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Abstract: Chloramine and chloroform are widespread in tap water due to water disinfection processes.
This study was designed to explore the associations between trimester-specific exposure to chloramine
and chloroform in tap water and adverse outcomes. This retrospective cohort study included
109,182 mother–infant singleton pairs in Shanghai. A logistic regression model was used to evaluate
the associations of chloramine and chloroform concentrations averaged over the whole pregnancy and
in each trimester with adverse outcomes, including gestational diabetes mellitus (GDM), gestational
hypertensive disorders (GHD), low birthweight (LBW), small for gestational age (SGA), preterm birth
(PTB) and prelabor rupture of membranes (PROM). The use of tap water with elevated chloramine
levels in the first trimester was associated with GDM (OR = 1.06, 95% CI: 1.03, 1.09), while that
in the second trimester was related to GHD (OR = 1.13, 95% CI: 1.09, 1.17). Chloroform levels
in the third trimester were associated with LBW (OR = 1.13, 95% CI: 1.09, 1.16), PTB (OR = 1.05,
95% CI: 1.01, 1.08) and PROM (OR = 1.01, 95% CI: 1.00, 1.01). However, tap water chloroform exposure
in the second trimester was negatively associated with LBW (OR = 0.95, 95% CI: 0.93, 0.98) and PTB
(OR = 0.97, 95% CI: 0.94, 0.99). In conclusion, there are probably no casual associations between
current tap water chloroform and chloramine levels and perinatal outcomes. However, more research
focusing on the effect of chloramine and chloroform on perinatal outcomes are still warranted.

Keywords: chloramine; chloroform; tap water; perinatal outcomes

1. Introduction

Tap water disinfectants have been widely used since the last century to kill pathogenic
organisms [1] and interrupt the spread of water-borne diseases, including cholera, typhoid
and amoebic dysentery [2]. Chlorine, chlorine dioxide, chloramine, ozone and bromine are
some commonly used chemicals for the disinfection of water [3]. Among them, chlorine
and chloramine are the most effective disinfectants and are applied in the Shanghai public
drinking water system. They interact with natural organic matter in drinking water to
form chloroform [4]. Chloramine is commonly used as a secondary disinfectant and can
remain active in water systems for a considerably long period [5]. In Shanghai, tap water
chloroform concentrations ranged from 23.3 to 0.2 mg/L, and chloramine from 1.35 to
0.78 mg/L, in the last 5 years. Chloramine and chloroform are widely distributed in tap
water, exposing humans through the daily ingestion of drinking water and inhalation and
dermal absorption during showers and baths [6]. In this way, chloramine and chloroform
are potential systematic health threats, leading to multiple diseases, such as bladder and
brain cancers [7] and nervous and reproductive effects [8] after long-term exposure.
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Pregnancy is a vulnerable period with many physiological challenges; during this time,
the body is more susceptible to environmental contaminants, likely resulting in pregnancy
complications, such as gestational diabetes mellitus (GDM) and gestational hypertensive
disorders (GHD), and adverse birth outcomes, such as small for gestational age (SGA), low
birthweight (LBW), preterm birth (PTB) and prelabor rupture of membranes (PROM). In
addition to contributing to a significant proportion of neonatal deaths globally [9], these
adverse outcomes also contribute to higher risks of postnatal death, childhood growth
restriction and adult-onset chronic disease, including cardiovascular diseases, diabetes,
cognitive impairment and psychiatric conditions [10–13]. Thus, adverse perinatal outcomes
are an important issue regarding the long-term health status of infants. Concerns regarding
the potential impacts of chloramine and chloroform on reproductive outcomes have been
raised, as such concerns are supported by findings of increased risks of pregnancy loss,
stillbirth and birth defects [8,14–16]. However, no studies on the effects of chloramine and
chloroform on gestational complications have been published, and their association with
neonatal birthweight and gestational duration remains controversial [17–19]. In addition,
the critical periods of susceptibility to chloramine and chloroform during pregnancy have
rarely been studied. Some suggested second trimester exposure could lead to adverse birth
outcomes [20], while others argued that third trimester exposure was more important [21].
Therefore, we aimed to investigate whether chloramine and chloroform levels averaged
over the whole pregnancy and in each trimester were associated with pregnancy complica-
tions and adverse neonatal outcomes. To our knowledge, our study is the first to investigate
the association between chloramine and chloroform levels and pregnancy complications.
Considering the contaminants’ concentrations were within the regulation range, this large
data set allowed an assessment of low-exposed population and could provide valuable
information for drinking water regulation for maternal and fetal health.

