ ( ), ( )} ( intersection of fuzzy sets , ( ))

( ) = max{ ( ), ( )} (cunion of fuzzy sets , ( ))

A A

A B A B

A B A B

¯ 










∩

∪

As we are generally referring to a nonempty (crisp) universal set  , there may be elements
of A having the degree of membership zero. However, elements with a nonzero degree of
membership are mostly of primary interest. This leads us to the support (supp) and the core
(ncl) of a fuzzy set A:

A u m u

A u m u

supp( ) = { | ( ) > 0}

ncl( ) = { | ( ) = 1}

A

A
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