~ International Journal of
Molecular Sciences

Article

VenomPred: A Machine Learning Based Platform for Molecular
Toxicity Predictions

Salvatore Galati 11, Miriana Di Stefano 121, Elisa Martinelli 1, Marco Macchia !, Adriano Martinelli 1,
Giulio Poli '* and Tiziano Tuccinardi 1-3

check for
updates

Citation: Galati, S.; Di Stefano, M.;
Martinelli, E.; Macchia, M.; Martinelli,
A.; Poli, G.; Tuccinardi, T.
VenomPred: A Machine Learning
Based Platform for Molecular Toxicity
Predictions. Int. |. Mol. Sci. 2022, 23,
2105. https://doi.org/10.3390/
ijms23042105

Academic Editor: Johannes

Kirchmair

Received: 7 January 2022
Accepted: 12 February 2022
Published: 14 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; salvatore.galati@phd.unipi.it (S.G.);
miriana.distefano@phd.unipi.it (M.D.S.); e.martinelli3@studenti.unipi.it (E.M.);
marco.macchia@unipi.it (M.M.); marti@adrianomartinelli.it (A.M.); tiziano.tuccinardi@unipi.it (T.T.)
Department of Life Sciences, University of Siena, 53100 Siena, Italy

Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine,

College of Science and Technology, Temple University, Philadelphia, PA 19122, USA

*  Correspondence: giulio.poli@unipi.it; Tel.: +39-050-2219603

t These authors contributed equally to this work.

Abstract: The use of in silico toxicity prediction methods plays an important role in the selection of
lead compounds and in ADMET studies since in vitro and in vivo methods are often limited by ethics,
time, budget and other resources. In this context, we present our new web tool VenomPred, a user-
friendly platform for evaluating the potential mutagenic, hepatotoxic, carcinogenic and estrogenic
effects of small molecules. VenomPred platform employs several in-house Machine Learning (ML)
models developed with datasets derived from VEGA QSAR, a software that includes a comprehensive
collection of different toxicity models and has been used as a reference for building and evaluating
our ML models. The results showed that our models achieved equal or better performance than those
obtained with the reference models included in VEGA QSAR. In order to improve the predictive
performance of our platform, we adopted a consensus approach combining the results of different
ML models, which was able to predict chemical toxicity better than the single models. This improved
method was thus implemented in the VenomPred platform, a freely accessible webserver that takes
the SMILES (Simplified Molecular-Input Line-Entry System) strings of the compounds as input and
sends the prediction results providing a probability score about their potential toxicity.

Keywords: in silico toxicity; machine learning; artificial intelligence; mutagenicity; carcinogenicity;
hepatoxicity; estrogenicity

1. Introduction

The use of artificial intelligence (Al) and, in particular, machine learning (ML) in
toxicology is increasingly widespread due to the reduced costs and time required by in
silico approaches compared to in vivo and in vitro studies, the ethical concerns related
to animal experiments and the possibility to handle and process a large amount of data
through ML models. With the need to harmonize toxicology data and spread the knowledge
of their results, new protocols have been implemented and shared among public and private
companies. Back in 2006, the European Union completely revised its regulatory framework
for chemicals, issuing new regulations on Registration, Evaluation, Authorization and
Restriction of Chemicals (REACH) [1]. The idea behind the REACH protocol is to regulate
the production and use of chemicals, as well as to assess and control their potential impact
on humans and the environment, highly sustaining the application of high-throughput in
silico toxicity predictions to reduce animal testing and research costs. In order to implement
this regulation, the European Chemicals Agency (ECHA) [2] was created. The agency
issued the ECHA Guidance on information requirements and chemical safety assessment,
which gives in-depth background details and recommendations addressing the use of
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non-testing methods on chemicals. Recently, the eTOX project, active between 2010 and
2016, developed by the European Innovative Medicines Initiative (IMI) [3], aimed at the
creation of a database collecting all safety data gathered from both pharmaceutical and
public toxicology reports, together with the in silico prediction of the toxicological profiles
of small molecules in early stages of drug discovery [4]. Finally, in the United States, the
“Toxicology in the 21st Century” (TOX21) [5] was created, providing a long-term strategy
aimed at reducing animal testing and enhancing the use of computational toxicology and
bioinformatics. Among computational approaches, web tools are becoming more and more
widely employed due to their free availability and the fact that no expert computer skills
are necessary to use them [6]. Thus, the development of web tools for toxicity prediction
has a great impact in reducing time and resources in drug discovery. Due to the necessity
to easily and quickly evaluate and share the toxicity profile of small molecules, different
open-source platforms were created by collaborations of both academic and industrial
groups. Among these, VEGAHub [7] is one of the most complete free online platforms in
terms of reported toxicity models and benchmark datasets. VEGAHub also provides the
freely available software VEGA QSAR, able to perform toxicity predictions employing in
silico methods and models reported in the literature and implemented therein. Most of the
models report information about the training set of compounds used for their development,
together with the corresponding results obtained during reliability assessment, and often
provide the actual dataset of compounds available for download. Moreover, information
about the test set of compounds used for the external evaluation of the models may also
be provided, together with data related to the obtained performance and the actual set of
molecules to be downloaded.