2. Methods
2.1. Study Design and Participants

Shanghai is situated in the estuary of the Yangtze River in the eastern center of China
and is a major industrial and commercial city. The Obstetrics and Gynecology Hospital of
Fudan University (Ob & Gyn Hospital) and International Peace Maternity and Child Health
Hospital (IPMCHH), which are both situated in the center of Shanghai, are the two largest
maternal and child health hospitals in Shanghai with patients from all over the city. This
study was designed to assess the associations between chloramine and chloroform levels in
tap water and birth outcomes. Pregnant women with singleton deliveries at IPMCHH and
Ob & Gyn Hospital between 1 June 2016 and 30 October 2020 were included in the analysis.
Women who lived outside of Shanghai during their pregnancy were excluded.

2.2. Environmental Data

Most of the tap water in Shanghai originates from Qingcaosha reservoir. According
to the Standards for Drinking Water Quality in China, the maximum contaminant levels
of chloramine and chloroform are 3 mg/L and 0.06 mg/L, respectively. Drinking water
chloramine and chloroform concentrations were measured at all of the 14 water treatment
plants in Shanghai by Shanghai Monitoring Center of National Urban Water Supply Quality
Monitoring Network monthly. Samples were collected at the entrance of the pipe network
after water treatment [22]. Then, the N,N Diethyl-p-phenylenediamine colorimetric method
was performed to measure chloramine concentrations [23] and chloroform concentrations
were assessed using gas chromatography with electron detection [24]. Measurements
were controlled by the quality control chart method. However, only the monthly average
concentrations of the contaminants of whole city were accessible, which were averaged
from the data collected from the 14 water treatment plants and published by Shanghai
Water Authority (Shanghai Municipal Ocean Bureau, Shanghai, China) for the entire
study period. First, we matched the gestational months of each pregnancy with calendar
months according to last menstrual period and the date of delivery. Then, the exposure of
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each gestational month was assessed based on these municipal average concentrations of
chloramine and chloroform for the month. When a gestational month covered two calendar
months, the data of the former months was used to present the monthly exposure levels.
Accordingly, we calculated the average of monthly contaminant concentrations in tap water
during each trimester to determine trimester-specific tap water chloramine/chloroform
exposure levels.

2.3. Confounders

Maternal sociodemographic (prepregnancy body mass index (BMI), maternal age
at birth, marital status, medical insurance status, occupation, residence and education
level), reproductive history (including parity, previous ectopic pregnancy and abortions),
mode of conception and tobacco and alcohol consumption data were obtained by in-
person interviews. Data on pregnancy complications, including GDM, diabetes mellitus
in pregnancy, chronic hypertension in pregnancy, GHD, gestational thyroid dysfunction,
intrahepatic cholestasis of pregnancy (ICP) and newborn sex, were ascertained from the
medical health records from prenatal visits and delivery. Maternal age and prepregnancy
BMI were analyzed as continuous variables, while others were coded as binary variables.

Potential confounders were selected using Pearson correlations among sociodemo-
graphic characteristics, history of pregnancy and pregnancy complications for each birth
outcome separately. Factors with an absolute Pearson correlation coefficient value greater
than 0.02 as well as those with p values less than 0.05 were selected as potential confounders.
After clinical considerations, the confounding factors were finally taken into the adjusted
models. The directed acyclic graphs were performed to show the relationships among
contaminants, confounders and perinatal outcomes.

2.4. Perinatal Outcomes

The outcomes of interest in this study were GDM, GHD, LBW, SGA, PTB and PROM.
GDM was defined according to diagnostic criteria proposed by the American Diabetes
Association [25]. GHD was diagnosed according to the American College of Obstetricians
and Gynecologists Practice Bulletin [26]. Gestational age was calculated according to the
date of the last menstrual period, and PTB was defined as infants born before 37 gestational
weeks. SGA was defined as an infant with birthweight below the 10th percentile for his/her
gestational age and sex [27]. LBW was defined as a birthweight of less than 2500 g. PROM
was defined as membrane rupture occurring before the onset of labor. The diagnosis relied
on visualization of amniotic fluid leakage from the cervical canal and pooling in the vagina,
confirmed by an alkaline pH according to a nitrazine paper test and the presence of a
ferning pattern under microscopy [28].

