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Abstract: As a novel biomimetic polymer, we have developed polymer gels with an 

autonomous self-oscillating function. This was achieved by utilizing oscillating chemical 

reactions, called the Belousov-Zhabotinsky (BZ) reaction, which is recognized as a 

chemical model for understanding several autonomous phenomena in biological systems. 

Under the coexistence of the reactants, the polymer gel undergoes spontaneous swelling-

deswelling changes without any on-off switching by external stimuli. In this review, our 

recent studies on the self-oscillating polymer gels and application to biomimetic actuators 

are summarized. 
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1. Introduction 

Over about the last two or three decades, many kinds of stimuli-responsive polymer gels, which 

respond to changes in their surroundings such as temperature, pH, and supply of electric field, etc., 

have been developed. They have attracted much attention as smart (or biomimetic) materials, and 

several applications to actuator (artificial muscle), biosensor, drug delivery systems, purification or 

separation systems, tissue engineering, etc. are extensively studied [1]. 

Several mechanical devices using gels were devised and demonstrated in the late 80s and early 90s 

when gels first began to attract attention as a functional material [2]. For example, devices driven by a 

change in temperature or giving an electric field [3] (artificial muscles or robot hands that lift or grasp 

something, artificial fish that swim with repetitive bending motions, artificial looper that walks on rails 
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[4], etc.) attracted much attention. In addition, several chemomechanical gels, e.g., “biochemo-

mechanical” gel that contracts when a substrate for enzymatic reaction is added in outside solution, 

were demonstrated [5]. 

Recently, electrically stimulated systems using polyelectrolyte gels, organogels [6], gels consisting 

of carbon nanotube and ionic liquid [7], etc. have become popular and some materials have already 

come to near practical use. For example, the ion conductive polymer actuator obtained by plating a 

golden electrode on both sides of a perfluoro carboxylic acid film causes bending motion and 

biomimetic motion by electric field addition. By using the gels, hobby products such as an artificial 

fish (has already beencommercialized), medical operation devices (catheter, etc.), etc. are devised [8] 

also. In addition, gel use as actuating systems driven by a magnetic field was studied by Zrinyi et al. 

[9]. They prepared PVA gel containing magnetite (Fe3O4) particles (ferrogel) and demonstrated that 

the gel showed dynamic motion in response to a magnetic field. 

As one of the characteristic behaviors in living systems, autonomous oscillation - that is, 

spontaneous changes with temporal periodicity (called “temporal structure”) such as heartbeat, brain 

waves, pulsatile secretion of hormone, cell cycle, biorhythm - can be exemplified. From the standpoint 

of biomimetics, several stimuli-responsive polymer systems have been studied, but the polymer 

systems undergoing self-oscillation under constant condition without any on-off switching of external 

stimuli are still undeveloped. If such autonomous polymer systems like a living organism can be 

realized by using completely synthetic polymers, then unprecedented biomimetic materials will be 

created. 

We attempted to develop a novel gel that provides mechanical oscillation by itself without external 

control in a completely closed solution. We succeeded in developing such a self-oscillating polymer 

and gels by incorporating oscillating chemical reactions in polymer network, i.e., by constructing a 

built-in circuit of energy conversion cycle producing mechanical oscillation within the polymer 

network itself. Under the coexistence of the reactants in a closed and constant-conditioned solution, 

the polymer undergoes spontaneous cyclic soluble-insoluble changes or swelling-deswelling changes 

(in the case of gel) without any on-off switching by external stimuli, thus differently from conventional 

stimuli-responsive gels. Since it was first reported in 1996 as “self-oscillating gel” [10], we have been 

systematically studying the self-oscillating polymer and gel as well as their applications to biomimetic 

or smart materials [11-13]. In this review, these recent progress on the self-oscillating polymer gels 

and the design of autonomic and biomimetic actuators are summarized. 

2. Design of Self-Oscillating Gel 

In order to realize the autonomous polymer system by tailor-made molecular design, we focused on 

the Belousov-Zhabotinsky (BZ) reaction [14,15], which is well-known for exhibiting temporal and 

spatiotemporal oscillating phenomena. The BZ reaction is often analogically compared with the TCA 

cycle (Krebs cycle), which is a key metabolic process taking place in the living body. The overall 

process of the BZ reaction is the oxidation of an organic substrate, such as malonic acid (MA) or citric 

acid, by an oxidizing agent (bromate ion), in the presence of a strong acid and a metal catalyst. In the 

course of the reaction, the catalyst undergoes spontaneous redox oscillation. When the solution is 

homogeneously stirred, the color of the solution periodically changes, like a neon sign, based on the 
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redox changes of the metal catalyst. When the solution is placed as a thin film in stationary conditions, 

concentric or spiral wave patterns develop in the solution. The wave of oxidized state propagating in 

the medium at a constant speed is called a “chemical wave”. 