In this work, new ML models for toxicology predictions, addressing four different
toxicity endpoints, were developed based on the datasets obtained from selected models
included in VEGA QSAR. In particular, we focused on the prediction of mutagenic, car-
cinogenic, hepatotoxic and estrogenic effects of small molecules. In fact, mutagenicity and
carcinogenicity are the most common short- and long-term consequences of prolonged ex-
posure to substances, and they are among the most lethal and studied side effects. Moreover,
hepatotoxicity and estrogenic activity were considered since hepatic cells and metabolic
enzymes, as well as estrogen receptors, are most often subjected to interaction with xenobi-
otics, and they are one of the main points of the European “Green Deal” discussion that has
set the goal of reducing environmental exposure of endocrine disruptors. After developing
multiple models focused on the four different endpoints, in order to evaluate the possibility
of improving their predictive performance, a consensus approach combining the results
of their predictions was applied. As this approach was able to predict chemical toxicity
better than the single models, it was thus implemented in the VenomPred platform, a freely
accessible web tool that takes the SMILES strings of the compounds as an input, providing
a probability score about their potential toxicity as an output.

2. Materials and Methods
2.1. Modeling Datasets

The compounds datasets were collected from models available within the VEGA
QSAR platform. With the aim of developing binary classification models for toxicity pre-
dictions, we selected datasets of compounds employed in binary classification models
included in VEGA QSAR, for which both training and test sets were available for down-
load. These datasets were then used to train and test our models, respectively. The datasets
for building our mutagenicity models were chosen from the model elaborated from the
“CAESAR Workshop on QSAR Models for REACH” [8], which provides a qualitative
prediction of mutagenicity based on the experimental Ames test [9,10] by combining two
different methods. The first, which is reported as Model A, consists of a trained Support
Vector Machine (SVM) classifier that labels molecules as either mutagenic or non-mutagenic.
The second model, described as Model B, screens the non-mutagenic compounds against
reportedly known structural alerts (SAs) to check if they have been correctly predicted as
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harmless. The datasets for the carcinogenicity endpoint were extracted from the “Carcino-
genicity CAESAR” model” [11], based on a Counter Propagation Artificial Neural Network
(CP-ANN) algorithm. The estrogenicity models were developed using the datasets ex-
tracted from the “Estrogen Receptor Relative Binding affinity model IRFMN)” [12], based
on a classification and regression tree (CART) algorithm. Hepatotoxicity models were
built employing datasets derived from a binary hepatotoxicity model based on the SarPy
software and molecules with known experimental activity, collected in a collaboration
between VEGA QSAR developers and IRFMN [13]. It is worth mentioning that the refer-
ence mutagenicity and hepatotoxicity models included in VEGA QSAR were unable to
provide a proper binary prediction for some of the compounds included in the test set
employed for their validation, classifying them as “suspected” toxic. In fact, as reported
in the corresponding documentation available in VEGA QSAR for these two models, the
statistical performance related to the prediction of the test set was evaluated, omitting these
compounds. Therefore, in order to properly compare the performance of our models with
the reference ones included in VEGA QSAR, the same compounds were removed from
the original test set of the mutagenicity and hepatotoxicity models prior to the statistical
evaluation. The composition of each dataset employed for building and evaluating all de-
veloped ML models, including those implemented in the VenomPred platform, is reported
in Table 1.

Table 1. Total number of molecules present in each training and test set, including their classification
according to experimental value, was employed for model building and evaluation.

Mutagenicity Model
Set Total Mutagen Non-mutagen
Training 3367 1883 1484
Test 798 446 352
Carcinogenicity Model
Set Total Carcinogenic Non-carcinogenic
Training 645 333 312
Test 161 89 72
Estrogenicity Model
Set Total Active Inactive
Training 656 234 422
Test 150 54 96
Hepatotoxicity Model
Set Total Toxic Non-toxic
Training 760 408 352
Test 157 97 60

2.2. Molecular Fingerprints

The SMILES (Simplified Molecular-Input Line-Entry System) strings of training and
test set compounds used for developing and testing our ML models for binary classification
were downloaded from VEGA QSAR software. The SMILES strings were used to compute
five different types of molecular fingerprints (FPs) [14], which were used as input for all
developed ML models, including those implemented in VenomPred. Two open-source
python libraries were used to compute molecular FPs: RDKit [15] and PyFingerprint [16].
The former was used to calculate Morgan, RDKit and Pharm2D FPs, while the second to
compute PubChem and LINGO FPs.

Morgan FPs represent the atoms of the compounds based on the neighboring atoms
and bonds within a determined atom distance (which was set to 2 in this work) and assign
them a unique identifier. These identifiers are then usually hashed to a bit vector with a
fixed length in order to allow the comparison of different representations. In this work, we
set a vector length of 1024 bits using the Morgan FPs implementation of RDKit [15] since it
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was found that the use of a larger vector size with ML algorithms such as random forest
could only allow negligible performance improvements [17].

RDKit FPs are RDKit-specific fingerprints inspired by public descriptions of the day-
light topological fingerprints. The fingerprinting algorithm identifies all subgraphs in the
molecule within a particular range of sizes, hashes each subgraph to generate a raw bit ID,
adjust the raw bit ID to fit in the assigned fingerprint size and then sets the corresponding
bit. In this work, a vector size of 1024 bits was used for RDKit FPs for consistency with
Morgan and LINGO FPs.