2.5. Statistical Analysis

After adjustment for potential covariates, we developed a logistic regression model
with a spline function to calculate the odds ratios (ORs) and their 95% confidential intervals
(CIs) for the associations of trimester-specific chloramine and chloroform levels in tap water
with dichotomous perinatal outcomes, including GDM, GHD, LBW, SGA, PTB and PROM.
In the model, trimester-specific chloramine and chloroform concentrations were treated as
continuous variables. We calculated the monthly attack rates of SGA, PTB and PROM as the
percentages of these birth outcomes among all singleton live births. Then, we plotted the
trends of the monthly attack rates with a generalized linear regression model with a spline
smoothing function. Additionally, the trends of monochloramine and chloroform were
shown to visualize their general association with adverse perinatal outcomes. As the data of
monochloramine and chloroform were calculated by using the data in the former month if
a gestational month covered two calendar months, sensitivity analysis was also preformed
using the data in the latter month to confirm their associations with adverse perinatal
outcomes. All analyses included only live births and singleton pregnancies to reduce



Int. J. Environ. Res. Public Health 2022, 19, 6508 4 of 13

potential bias due to stillbirths and multifetal pregnancies. All analyses were performed
using R software (version 4.04, R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Characteristics of the Mother–Infant Pairs

A total of 109,182 mother- infant pairs in Ob & Gyn Hospital and IPMCHH during
June, 2016 to October, 2020 were included in the study. The majority of infants were born
to mothers who were Han nationality (98.6), had completed college education (84.4%),
were married (99.1%), had medical insurance (71.8%) and were nulliparous (60.3%), with a
mean age of 31.01 years and a mean BMI of 21.23. Only 0.4% of mothers reported cigarette
consumption, and 0.9% reported alcohol consumption (Table 1). For pregnancy women,
GDM had the highest morbidity (13.9%) among the pregnancy complications, followed by
gestational hypertensive disorder (6.2%). Among all singleton live births, 3911 (3.6%) were
LBW, 2369 (2.2%) were SGA, 6240 (5.7%) were PTB, 22956 (21.0%) were PROM. About half
of the newborn infants were male (51.7%) and vaginal birth (52.4%) (Table 2).

Table 1. Maternal characteristics of all pregnant women.

ALL GDM GHD LBW SGA Preterm PROM

(n = 109,182) (n = 15,183) (n = 6791) (n = 3911) (n = 2369) (n = 6240) (n = 26,618)

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Maternal sociodemographic
characteristics

Age, mean ± SD, years 31.01 ± 4.06 32.53 ± 4.26 31.77 ± 4.40 31.48 ± 4.36 30.58 ± 4.00 31.73 ± 4.37 30.758 ±
3.896

Pre-gestational BMI, mean
± SD, kg/m2 21.23 ± 2.81 22.31 ± 3.18 23.06 ± 3.57 21.31 ± 3.14 20.408 ± 2.61 21.67 ± 3.14 21.191 ±

2.746
Marriage
Married 108,202 (99.1) 15,010 (98.9) 6713 (98.9) 3883 (99.3) 2356 (99.45) 6198 (99.3) 26,451 (99.4)
Single 979 (0.90) 173 (1.1) 78 (1.2) 28 (0.7) 13 (0.55) 42 (0.7) 167 (0.6)

Medical insurance
Yes 78,365 (71.8) 10,814 (71.2) 4990 (73.5) 2830 (72.4) 1687 (71.21) 4478 (71.8) 19,545 (73.4)
No 30,816 (28.2) 4369 (28.8) 1801 (26.5) 1081 (27.6) 682 (28.79) 1762 (28.2) 7073 (26.6)

Occupation
Employed 101,825 (93.3) 13,971 (92.0) 6235 (91.8) 3565 (91.1) 2175 (91.81) 5726 (91.8) 25,151 (94.5)

Self-employed 3015 (2.8) 503 (3.3) 216 (3.2) 138 (3.5) 74 (3.12) 209 (3.4) 625 (2.4)
Unemployed 4341 (4.0) 709 (4.7) 340 (5.0) 208 (5.3) 120 (5.07) 305 (4.9) 842 (3.2)

Ethnicity
Han 107,694 (98.6) 14,959 (98.5) 6685 (98.4) 3862 (98.8) 2332 (98.44) 6166 (98.8) 26,331 (98.9)

Minority 1359 (1.2) 213 (1.4) 92 (1.4) 43 (1.1) 33 (1.39) 66 (1.1) 258 (1.0)
Foreign 128 (0.1) 11 (0.1) 14 (0.2) 6 (0.2) 4 (0.17) 8 (0.1) 29 (0.1)

Education attainment
High school or lower 13,152 (15.6) 2041 (17.4) 1166 (23.1) 548 (19.2) 282 (16.25) 869 (18.8) 3067 (15.0)