It was attempted to convert the chemical oscillation of the BZ reaction to the mechanical changes of 

gels and generate an autonomic swelling-deswelling oscillation under nonoscillatory outer conditions. 

A copolymer gel, which consists of NIPAAm and ruthenium tris (2,2’-bipyridine) (Ru(bpy)3
2+) was 

prepared. Ru(bpy)3
2+, acting as a catalyst for the BZ reaction, is pendent to the polymer chains of 

NIPAAm (Figure 1). The poly(NIPAAm-co-Ru(bpy)3
2+) gel has a phase transition temperature 

because of the themosensitive constituent NIPAAm. The oxidation of the Ru(bpy)3
2+ moiety caused 

not only an increase in the degree of swelling of the gel, but also a rise in the transition temperature. 

These characteristics may be interpreted by considering an increase in hydrophilicity of the polymer 

chains due to the oxidation of Ru(II) to Ru(III) in the Ru(bpy)3 moiety. As a result, it is expected that 

the gel undergoes a cyclic swelling-deswelling alteration when the Ru(bpy)3 moiety is periodically 

oxidized and reduced under constant temperature. When the gel is immersed in an aqueous solution 

containing the substrates of the BZ reaction (MA, acid, and oxidant) except for the catalyst, the 

substrates penetrates into the polymer network and the BZ reaction occurs in the gel. Consequently, 

periodical redox changes induced by the BZ reaction produce periodical swelling-deswelling changes of the 

gel (Figure 1). 

Figure 1. Mechanism of self-oscillation for poly(NIPAAm-co-Ru(bpy)3
2+) gel coupled 

with the Belousov-Zhabotinsky reaction. 
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3. Self-Oscillating Motion of Miniature Bulk Gel: Homogeneous Swelling-Deswelling Oscillation 

Figure 2 shows the oscillating behavior observed under a microscope for the miniature cubic poly 

(NIPAAm-co-Ru(bpy)3
2+) gel (each with a length of about 0.5 mm). In miniature gels sufficiently 

smaller than the wavelength of the chemical wave (typically several mm), the redox change of the 

ruthenium catalyst can be seen to occur homogeneously without pattern formation [16]. Due to the 

redox oscillation of the immobilized Ru(bpy)3
2+, mechanical swelling-deswelling oscillation of the gel 

autonomously occurs with the same period as for the redox oscillation. The volume change is isotropic 

and the gel beats as a whole, like a heart muscle cell. The chemical and mechanical oscillations are 

synchronized without a phase difference (i.e., the gel exhibits swelling during the oxidized state and 

deswelling during the reduced state). 

Typically, the oscillation period increases with a decrease in the initial concentration of substrates. 

The swelling-deswelling amplitude of the gel increases with an increase in the period and amplitude of 

the redox changes. Therefore the swelling-deswelling amplitude of the gel is controllable by changing 

the initial concentration of substrates. As an inherent behavior of the BZ reaction, the abrupt transition 

from steady state (non-oscillating state) to oscillating state occurs with a change in controlling 

parameters such as chemical composition, light, etc. By utilizing this characteristic, reversible on-off 

regulation of self-beating triggered by addition and removal of MA was successfully achieved [17]. In 

addition, as the gel is thermosensitive due to the NIPAAm component, the beating rhythm can be also 

controlled by temperature [18]. 

Figure 2. Periodic redox changes of the miniature cubic poly(NIPAAm-co-Ru(bpy)3
2+) gel 

(lower) and the swelling-deswelling oscillation (upper) at 20 °C. Color changes of the gel 

accompanied by redox oscillations (orange: reduced state, light green: the oxidized state) 

were converted to 8-bit grayscale changes (dark: reduced, light: oxidized) by image 

processing. Transmitted light intensity is expressed as an 8-bit grayscale value. Outer 

solution: [MA] = 62.5mM; [NaBrO3] = 84mM; [HNO3] = 0.6M (Reference [16]). 
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4. Worm-Like Peristaltic Motion of Gel 

When the gel size is larger than the chemical wavelength, the chemical wave propagated in the gel 

is coupled with diffusion of intermediates [19-21], resulting in creation of peristaltic motion of the gel. 

Figure 3 shows the cylindrical gel, which is immersed in an aqueous solution containing the three 

reactants of the BZ reaction. The chemical waves propagate in the gel at a constant speed in the 

direction of the gel length. Considering the orange (Ru(II)) and green (Ru(III)) zones represent simply 

the shrunken and swollen parts, respectively, the locally swollen and shrunken parts move with the 

chemical wave, like the peristaltic motion of living worms (Figure 3) [22]. The tensile force of the 

cylindrical gel with oscillation was also measured [23,24]. 