Pharm2D FPs are 2D pharmacophore fingerprints created combining a set of chemical
features with their 2D (topological) distances. When the distances are binned, unique inte-
ger values can be assigned to each of these pharmacophores and stored into a fingerprint.
These fingerprints are calculated using a signature factory, which keeps track of all the
parameters required to generate the pharmacophore, a task that is performed using the
corresponding RDKit module (rdkit. Chem.Pharm2D.Generate). The pharmacophore finger-
prints were computed considering all possible combinations of default features included
within the RDKit library. Specifically, the following feature types were considered: H-bond
acceptor, H-bond donor, positive ionizable, negative ionizable and aromatic features. Each
feature combination included a minimum of two and a maximum of three features.

PubChem FPs [18] belong to substructure-based FPs included in a vector of 881 bits, in
which each bit represents the presence of an element or substructure, the count of a ring
system, the atom pairs and the atom’s nearest neighbors.

LINGO FPs [19] are based on the fragmentation of SMILES strings into substrings.
SMILES strings are the most compact text-based molecular representations that contain
the information needed to compute all kinds of molecular substructures and to derive
molecular properties. For a SMILES string of length L, a number N of substrings of length
Q (where N =L — Q + 1) is extracted; the occurrences of the substrings are then counted to
provide the final LINGO profile. In this work, the default vector size of 1024 bits was used
for LINGO FPs.

2.3. Classification Models

Four different classification algorithms were used to build the predictive toxicology
models developed and included in the VenomPred platform: Random Forest, Support
Vector Machine, k-Nearest Neighbor and Multi-Layer Perceptron. The proper functions of
the python library Scikit-learn [20] were used for the generation of the models.

Random Forest (RF). The RF algorithm consists of a large number of individual trees
that operate as an ensemble. Each individual tree in the random forest determines a class
prediction [21]. The class that obtains the majority of votes becomes the ultimate prediction
of the model, following the “wisdom of crowds” approach. The main hyperparameters
optimized during model building were max_features, which indicates the maximum number
of features that can be considered in a single tree, and n_estimators, expressing the number
of trees built before making the averages of predictions. The options of max_features
investigated were: (a) sqrt, which is the square root of the total features in a single node;
(b) log2, which corresponds to the binary logarithm of the total features for a single node;
(c) None, for which max_features corresponds to the total number of features. The number of
estimators that were taken into account corresponds to 100 and 500.

Support Vector Machine (SVM). SVM maps the data according to their common patterns
and aims towards their optimal division between two classes, with each of them entirely
lying on opposite sides of a separating hyperplane. The goal is reached by maximizing
the distance between the closest training data points, the so-called support vectors and
the hyperplane [22]. The hyperparameters optimized during model building were: (a) the
kernel, which is a function used to map the data into higher dimensional feature space in
order to make them separable; and (b) C, which indicates how much emphasis is made on
the misclassified data, therefore helping in optimizing the hyperplane.
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k-Nearest Neighbor (KNN). The KNN algorithm classifies instances on the basis of
a majority vote of their neighbors. Each test instance is predicted to fall into the class
identified by its k-closest neighbors. The final prediction is therefore obtained by the most
frequent outcome among the features of the nearest neighbors to the input data [23]. The
hyperparameters optimized during model building were those that reduce the error due to
the voting of the surrounding neighbors [24], namely n_neighbors and weight. n_neighbors
indicates the number of neighbors taken into consideration for the classification, and weight
defines how much the different surrounding elements influence the prediction. The values
investigated for n_neighbors were in a range between 1 and 30, while two options were
tested for weight: (a) uniform, indicating that all points in each neighborhood are weighted
equally, and (b) distance, imposing that closer neighbors of a query point have a greater
influence than neighbors that are further away from it.

Multi-Layer Perceptron (MLP). MLP is a type of feedforward artificial neural network
(ANN) composed of multiple layers of nodes, which uses a supervised learning technique
called backpropagation [25]. Four hyperparameters were tuned in order to minimize the
error in the path from the input to the output predictions: (a) hidden_layer_size, which
determines the number of neurons and the number of hidden layers; (b) solver, which is
fundamental to optimize the predictions at every decision step through the different layers;
(c) activation, which refers to the activation function and defines how the weighted sum of
the input is transformed into output by one or more nodes in a network layer; (d) learn-
ing_rate_init, which controls the step-size in updating the weights. For the hidden_layer_size,
we evaluated all possible combinations of a set of 100, 200 and 1000 neurons. As the type
of solver, we tested Ibfgs, which uses a limited amount of computer memory, only storing
a certain amount of vectors, as well as the stochastic gradients adam and sgd. Among the
activation functions, we considered “identity”, “logistic”, “tanh” and “relu” functions. The
options investigated for learning_rate_init were 0.01, 0.001 and 0.0001.

2.4. Model Building and Evaluation

As previously described, 5 different molecular FPs and 4 different ML algorithms were
employed for generating our toxicity models. In particular, for each endpoint considered,
each FP type was combined with each algorithm, thus obtaining 20 different toxicity models
for each type of classification. An optimization process based on the Grid Search cross-
validation implemented in Scikit-learn was applied to all generated models for determining
the best hyperparameters setting. Grid Search is a generic approach provided in Scikit-learn
for parameter search. It employs cross-validation to explore all possible combinations of
hyperparameters, assigning a score to each of them. In this work, the scoring parameter
used is Matthew’s Correction Coefficient (see next section for details). In order to evaluate
the performance of the 20 optimized models thus obtained for each endpoint, further
20-fold cross-validation (CV) was performed for each model using a random training-test
set splitting strategy, in which 30% of the starting dataset was considered as the test set.
After ranking the 20 different models according to Matthew’s Correction Coefficient, the
top 5 models were selected for further analysis.