College 53,869 (63.9) 7617 (65.1) 3173 (62.9) 1792 (62.8) 1096 (63.2) 2918 (63.2) 12,880 (63.1)
Master or above 17,229 (20.5) 2049 (17.5) 707 (14.0) 513 (18.0) 357 (20.6) 828 (17.9) 4463 (21.9)

Smoking during pregnancy
No 86,167 (99.6) 11,870 (99.5) 5208 (99.4) 3006 (99.7) 1805 (99.8) 4799 (99.6) 20,909 (99.6)
Yes 350 (0.4) 60 (0.5) 32 (0.6) 10 (0.3) 4 (0.2) 20 (0.42) 84 (0.4)

Alcohol drinking during
pregnancy

No 85,716 (99.1) 11,809 (99.0) 5199 (99.2) 2997 (99.4) 1799 (99.5) 4773 (99.05) 20,778 (99.0)
Yes 802 (0.9) 121 (1.0) 41 (0.8) 19 (0.6) 10 (0.6) 46 (1.0) 215 (1.)

History of reproduction
parity

0 65,812 (60.3) 8594 (56.6) 4432 (65.3) 2496 (63.8) 1646 (69.5) 3664 (58.7) 17,713 (66.6)
1 36,739 (33.7) 5506 (36.3) 2026 (29.8) 1198 (30.6) 632 (26.7) 2124 (34.0) 7891 (29.7)
≥2 6629 (6.1) 1083 (7.1) 333 (4.9) 217 (5.6) 91 (3.8) 451 (7.2) 1013 (3.8)

Number of previous
abortions

0 57,292 (63.5) 7206 (57.6) 3409 (62.5) 2045 (63.9) 1329 (70.1) 3121 (61.0) 14,246 (65.3)
1–2 29,753 (33.0) 4669 (37.4) 1823 (33.4) 1022 (31.9) 516 (27.2) 1749 (34.2) 6920 (31.7)
≥3 3192 (3.5) 627 (5.0) 221 (4.1) 136 (4.3) 52 (2.7) 244 (4.8) 664 (3.0)

Previous ectopic pregnancy
No 88,270 (97.8) 12,155 (97.2) 5302 (97.2) 3142 (98.1) 1870 (98.6) 4989 (97.6) 21,388 (98.0)
Yes 1967 (2.2) 347 (2.8) 151 (2.8) 61 (1.9) 27 (1.4) 125 (2.4) 442 (2.0)

Note: GDM, gestational diabetes mellitus; GHD, gestational hypertensive disorders; LBW, low birthweight; SGA,
small for gestational age; PROM, prelabor rupture of membranes; BMI, body mass index; SD, standard deviation.
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Table 2. Gestational complications of all pregnant women.

ALL GDM GHD LBW SGA Preterm PROM

(n = 109,182) (n = 15,183) (n = 6791) (n = 3911) (n = 2369) (n = 6240) (n = 26,618)

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Newborn gender
Male 56,449 (51.7) 7871 (51.8) 3482 (51.3) 1859 (47.5) 1126 (47.5) 3539 (56.7) 14,018 (52.7)

Female 52,732 (48.3) 7312 (48.2) 3309 (48.7) 2052 (52.5) 1243 (52.5) 2701 (43.3) 12,600 (47.3)
Gestational diabetes

mellitus
No 93,998 (86.1) - 5404 (79.6) 3190 (81.6) 2060 (87.0) 5083 (81.5) 23,162 (87.0)
Yes 15,183 (13.9) - 1387 (20.4) 721 (18.4) 309 (13.0) 1157 (18.5) 3456 (13.0)

Diabetes mellitus in
pregnancy

No 108,544 (99.4) - 6658 (98.0) 3870 (99.0) 2358 (99.5) 6162 (98.8) 26,487 (99.5)
Yes 637 (0.6) - 133 (2.0) 41 (1.1) 11 (0.5) 78 (1.3) 131 (0.5)

Chronic hypertension
in pregnancy

No 107,808 (98.7) 14,823 (97.6) - 3766 (96.3) 2321 (98.0) 6047 (96.9) 26,399 (99.2)
Yes 1373 (1.3) 360 (2.4) - 145 (3.7) 48 (2.0) 193 (3.1) 219 (0.8)

Gestational
hypertensive disorder

No 102,390 (93.8) 13,796 (90.9) - 3040 (77.7) 1963 (82.9) 5267 (84.4) 25,472 (95.7)
Gestational

hypertension 3023 (2.8) 632 (4.2) - 134 (3.4) 88 (3.7) 183 (2.9) 644 (2.4)
Preeclampsia 2395 (2.2) 495 (3.3) - 191 (4.9) 110 (4.6) 198 (3.2) 375 (1.4)