It is well known that the period of oscillation is affected by light illumination for the Ru(bpy)3
2+-

catalyzed BZ reaction [25]. Therefore, it is possible to intentionally make a pacemaker with a desired 

period (or wavelength) by local illumination of laser beam to the gel, or change the period (or 

wavelength) by local illumination to a pacemaker that already exists in the gel [26]. Chemical and 

optical control of the worm-like peristaltic motion of a structural colored porous gel were 

demonstrated [27-29]. 

Figure 3. Time course of peristaltic motion of poly(NIPAAm-co-Ru(bpy)3
2+-co-AMPS) 

gel in a solution of the BZ substrates (MA, NaBrO3 and HNO3, 18 °C). The green and 

orange colors correspond to the oxidized and reduced states of the Ru moiety in the gel, 

respectively (Reference [22]). 
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5. Design of Biomimetic Actuator Using Self-Oscillating Gel 

5.1. Self-Walking Gel 

Further, a novel biomimetic walking-gel actuator made of self-oscillating gel was successfully 

developed [30]. To produce directional movement of the gel, asymmetrical swelling-deswelling is 

desired. For these purposes, as a third component, hydrophilic 2-acrylamido-2-methylpropanesulfonic 

acid (AMPS) was copolymerized into the polymer to lubricate the gel and to cause anisotropic 

contraction. During polymerization, the monomer solution faces two different plate surfaces; a 

hydrophilic glass surface and a hydrophobic Teflon surface. Since Ru(bpy)3
2+ monomer is 

hydrophobic, it easily migrates to the Teflon surface side. As a result, a non-uniform distribution along 

the height is formed by the components, and the resulting gel has a gradient distribution for the content 

of each component in the polymer network.  

In order to convert the bending and stretching changes to one-directional motion, we employed a 

ratchet mechanism. A ratchet base with an asymmetrical surface structure was fabricated. On the 

ratchet base, the gel repeatedly bends and stretches autonomously resulting in the forward motion of 

the gel, while sliding backwards is prevented by the teeth of the ratchet. Figure 4 shows successive 

profiles of the “self-walking” motion of the gel like a looper in the BZ substrate solution under 

constant temperature. The walking velocity of the gel actuator was approximately 170 m/min. Since 

the oscillating period and the propagating velocity of the chemical wave change with concentration of 

substrates in the outer solution, the walking velocity of the gel can be controlled. By using the gel with 

gradient structure, other type of actuator which generates a pendulum motion is also realized [31]. 

Figure 4. Time course of self-walking motion of the gel actuator in a solution of the BZ 

substrates (MA, NaBrO3 and HNO3, 18 °C). During stretching, the front edge can slide 

forward on the base, but the rear edge is prevented from sliding backwards. Oppositely, 

during bending, the front edge is prevented from sliding backwards while the rear edge can 

slide forward. This action is repeated, and as a result, the gel walks forward (Reference [30]). 
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5.2. Mass Transport Surface Utilizing Peristaltic Motion of Gel 

It was also attempted to transport an object by utilizing the peristaltic motion of poly (NIPAAm-co-

Ru(bpy)3-co-AMPS) gels. Here AMPS was copolymerized to increase the swelling-deswelling 

amplitude. As a model object, a cylindrical poly (acrylamide) (PAAm) gel was put on the gel surface. 

It was observed that the PAAm gel was transported on the gel surface with the propagation of the 

chemical wave as it rolled [22,32,33] (Figure 5). We have proposed a model to describe the mass 

transport phenomena based on the Hertz contact theory, and the relation between the transportability 

and the peristaltic motion was investigated. The functional gel surface generating autonomous and 

periodic peristaltic motion has a potential for several new applications such as a conveyer to transport 

soft materials, a formation process for ordered structures of micro- and/or nanomaterials, a self-

cleaning surface, etc. 

Figure 5. Schematic illustration of mass transport on the peristaltic surface (left) and 

observed transport of cylindrical PAAm gel on the poly (NIPAAm-co-Ru(bpy)3
2+-co-

AMPS) gel sheet in a solution of the BZ substrates (MA, NaBrO3 and HNO3) (right) 

(Reference[32]). 

 

5.3. Ciliary Motion Actuator (Artificial Cilia) 

One of the promising fields of the MEMS is micro actuator array or distributed actuator systems. 

The actuators, which have a very simple actuation motion such as up and down motion, are arranged in 

an array form. If their motions are random, no work is extracted from this array. However, by 

controlling them to operate in a certain order, they can generate work as a system. A typical example 

of this kind of actuation array is a ciliary motion micro actuator array. There have been many reports 
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on this system. Although various actuation principles have been proposed, all previous work is based 

on the concept that the motion of actuators is controlled by external signals. If a self-oscillating gel 

plate with a micro projection structure array on top was realized, it would be expected that the 

chemical wave propagation would create dynamic rhythmic motion of the structure array. This 

proposed structure could exhibit spontaneous dynamic propagating oscillation producing a ciliary 

motion array. 