2.5. Final Model Evaluation Metrics

In order to check the performance of the 5 top-scored models selected for each end-
point, five statistical parameters were taken into account: Precision, Specificity, Recall (or
Sensitivity) and Matthew’s Correction Coefficient (MCC), which are defined as follows:

.. TP
Precision = m @D
Specificity = (TNT—IE]FP) (2)
Recall = TP 3)

(TP +FN)
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(TPx TN - FPxFN)
/(TP + EP)(TP + EN)(TN + EP)(TN + EN)

TP (true positives) and TN (true negatives) correspond to the number of toxic and non-
toxic compounds, respectively, correctly predicted as such; FP (false positives) represents
the number of non-toxic compounds predicted as toxic and FN (false negatives) represents
the number of toxic compounds predicted as non-toxic. Therefore, Precision indicates
the percentage of correct positive predictions, while Specificity and Recall measure the
ability of models to correctly predict negative and positive instances, respectively. MCC
takes into account all values derived from binary classification and represents a balanced
evaluation of the classifier performance [26]. For instance, MCC = 1 indicates a perfect
classification (with no FP and FN), MCC = 0 is equivalent to random classification and
MCC = —1 indicates a complete disagreement between predicted and actual classes.

Within the documentation available for the reference models included in VEGA QSAR,
the MCC values related to the test set predictions were not present. Therefore, we calculated
the MCC values after performing the test set predictions and computing the number of TP,
FP, TN and FN for each considered reference model.

MCC =

)

2.6. Consensus Strategy and Consensus Score

The consensus strategy consists in combining the predictions produced for each tested
molecule by the top-scored models of each endpoint, which constitutes the predictive
approach employed by the VenomPred platform. Each ML model returns a probability
score (PS) ranging from 0 to 1 associated with the toxicity prediction generated for each
compound (0 < PS < 0.5 if predicted as non-toxic; 0.5 < PS < 1 if predicted as toxic); in
particular, the closer the PS to 1, the higher the prediction confidence of toxicity, while
the closer the PS to 0, the higher the prediction confidence of non-toxicity. Therefore, a
consensus score (CS) for each tested molecule is computed by averaging the PSs produced
by the top-scored models. In particular, we calculated three different consensus scores,
namely CS3, C54 and CS5, by averaging the PSs of the 3, 4 and 5 top-scored models,
respectively. Accordingly, by using the consensus strategy, a compound was labeled as
non-toxic if the obtained CS was lower than 0.5 and toxic if the CS was equal to or greater
than 0.5. The same statistical parameters used for evaluating the performance of the single
top-scored models (Precision, Specificity, Sensitivity and MCC) were then calculated based
on the three different CS classifications in order to assess the performance of the consensus
strategy and identify the best approach.

3. Results and Discussion
3.1. Model Generation, Optimization and Selection

With the aim of developing ML models for predicting the potential toxicological effect
of small molecules and comparing their performance with known toxicity models reported
in the literature, we used VEGA QSAR software (hereafter referred to as VEGA) as a
reference. VEGA is a stand-alone application that includes models for small molecule
toxicity predictions. It allows the analysis of several toxicity endpoints providing in-
depth details and supporting information, making it one of the most comprehensive
computational platforms for this type of study. In particular, VEGA was employed as a
source of validated benchmark datasets for training, developing and evaluating our ML
models, as well as a source of reference predictive tools to which the performance of our
models could be compared. The toxicity endpoints that were analyzed in this work are
mutagenicity, carcinogenicity, estrogenicity and hepatotoxicity. The choice of analyzing
mutagenicity and carcinogenicity endpoints derives from their great importance on the long-
term side effects of new drugs. In fact, this is a fundamental aspect of verifying the safety
of drugs and, more generally, of chemicals on the market. This type of toxicity is linked to
compounds that can alter the genetic material within germ cells, increase the rate of human
diseases of genetic origin in the population and generate potential carcinogenic effects.
On the other hand, hepatotoxicity is a major challenge to the pharmaceutical industry
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and regulatory authorities [27]. It is often a reason for drug failure and consequently for
withdrawal from the market after approval, despite the preclinical and clinical evaluation
of the safety of drug candidates [28]. Finally, estrogenicity arising especially from aquatic
pollution [29] is the ability of exogenous substances to interfere with the function of the
endocrine system, including those related to developmental processes. The estrogenic
activity of small molecules and chemicals represents a source of concern, which is rising
more and more interest not only in the scientific community; indeed, constituting one of
the key points of the European Green Deal proposed by the European Commission, and it
is thus another important issue to be addressed in toxicity evaluations. For each of these
four endpoints, we selected a suitable model among those included in VEGA software
to be used as a reference. Each selected model was used both as a source of training
and test set compounds for developing and evaluating our ML models, respectively, and
as a reference for comparing their predictive performance. For each endpoint, we thus
selected as a reference the corresponding binary classification model included in VEGA
trained and validated with the highest number of compounds, for which both training
and test set molecules were fully available together with the corresponding performance
evaluation results.