Sever preeclampsia 1373 (1.3) 260 (1.7) - 546 (14.0) 208 (8.8) 592 (9.5) 127 (0.5)
Intrahepatic

cholestasis of
pregnancy

No 108,345 (99.2) 15,064 (99.2) 6684 (98.4) 3838 (98.1) 2344 (98.9) 6088 (97.6) 26,517 (99.6)
Yes 836 (0.8) 119 (0.8) 107 (1.6) 73 (1.9) 25 (1.1) 152 (2.4) 101 (0.4)

Gestational thyroid
dysfunction

No 101,419 (92.9) 14,069 (92.7) 6252 (92.1) 3630 (92.8) 2195 (92.7) 5809 (93.1) 24,790 (93.1)
Hyperthyroidism 1102 (1.0) 163 (1.1) 96 (1.4) 52 (1.3) 30 (1.3) 78 (1.3) 283 (1.1)
Hypothyroidism 6660 (6.1) 951 (6.3) 443 (6.5) 229 (5.9) 144 (6.1) 353 (5.7) 1545 (5.8)
Mode of delivery

Vaginal 57,161 (52.4) 6852 (45.1) 2143 (31.6) 1436 (36.7) 1139 (48.1) 2648 (42.4) 17,918 (67.3)
Cesarean section 47,569 (43.6) 7785 (51.3) 4382 (64.5) 2398 (61.3) 1118 (47.2) 3463 (55.5) 7114 (26.7)

Instrumental 4451 (4.1) 546 (3.6) 266 (3.9) 77 (2.0) 112 (4.7) 129 (2.1) 1586 (6.0)
Assisted reproductive

technology
No 101,731 (93.2) 13,585 (89.5) 5966 (87.9) 3595 (91.9) 2207 (93.2) 5713 (91.7) 25,039 (94.1)
Yes 7439 (6.8) 1598 (10.5) 823 (12.1) 315 (8.1) 161 (6.8) 516 (8.3) 1576 (5.9)

Note: GDM, gestational diabetes mellitus; GHD, gestational hypertensive disorders; LBW, low birthweight; SGA,
small for gestational age; PTB, preterm birth; PROM, prelabor rupture of membranes; SD, standard deviation.
The sum does not necessarily equal the sample size for all the variables due to missing data.

We performed a Pearson correlation analysis to filter potential confounders. Eight
variables were associated with GDM, as shown in Figure S1, and Figure S2 shows the
eight characteristics associated with GHD. Five variables were found to be positively
related to LBW (Figure S3), and three variables were relevant to SGA (Figure S4). Six
variables were selected for PTB (Figure S5) and seven for PROM (Figure S6). All of the
selected confounders were added to the multivariable logistic regression model after clinical
considerations.

3.2. Risk of Adverse Perinatal Outcomes

In our study, we analyzed the association between tap water chloramine and chloro-
form and adverse perinatal outcomes, including GDM, GHD, LBW, SGA, PTB and PROM,
by logistic regression (Table 3).

After adjustment for confounders, each unit increase in monochloramine in the first
trimester was associated with an increased risk of GDM (OR = 1.06, 95% CI: 1.03, 1.09).
Additionally, we observed a positive association between monochloramine levels in the
second trimester and GHD (OR = 1.13, 95% CI: 1.09, 1.17). However, the chloroform
concentration in tap water was not related to any pregnancy complications.
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Table 3. Odds ratio of perinatal outcomes with increase of water pollutant (per unit). All analyses
were adjusted for selected confounders.

GDM
OR (95% CI)

GHD
OR (95% CI)

LBW
OR (95% CI)

SGA
OR (95% CI)

PTB
OR (95% CI)

PROM
OR (95% CI)

Monochloramine
(100µg/L)

T1 1.06 (1.03, 1.09) 0.99 (0.95, 1.03) 0.95 (0.92, 0.99) 1.00 (0.95, 1.05) 0.95 (0.92, 0.99) 0.95 (0.93, 0.97)
T2 1.00 (0.98, 1.03) 1.13 (1.09, 1.17) 0.98 (0.94, 1.02) 0.94 (0.89, 0.99) 1.04 (1.00, 1.08) 1.02 (0.99, 1.04)
T3 - - 1.06 (1.01, 1.11) 1.03 (0.97, 1.09) 1.02 (0.98, 1.06) 1.04 (1.01, 1.07)
All 0.93 (0.88, 0.98) 1.22 (1.13, 1.31) 1.02 (0.94, 1.10) 0.95 (0.85, 1.05) 1.1 (1.03, 1.19) 1.07 (1.03, 1.12)