A gel plate with micro projection array was fabricated by molding (Figure 6) [34,35]. First, moving 

mask deep-X-ray lithography was utilized to fabricate a PMMA plate with a truncated conical shape 

microstructure array. This step was followed by evaporation of a Au seed layer and subsequent 

electroplating of nickel to form the metal mold structure. Then, a PDMS mold structure was duplicated 

from the Ni structure and utilized for gel molding. The formation of gel was carried out by vacuum 

injection molding. A structure with a height of 300 m and bottom diameter of 100 m was 

successfully fabricated by the described process. The propagation of chemical reaction wave and 

dynamic rhythmic motion of the micro projection array were confirmed by chemical wave observation 

and displacement measurements. Figure 6 shows the measured lateral and vertical movements and the 

motion trajectory of the projection top. Motion of the top with 5 m range in both lateral and vertical 

directions, and elliptical motion of the projection top were observed. 

The feasibility of the new concept of the ciliary motion actuator made of self-oscillating polymer 

gel was successfully confirmed. The actuator may serve as a micro-conveyer to transport micro- or 

nano-particles on the surface. Currently, we are trying to develop a chemical robot, which is unlike a 

conventional electrically powered robot, by coupling with a PDMS membrane [36]. 

Figure 6. Fabrication of ciliary motion actuator (artificial cilia) using self-oscillating gel 

(Reference [34]). 

 



Sensors 2010, 10                            

 

 

1818

5.4. Control of Chemical Wave Propagation in Self-Oscillating Gel Array 

A chemomechanical actuator utilizing a reaction-diffusion wave across gap junction was 

constructed toward a novel mircoconveyer by micropatterned self-oscillating gel array [37]. 

Unidirectional propagation of the chemical wave, the BZ reaction, was induced on gel arrays. In the 

case of using a triangle-shaped gel as an element of the array, the chemical wave propagated from the 

corner point of the triangular gel to the plane side of the other gel (C-to-P) across the gap junction, 

whereas it propagated from the plane side to the corner side (P-to-C) in the case of the pentagonal gel 

array (Figure 7). Numerical analysis based on theoretical modeling was done to understand the 

mechanism of unidirectional propagation in triangular and pentagonal gel arrays. By fabricating 

different shapes of gel arrays, control of the direction is possible. The swelling and deswelling changes 

of the gels followed the unidirectional propagation of the chemical wave. Applications in novel microconveyers 

is expected. 

Figure 7. Propagating behavior of the chemical wave on the (a) triangular gel array and (b) 

pentagonal gel array (Reference [37]). 

 

6. Conclusions 

In self-oscillating gel, redox changes of Ru(bpy)3
2+ catalyst are converted to conformational 

changes of polymer chain by polymerization. These periodic changes of linear and uncrosslinked 

polymer chains can be easily observed as cyclic transparent and opaque changes for the polymer 

solution with color changes due to the redox oscillation of the catalyst [38]. The conformational 

changes are amplified to macroscopic swelling-deswelling changes of the polymer network by 
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crosslinking. Further, when the gel size is larger than the chemical wavelength, the chemical wave 

propagates in the gel by coupling with diffusion. In this case, peristaltic motion of the gel is created. In 

this manner, a synchronization process exists from the microscopic to the macroscopic level in the 

self-oscillating gel (Figure 8). 

Figure 8. Synchronization in self-oscillating gel over the range from microscopic to 

macroscopic level. 

 

 

These self-oscillating gels may be useful in a number of important applications to autonomous 

actuator as mentioned in this review. Furthermore, in order to realize nano-actuator exhibiting 

autonomous oscillation (nano-oscillator), the linear polymer chain and the submicrometer-sized gel 

beads were actually prepared [39-43]. The self-oscillating behaviors were analyzed, and the 

crosslinking effects on the inter- and intrapolymer interaction under the micro-environment have been 

discussed. By grafting the polymers or arraying the gel beads on the surface of substrates, we have 

attempted to design self-oscillating surfaces as nano-conveyers to transport microparticles, etc. with 

the spontaneous propagation of chemical waves [44,45]. For applications in biomaterials, it is 

necessary to cause the self-oscillation under biological conditions without using non-biorelated BZ 

substrates. We attempted to introduce a pH-control site and an oxidant-supplying site into the polymer 

[46-49]. By using the polymer, self-oscillation was achieved only in the presence of biorelated organic 

acid. Applications in biomimetic and autonomous micro- or nano-actuators are expected. 
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