Training and test sets used for generating our mutagenicity models were obtained
from the CAESAR mutagenicity model [8], which provides a qualitative prediction of
mutagenicity on Salmonella typhimurium according to the Ames test [9,10], while car-
cinogenicity data were collected from the “Carcinogenicity CAESAR” [11] model. The
datasets for the remaining endpoints were retrieved from the reference “Estrogen Receptor
Relative Binding Affinity model” [12] and “Hepatotoxicity model (IRFMN)” [13]. Detailed
information about the composition of the data sets is reported in the Materials and Methods
section (Table 1).

The generated models were obtained by representing the training set compounds
through molecular fingerprints (FPs), which were generated from the SMILES notations
of the compounds. In particular, five different types of FPs were used: Morgan, RDKit,
Pharm2D, PubChem and LINGO FPs. Each FP method was combined with four differ-
ent classification algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM),
k-Nearest Neighbor (KNN) and Multi-Layer Perceptron (MLP), for the development of
20 different classification models for each of the four different endpoints. After a hyper-
parameter optimization, the performance of all models of each endpoint was evaluated
and ranked according to the values of Matthew’s Correction Coefficient (MCC) obtained
through cross-validation (CV) analysis (see Materials and Methods for details). The results
are summarized in Figure 1.

The results highlight that, overall, SVM appears to be the best algorithm since it is
the only one included in two out of the five top-scored models for each endpoint. On the
contrary, only one model based on the KNN algorithm is shown among the top-scored
ones (for the hepatotoxicity endpoint). In terms of FPs, we observe the exclusive presence
of Morgan, RDKit and, especially, PubChem FPs in the top-scored models, which thus
demonstrate to provide a better molecular description for toxicological ML models with
respect to Pharm2D and LINGO FPs. The performance reported in Figure 1 shows that for
all endpoints, our ML models performed better than random predictions, as confirmed by
the MCC scores above 0.

In particular, high performances were obtained for the mutagenicity and estrogenicity
endpoints, for which almost all models achieved an MCC greater than 0.5 (Figure 1A,C); in
fact, the average MCC of the five top-scored models corresponded to 0.63 in both cases. For
the carcinogenicity endpoint, lower values of MCC (below 0.4) were generally obtained;
interestingly, the RF algorithm showed to perform well for this type of prediction, since
the two top-scored models, based on RF, were the only ones for which an MCC value
higher than 0.35 was obtained (Figure 1B). On the contrary, no RF-based model appeared
among the top-scored hepatotoxicity models, which showed generally poor performance,
with MCC values below 0.2 (Figure 1D). Notably, carcinogenicity and hepatotoxicity were



8 of 16

Top Models

A) Mutagenicity

the only endpoints for which RDKit FPs were found among the best combinations of

ML models.

Int. J. Mol. Sci. 2022, 23, 2105

B KNN based
B MLP based

B AF based
B SVM based

10
0.8

20W

QZuIeud-NNX

OONIT-NNA

Qzuueyd-din

OONIM-WAS

Qzuueyd-wAas

Qzuueyd-44

OONM-dTW

wiBydand-NnN

OONIM-4Y

uebiop-4Tn

ANTY-NNA

uebIop-NNN

WaY-dIN

INTY-WAS

INAY-IY

wayand-44

waydand-din

waydand-WAs

uebiop-4Y

uebiopw-WAS

Model

Top Models

B) Carcinogenicity

1.0
0.8
0.6
0.4

B KNN based
B MLP based

I RF based
@ SVM based

20N

OONIT-NNX

OONIT-WAS

uebiop-NNY

OONIN-dTW

O9NIN-4Y

Qzueyd-NNA

waydand-d

WACQH-NNA

agZuueyd-44

uebIop-WAS

QZuleUd-WAS

geuueyd-din

uebiop-4y

uebiopw-d W

wayand-NNx

waydand-WAs

IHTY-WAS

WHAY-d TN

HAOY-4d

wayjand-4y

Model

Top Models

C) Estrogenicity

1.0
0.8

B KNN based
B MLP based

B RF based
I SVM based

KW

OONIT-NNA

uebIoW-NNX

WAQY-NNA

QZuuRUd-NNA

qazuieyd-din

OONIM-3Y

Qzueyd-4y

OONIM-dTN

QZuwIRYd-WNAS

UAQY-3Y

OONIT-WAS

waudand-NN3

uebiop-4y

WAQY-WAS

WAQY-dTIN

waydand-4y

uebion-diN

wayland-diN

ueblop-mAS

waydand-was

Model

Top Models

D) Hepatotoxicity

1.0
0.8
0.6
04

B KNN based
B MLP based

I RF based
E SVM based

0.2

20l

0.0

geuleUd-WAS

gzuueyd-4y

OONIN-dTW

OONIT-WAS

uebiop-dTW

azuwieyd-NnNA

gzuueud-din

wayoand-4y

uebiop-NNH

OONIT-NNX

wayoand-WAs

wayIand-NNX

IH0Y-4Y

uebiop-4Y4

OONIT-4Y

wausand-g

uebIOW-WAS

AACH-NNA

IAQE-WAS

IAQH-dIN

Model
Figure 1. Evaluation results, expressed in terms of MCC, obtained for all different models developed

for the (A) mutagenicity, (B) carcinogenicity, (C) estrogenicity and (D) hepatotoxicity endpoints. The

5 top-scored models for each endpoint are separated from the others by a black dashed line.
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3.2. Models Evaluation