CHCl3 (µg/L)
T1 1.00 (0.98, 1.01) 1.00 (0.98, 1.02) 1.05 (1.03, 1.07) 0.99 (0.96, 1.02) 1.04 (1.02, 1.07) 1.00 (0.99, 1.00)
T2 1.01 (0.99, 1.03) 1.02 (0.99, 1.05) 0.95 (0.93, 0.98) 1.00 (0.96, 1.03) 0.97 (0.94, 0.99) 1.01 (1.00, 1.01)
T3 - - 1.13 (1.09, 1.16) 1.00 (0.96, 1.05) 1.05 (1.01, 1.08) 1.01 (1.00, 1.01)
All 1.01 (0.98, 1.04) 1.04 (1.00, 1.08) 1.05 (1.02, 1.08) 0.97 (0.92, 1.02) 1.07 (1.03, 1.11) 1.02 (1.01, 1.03)

Note: GDM, gestational diabetes mellitus; GHD, gestational hypertensive disorders; LBW, low birthweight;
SGA, small for gestational age; PTB, preterm birth; PROM, prelabor rupture of membranes; OR, odds ratio;
CI, confidential interval.

After adjustment for confounders, elevated tap water chloramine concentrations
during the third trimester of pregnancy were associated with an increased risk of LBW
(OR = 1.06, 95% CI: 1.01, 1.11). Similarly, use of tap water with increased chloroform in the
first trimester was associated with a risk of LBW (OR = 1.05, 95% CI: 1.03, 1.07) as well as in
third trimesters (OR = 1.13, 95% CI: 1.09, 1.16), while that in the second trimester showed
a negative association with LBW (OR = 0.95, 95% CI: 0.93, 0.98). Additionally, increasing
chloroform concentrations during the entire pregnancy were associated with an increased
risk of LBW (OR = 1.05, 95% CI: 1.02, 1.08). As for SGA, only a slight negative association
between monochloramine in the second trimester was exhibited. We observed a slight
increase in the odds of PTB with second trimester chloramine (OR = 1.04, 95% CI: 1.00,
1.08), and the risk of PTB increased significantly with increasing tap water chloroform
concentrations in the first (OR = 1.04, 95% CI: 1.02, 1.06) and third (OR = 1.05, 95% CI:
1.01, 1.08) trimesters instead. However, monochloramine in the first trimester (OR = 0.95,
95% CI: 0.92, 0.99) and chloroform concentrations in the second trimester (OR = 0.97, 95%
CI: 0.94, 0.99) showed negative associations with PTB. In addition, tap water chloramine
(OR = 1.10, 95% CI: 1.03, 1.19) and chloroform (OR = 1.07, 95% CI: 1.03, 1.11) during
the entire pregnancy were significantly related to PTB. We also observed a significant
association between the risk of PROM and tap water chloramine concentration in the first
(OR = 0.95, 95% CI: 0.93, 0.97) and third (OR = 1.04, 95% CI: 1.01, 1.07) trimesters, while
they indicated contradicted relationships. Additionally, a weak elevation in the odds of
PROM with third trimester chloroform levels (OR = 1.01, 95% CI: 1.00, 1.01) was observed.
Similar to PTB, PROM was positively associated with chloramine (OR = 1.07, 95% CI: 1.03,
1.12) and chloroform (OR = 1.02, 95% CI: 1.01, 1.03) throughout the entire pregnancy.

Subsequently, the analyses were stratified according to fetal sex. In both male and
female infants, the effects of monochloramine on perinatal outcomes were similar to those
in the total population (Tables S1 and S2). While in male fetuses, the risks of SGA were
positively associated with chloroform exposure in the third trimester.

The chloramine and chloroform trends and fitted lines of the attack rates of perinatal
outcomes are shown in Figures 1 and 2. The spline curve for GDM showed a trend similar
to that of monochloramine concentration, with a lag of approximately 9 months, while the
trend of GHD followed that of monochloramine concentration, with a 6-month lag, which
is consistent with our findings in Table 3 (Figure 1A,B). We observed similar trends of LBW
and PROM with monochloramine, with an approximately 3-month lag, which indicates
the relationship between third trimester exposure and birth outcomes (Figure 1C,F). For
the trend of chloroform, the spline curves of LBW, PTB and PROM were similar, with an
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approximately 3-month lag, suggesting the potential effect of chloroform concentration in
the third trimester on birth outcomes (Figure 2C,E,F).
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shows the trends of chloroform levels, and fitted spline curve shows the monthly attack rates of
(A) gestational diabetes mellitus (GDM) and (B) gestational hypertension disorders (GHD), (C) low
birth weight (LBW), (D) small for gestational age (SGA), (E) preterm birth (PTB) and (F) prelabor
rupture of membranes (PROM).