The five top-scored models of each endpoint were then subjected to a final evaluation
consisting in predicting the potential toxicity of the test set molecules, which were not used
for model training (external evaluation). The performance of the five models selected for
each endpoint was evaluated in terms of Specificity, Recall and Precision, besides MCC (as
reported in Materials and Methods). Figure 2 shows that our models obtained equal or
better results than the reference models included in VEGA. Specifically, most of our models
performed better than VEGA in terms of all metrics, with the exception of Recall, for which
only a few models performed better than the reference ones. Moreover, although the SVM
algorithm was the most present among the top-scored models of the different endpoints
based on CV, RF was found to be the classifier that allowed to obtain the best results in
most cases for the external evaluation.
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Figure 2. Performance evaluation results, based on test set prediction, obtained for the 5 top-scored
models of the (A) mutagenicity, (B) carcinogenicity, (C) estrogenicity and (D) hepatotoxicity endpoint,
in comparison with the reference models included in VEGA.

The results obtained for the mutagenicity endpoint (Figure 2A), show that all of
the selected models performed better than VEGA in terms of MCC. In particular, the
model based on the RF algorithm combined with PubChem FPs, as well as that combining
SVM with Morgan FPs, was found to be the best performing ones, performing equally
and achieving the highest MCC, Precision and Specificity scores. Interestingly, the three
remaining models, which achieved slightly lower MCC values, were found to perform
better in Recall, with a score of 0.88. Nevertheless, all of our models were slightly inferior
to VEGA in terms of Recall (0.90).
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Concerning the carcinogenicity endpoint, all models except the MLP-based one out-
performed VEGA in terms of MCC (Figure 2B). The model based on the RF algorithm
trained with PubChem FPs showed the best performance and achieved an MCC value of
0.39 compared to the MCC of 0.32 shown by the reference model included in VEGA. More-
over, this was the only model equaling VEGA in terms of Recall. On the other hand, the
model based on RF and RDKit FPs obtained the highest score for Precision and Specificity.

Even for the estrogenicity endpoint, four out of five models achieved higher MCC
scores than that shown by the reference model in VEGA (Figure 2C). The trend shown in the
results of the previous endpoints was also confirmed for the estrogenicity one, since RF and
PubChem demonstrated to represent the best combination of classification algorithm and
FPs, respectively. However, in this case, the RF-PubChem model showed not only the best
MCC value (0.83), considerably higher than that obtained by VEGA (MCC = 0.65) but also
a significant improvement in terms of Precision, Specificity and even Recall. Nevertheless,
the model based on SVM and PubChem FPs was the model that achieved the best Recall
value (0.89). Of note, this algorithm and FP combination showed the best results in terms
of Recall also for the mutagenicity endpoint.

Consistent with the cross-validation results (Figure 1), hepatotoxicity was the endpoint
for which the lowest predictive efficacies were generally obtained, although two out of
five models outperformed the reference model belonging from VEGA in terms of MCC.
Moreover, no RF-based model was included among the five top-scored ones; therefore,
the trend observed for all other endpoints, showing the model based on RF algorithm and
PubChem FPs as the best one, could not be confirmed in this case. Nevertheless, the best
hepatotoxicity model was based on the combination of the SVM algorithm and Morgan
FPs, which also showed the best results in the mutagenicity endpoint together with the
RF-PubChem model. The SVM-Morgan model was found to be the best also in terms of
Recall, performing better than VEGA. In terms of Precision and Specificity, the highest
scores were achieved by the model based on MPL and PubChem FP. The low MCC values
generally observed can be mainly rationalized by looking at the poor Specificity scores
shown by most models, which are often below 0.5 as that reported for the reference model
(Specificity = 0.37 for VEGA). On the contrary, for all models, high Precision scores were
observed. These results highlight that all models performed better at correctly predicting
hepatotoxic compounds than in identifying non-hepatotoxic molecules.

3.3. Consensus Strategy

In the attempt to improve the predictive performance achievable through the use of
our models, we applied a consensus strategy that allowed us to combine the different
predictions of the top-scored models selected for each endpoint. The reason behind using a
consensus approach is based on the reliability it showed in improving the prediction of
ligand dispositions in docking studies [30], proving to represent an effective and profitable
approach for the successful identification of new hit compounds through virtual screen-
ing [31]. In this case, for applying a consensus strategy, we considered the probability
scores (PSs) associated with the toxicity predictions provided by each selected model for
each tested compound (see Materials and Methods for details). In order to obtain a merged
collective prediction for each tested molecule, derived from the top-scored models of each
endpoint, we calculated a consensus score (CS) by averaging the PSs associated with the
toxicity predictions provided by each selected model. In particular, we calculated three
different consensus predictions for each endpoint by combining the PSs of the top-3 (CS3),
top-4 (CS4) and top-5 (CS5) models in terms of MCC obtained in the external evaluation
(see also Tables S1-54 in the Supplementary Materials). Hence, a compound was labeled
as toxic only if the obtained CS was at least equal to or greater than 0.5. By following this
approach, we aimed at enhancing the reliability of the toxicity predictions by reducing the
potential bias generated by single models. In order to test the efficacy of the consensus
approach, the same statistical parameters used for evaluating the performance of the single
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top-scored models (Specificity, Recall, Precision and MCC) were then calculated for the
classification based on the three different CSs.

Figure 3 reports, for each endpoint, the results obtained for the consensus approach
that showed the best performance, compared with the results obtained with the reference
models included in VEGA. For the mutagenicity endpoint, consensus 3 and 4 were found
to be the best strategies since they obtained an MCC of 0.72. On the other hand, consen-
sus 5 also proved to be a valid approach, showing an MCC value (0.71) highly comparable
with that of the other two consensus predictions (Table S1). Notably, consensus 3 and 4 out-
performed the two best mutagenicity models, which showed an MCC of 0.69. Interestingly,
consensus 4 achieved a lower Specificity than consensus 3 but showed a higher Recall value.
Considering that both approaches outperformed the reference model in VEGA in terms
of Specificity, we decided to select consensus 4 as the best strategy since it obtained the
highest Recall score compared to both single models and the other consensus approaches.
(Figure 3A).

Consensus 4 was also the best approach for the carcinogenicity endpoint, achieving
an MCC of 0.41 compared to 0.39 obtained by the model based on the RF algorithm
and PubChem FPs (Table S2). Consensus 4 performed better than the reference model
included in VEGA in terms of MCC, Specificity and Precision (Figure 3B). On the contrary,
consensus 3 and 5 showed a performance in terms of MCC (0.34) considerably lower than
that observed for both consensus 4 and the best model (RE-PubChem).

The trend observed for the last two endpoints was not confirmed when analyzing the
results of the estrogenicity endpoint, highlighting as the best approach consensus 3, which
showed an MCC score of 0.84 and slightly outperformed both the best estrogenicity model
(RF-PubChem) and the other two consensus approaches (Table S3). As shown in Figure 3C,
in this case, we were able to obtain a strong performance improvement, with respect to
the reference model belonging from VEGA (MCC = 0.65), in terms of all statistical metrics,
including Recall, which reached a value of 0.91 versus 0.78 showed by VEGA.

Hepatotoxicity was the only endpoint where consensus 4 was the worst strategy. In this
case, the largest improvement was found for consensus 5, thus considering the prediction
probabilities of all five best models. Specifically, the MCC achieved by consensus 5 was 0.33,
while a score of 0.26 was obtained with the best single hepatotoxicity model (SVM-Morgan,
Table S4). The consensus 5 strategy outperformed the reference VEGA model for every
metric except Recall (Figure 3D). In particular, the largest improvement was observed
for Specificity (0.63), with an increase of 0.26 over VEGA (0.37); therefore, the consensus
strategy was successful in strongly ameliorating the parameter that showed to have the
most negative impact on the global performance of the single hepatotoxicity models.

3.4. Structure-Based Analysis of Toxicity Predictions

In order to obtain a deeper insight into the improvement in prediction reliability ob-
tained using the consensus approach with respect to the single reference models included
in VEGA, we analyzed the results of the test set predictions obtained for all four endpoints
in order to check the structures of the compounds misclassified by VEGA and correctly
classified by our strategy. The most interesting results were identified among the hepa-
totoxicity predictions. The reference hepatotoxicity model included in VEGA generated
60 false-positive predictions, i.e., non-hepatotoxic compounds that were predicted as toxic,
while 38 of these compounds (63%) were correctly classified by our consensus strategy
combining the top 5 models herein developed (see Section 3.3). Interestingly, a cluster of
6 compounds sharing a common steroid structure was identified among these 38 molecules
(Figure 4).



Int. J. Mol. Sci. 2022, 23, 2105 12 of 16

A) Mutagenicity

HEl Specificity
B3 Recall
B Precision
Consensus 4 . MCC
@
o
]
=
VEGA
0.0 0.2 0.4 0.6 0.8 1.0
Score
B) Carcinogenicity
B Specificity
= Recall
B Precision
Consensus 4 Bl MCC
o
el
o
=
VEGA
0.0 0.2 0.4 0.6 0.8 1.0
Score
C) Estrogenicity
B Specificity
B3 Recall
B Precision
Consensus 3 . MCC
@
o
o
=
VEGA
0.0 0.2 0.4 0.6 0.8 1.0
Score
D) Hepatotoxicity
B Specificity
Bl Recall
B Precision
Consensus 5 . MCC
@
o
o
=
0.0 0.2 0.4 0.6 0.8 1.0

Score

Figure 3. Statistical values obtained with the consensus strategy for the (A) mutagenicity, (B) carcino-

genicity, (C) estrogenicity and (D) hepatotoxicity endpoints, compared with the reference models
included in VEGA.
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Figure 4. Non-hepatotoxic compounds sharing a steroid scaffold misclassified by the reference model
from VEGA and correctly predicted by our consensus approach.

The hepatotoxicity training set was then subjected to a structural analysis aimed
at identifying compounds chemically similar to this cluster of molecules. The results
showed a cluster of 43 structurally related molecules with a similar steroid or steroid-like
scaffold. Of note, 21 (49%) of these were labeled as non-hepatotoxic, whereas the remaining
22 (51%) were labeled as hepatotoxic. This situation, in which structurally similar training
set compounds are evenly labeled as toxic and non-toxic, represents a big challenge for any
ML model, which needs to derive subtle feature patterns able to discriminate toxic from
non-toxic molecules properly.