4. Discussion

In recent years, disinfectants and their by-products have received increasing attention
due to health concerns. In this study, we examined the relationship between tap water
chloramine/chloroform concentrations and several adverse perinatal outcomes in Shanghai,
China. By analyzing all live singleton births, our results showed that chloramine levels
in the first and second trimesters was associated with GDM and GHD, respectively. For
birth outcomes, chloramine and chloroform concentrations during the third trimester were
associated with increased risks of LBW, PTB and PROM, while the relationships between
birth outcomes and contaminants in the first and second trimesters were inconsistent.
However, there was no evidence of any association of chloramine and chloroform in either
trimester with SGA. To our knowledge, this is the first study to examine the association
between water disinfectants and their by-products throughout pregnancy with pregnancy
complications.
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Monochloramine, a long-lasting drinking water disinfectant, is believed to be safe
and appropriate and has been approved by the United States Environmental Protection
Agency (EPA). In the 1980s–1990s, several studies raised concerns about its health risks.
In a study by Lubbers et al. [29], there were no detectable adverse effects of chloramine
at a dose of 5 mg/L on physical condition, while another study found that an increased
concentration of chloramine was related to an outbreak of erythropoietin resistance in
1996 in London, UK [30]. However, the reproductive toxicity of chloramine in humans
has rarely been studied, although several animal studies have been performed. A study
showed that monochloramine exposure did not harm female fertility, reproductive organs,
pup weight or litter size in rats [31]. Additionally, neither teratogenic nor embryotoxic
effects of monochloramine have been found in animal studies [32]. To our knowledge,
there have been no recent studies on the health risks of chloramine. Therefore, we studied
this issue and found that chloramine levels in the third trimester were related to GDM,
GHD, LBW and PROM, which is inconsistent with previous animal studies. Meanwhile,
tap water chloramine in early pregnancy showed slightly negative associations with LBW,
PTB and PROM, implying the different role of chloramine in different trimesters. Due to its
large sample size, our study potentially provides new insight into the safety of chloramine
use in drinking water disinfection, especially for pregnant women and neonatal infants,
but additional epidemiological studies as well as mechanistic investigations are needed to
clarify the effect of chloramine exposure on human health. Unlike chloramine, the health
risks of chloroform, the dominant species of disinfection by-products (DBPs), have been
well studied in the last two decades, as summarized in Table S3. In our study, we found
that maternal chloroform concentrations in the third trimester were associated with LBW,
PTB and PROM, while exposure during the first trimester was associated with LBW and
PTB. In supporting our findings, three studies found chloroform exposure during the entire
pregnancy was considerably associated with LBW [17,33,34]. Conversely, we observed
a negative relationship between the tap water chloroform levels in the second trimester
and the risks of LBW and PTB; two studies from China indicated a lack of association
between chloroform exposure during pregnancy and LBW and PTB [21,35]. Two other
studies from Spain and Lithuania [36,37] came to a similar conclusion. Our study only
showed that monochloramine in the second trimester was negatively associated with
SGA, and chloroform was not related to SGA, consistent with several epidemiological
studies [36–38]. However, several studies reported a positive association of SGA with
chloroform exposure [19–21,38]. During the third trimester, the fetus develops at the
highest speed; thus contaminant exposure in the third trimester, rather than the first or
second trimesters, has a more direct effect on fetal growth. This could partly explain the
inconsistent results found in the first and second trimesters of LBW, and emphasize the
importance of third trimester exposure. However, how chloroform impacts gestational
duration remains unclear and more epidemiological and mechanism studies are warranted.
The effect of chloroform on PROM has rarely been studied since it might be regarded as
a result of acute exposure rather than long-term exposure. Our study may provide new
insights into the cumulative effect of environmental pollution on PROM.