The fact that our consensus approach succeeded at correctly predicting the six struc-
turally related compounds (Figure 4) highlights the power of the consensus strategy, which
exploits the advantage of combining models based on different molecular representations
and classification algorithms that can thus extrapolate multiple types of hidden patterns
allowing the proper classification of the compounds. On the other hand, the use of a
consensus approach makes it difficult to identify common structural motifs linked to
toxicity, as well as to derive structure—-activity relationship (SAR) data, due to the fact
that different models decipher and interpret molecular structures and features in a differ-
ent way. If this represents an advantage in terms of prediction reliability, it constitutes
a disadvantage in terms of interpretation of predictions. Nevertheless, SAR data and
toxicophores may be extrapolated using simple fragment-based approaches that are in-
dependent of the machine learning algorithms used for toxicity prediction. For instance,
by analyzing the frequency with which PubChem substructures are found among toxic
and non-toxic compounds within the estrogenicity training set, we can find that the fre-
quency of a specific fragment (including two oxygen atoms connected to two vicinal
aromatic carbons) in toxic molecules (12%) is 8-fold higher than in non-toxic compounds
(1.4%), thus suggesting such substructure as a potential estrogenic toxicophore (see also
Figures S1 and S2 in the Supplementary Materials). Although this is out of the scope of the
present work, which is focused on maximizing the toxicity prediction reliability, implemen-
tation of such approaches will be the target of future studies, with the aim of including this
aspect in our models.

3.5. VenomPred Web Tool

With the aim of creating a freely accessible platform for multiple toxicity predictions,
we developed the web tool VenomPred, available on the following page of our research
group’s website http:/ /www.mmvsl.it/wp/venompred /. VenomPred allows toxicological
predictions of potential mutagenicity, carcinogenicity, estrogenicity and hepatotoxicity of
small molecules employing the best performing models herein developed for each endpoint
by following the consensus approach. In particular, for each endpoint, the consensus
strategy that showed the best results was implemented in our web tool. VenomPred
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presents an intuitive and user-friendly interface. The users only need to provide the
SMILES (Simplified Molecular-Input Line-Entry System) strings of the compounds to be
evaluated, which can be obtained by simply drawing the molecular structures on the
integrated 2D sketcher [32]. In order to complete the request, it is necessary to select
at least one of the four endpoints available; after the request is submitted, the web tool
computes the consensus toxicity prediction for each endpoint. A report providing the
results for each analyzed molecule is then sent by email. The report includes a “Probability”
value related to each toxicity prediction requested, which corresponds to the value of the
consensus score expressed as a percentage. In order to facilitate the interpretation of results,
VenomPred report also includes a graphical representation related to the confidence level
of each prediction, derived from the Probability value, which is divided into four different
ranges: (a) Probability < 25%, (b) 25% < Probability < 50%, (c) 50% < Probability < 75% and
(d) 75% < Probability. The first two ranges, a and b, respectively, indicate a high and low
confidence level in the prediction of a molecule as harmless, while ranges ¢ and d indicate a
low and high level of confidence, respectively, for a prediction of toxicity. The four different
Probability ranges a, b, c and d were then, respectively, color-coded as green, yellow, orange
and red sections of the graphical indicator associated with each prediction within the
VenomPred report (Figure 5).

] O3

Non-Toxic — High confidence Non-Toxic — Low confidence
7% )
Toxic — Low confidence Toxic — High confidence

Figure 5. The graphical representation provided by VenomPred related to the confidence level of
each prediction, derived from the Probability value.

Figure S3 in the Supplementary Materials shows a typical report including predictions
for all available endpoints related to a single compound. In this case, the query compound
is Nithiazide (CAS number: 139-94-6), a veterinary medicine used in the past as an antipro-
tozoal agent whose mutagenicity and carcinogenicity are reported in the literature [33].
VenomPred platform confirms the toxicity of the query compound by correctly predicting
it as mutagenic and carcinogenic with high confidence (Probability of 89% and 78% for
mutagenicity and carcinogenicity, respectively), while a Probability of potential hepatotoxic
and estrogenic effect of 37% and 7%, respectively, is estimated, and thus the compound is
predicted as safe with low and high confidence, respectively.

4. Conclusions

A rapid and efficient assessment of the potential toxicity of small molecules is a hot
topic for the whole scientific community and represents a field of particular interest in
drug discovery since the early evaluation of the toxicity profile of a lead compound is of
great importance for its development. In this context, we developed machine learning (ML)
models allowing the evaluation of the potential mutagenicity, carcinogenicity, estrogenicity
and hepatotoxicity of small molecules due to the great impact of these four toxicological
aspects in drug discovery and development. All models were trained and evaluated
using the training and test sets of reference models included in the VEGA QSAR platform.
When compared to VEGA, our models were often able to achieve better results in terms of
multiple statistical parameters employed in performance evaluations, such as Matthew’s
Correction Coefficient. In order to further improve the prediction reliability, we applied
three different consensus approaches that combined the predictions of the three, four
and five best models generated for each endpoint. The consensus approach was able
to outperform both the reference models included in VEGA and the best single models
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developed for each endpoint. The best consensus strategy for each endpoint was thus
implemented in the VenomPred platform (http://www.mmvsl.it/wp/venompred/), a
freely available web tool easily accessible even to non-expert users. The workflow used for
the generation of the ML models herein reported may be thus profitably applied for the
development of new efficient models focused on other toxicity endpoint predictions that
can be implemented in the VenomPred platform.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1jms23042105/s1.
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