Different measurement methods of maternal exposure may largely contribute to the
discrepancies between studies. Most previous studies used data from water distribution
networks to estimate individual exposure by geocoding residential addresses, while two
studies measured blood chloroform concentrations to reflect integrative contaminant expo-
sure more precisely. In this study, we assessed the overall chloroform and chloramine levels
of the whole city using the average contaminant concentrations reported from various
water networks over a 5-year period. In addition, regional and temporal variability in
chloroform concentration may partly explain the differences in these study results. In
Shanghai, the mean tap water chloroform concentration was 8.17 µg/L between 2016 and
2020. It was among the lowest levels in all previous studies. In addition, the inconsistences
among studies may be partly explained by the variability in covariate selection. Most of
the studies selected their covariates based on a literature review, and several studies lacked
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data on pregnancy complications, including GDM and GHD, which may play important
roles in fetal development. We used statistical methods as well as clinical considerations to
select confounders for a more proper statistical model. However, some important factors
are missing like dietary nutrition and physical activity, which may contribute to bias of
perinatal outcomes.

Toxicological studies have demonstrated that oxidative stress may play a key role
in the relationships of chloroform and chloramine exposure with complications and fetal
growth. Studies have shown that blood chloroform concentrations in pregnant women
have a dose-response relationship with urinary oxidative biomarkers, such as 8-hydroxy-2-
deoxyguanosine [39]. In an in vitro study, Beddows et al. found that chloroform induced
oxidative stress via glutathione depletion, causing lipid peroxidation and DNA strand
breakage. Epigenetic alterations are also involved in this process [40]; hypomethylation
occurred and gene expression was modified [41]. The reduction-oxidative status and
disrupted methylation could alter in the uterus environment and affect fetal development
or lead to pregnancy complications eventually [42,43]. However, mechanisms underlying
the effect of chloramine and chloroform on perinatal outcomes are not well elucidated yet
and more studies are needed.

The vulnerable window regarding contaminants during pregnancy has been debated.
As most of the pregnancy complications had already developed by the third trimester, our
study reasonably suggests that pollutant exposure in the first and second trimesters may be
essential considering placentation and maternal adaptation. Regarding fetal growth, some
research has proposed that exposure in the third trimester is associated with the highest risk
because blood flow increases in this period to meet fetal growth, thus exposing the fetus to
more contaminants [44]. Our findings support the hypothesis that the third trimester may
be a critical period of susceptibility to contaminants in terms of fetal development, which is
consistent with several studies that have investigated internal and external exposure levels.
However, the effect of exposure in the first and second trimesters remains controversial
and more studies focusing on this issue are urgently needed.

Chloramine and chloroform exposure may have indirect effects on birthweight. Our
study found a positive association between monochloramine and GHD; the latter is a major
contributor to LBW due to placental dysfunction [45]. Therefore, we assumed a mediating
effect of GHD on the relationship between monochloramine exposure and LBW. In addition,
monochloramine and chloroform concentrations were positively associated with LBW,
while no associations were found for SGA, suggesting that decreased birthweight could
have been caused by a shorter gestational duration. Thus, PTB may be another important
mediator for LBW. However, chloroform exposure in the third trimester was found to be
related to SGA in male fetuses, indicating male fetuses maybe more susceptible, which is
consistent with previous studies [46–48].

Our study has several strengths, including a prolonged study period spanning 5 years,
a large sample size, a comprehensive number of potential confounders and trimester-
specific exposure data. Importantly, this study investigated pregnancy complications
associated with exposure to water disinfectants and their by-products.

There are also some limitations. First, we lacked individual-specific exposure data,
such as internal exposure biomarkers or estimated daily uptakes, considering the variability
in water use. Additionally, we only provided evidence that tap water chloramine and
chloroform concentrations were associated with perinatal outcomes, but it is hard to tell
whether drinking water was responsible for the associations. Additionally, when assigning
the contaminants’ concentrations to gestational months, data in the former month were
applied if a gestational month covered two calendar months. Considering the potential
bias, we performed a sensitivity analysis using the data in the latter month, and found
similar results (Table S4). In addition, although there were spatial variations in personal
exposure among residents, we lacked data on contaminant concentrations in different water
treatment plants and performed our study mainly based on temporal exposure differences.
In other words, we analyzed the relationship between the overall levels of chloramine and
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chloroform in Shanghai and perinatal outcomes instead of the effect of maternal individual
exposure. Moreover, considering the deficit in exposure assessment of our study and
the small deviation from 1 in ORs, we could not prove a causal relationship between the
contaminants in tap water and perinatal outcomes.

5. Conclusions

In our study, both positive and negative associations between tap water chloramine
and chloroform levels in different trimesters and perinatal outcomes were found, indicating
there is probably no casual association between the current level of contaminants and
adverse pregnancy outcomes. However, more research is still warranted on the potential
effect of chloramine and chloroform on perinatal outcomes with more accurate exposure
measurements due to the potential risks.
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