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Semantic knowledge is supported by numerous brain regions, but the spatiotemporal configuration of the network that links
these areas remains an open question. The hub-and-spokes model posits that a central semantic hub coordinates this network.
In this study, we explored distinct aspects that define a semantic hub, as reflected in the spatiotemporal modulation of neural
activity and connectivity by semantic variables, from the earliest stages of semantic processing. We used source-reconstructed
electro/magnetoencephalography, and investigated the concreteness contrast across three tasks. In a whole-cortex analysis, the
left anterior temporal lobe (ATL) was the only area that showed modulation of evoked brain activity from 100 ms post-stimulus.
Furthermore, using Dynamic Causal Modeling of the evoked responses, we investigated effective connectivity amongst the candidate
semantic hub regions, that is, left ATL, supramarginal/angular gyrus (SMG/AG), middle temporal gyrus, and inferior frontal gyrus.
We found that models with a single semantic hub showed the highest Bayesian evidence, and the hub region was found to change
from ATL (within 250 ms) to SMG/AG (within 450 ms) over time. Our results support a single semantic hub view, with ATL showing
sustained modulation of neural activity by semantics, and both ATL and AG underlying connectivity depending on the stage of
semantic processing.

Key words: connectivity modeling; dynamic causal modeling; EEG/MEG source estimation; semantic network; spatiotemporal
dynamics.

Introduction
When we see a word, how do we understand its meaning?
What areas in the brain are involved and how do these
areas connect over time to form the neuronal networks
that support retrieval of semantic knowledge? Ample
evidence, predominantly based on neuropsychology and
functional magnetic resonance imaging (fMRI) (Binder
et al. 2009; Lambon Ralph et al. 2016), points to the
involvement of a large number of brain regions in
semantic processing, particularly in the left hemispheric
temporal, parietal, and frontal regions (Binder and Desai
2011). However, the precise role of each area within
this network, and importantly the spatial and temporal
configuration of the network that binds these areas
together, remains an open question (Pulvermüller 2013;
Hauk 2016; Rogers et al. 2021). In order to delineate this
network further, we focus on the first few hundred mil-
liseconds of word processing, which have already been
shown to include distinct aspects of lexico-semantic
processing (Lau et al. 2008, 2013; Hauk et al. 2012; West-
erlund and Pylkkänen 2014; Pylkkänen 2016). Therefore,

we here aim to trace the fast, transient states of brain
activity and connectivity across these early stages, which
are not resolvable with fMRI.

One of the most prominent models of semantic pro-
cessing is the hub-and-spokes model (Patterson et al.
2007), which proposes that a single hub region in the
anterior temporal lobe (ATL) binds the semantic network
together (Rogers et al. 2004; Lambon Ralph et al. 2016).
Strong evidence for this model has come from compu-
tational modeling (Rogers et al. 2004; Chen et al. 2017;
Hoffman et al. 2018), neuroimaging research (Lau et al.
2013; Binney et al. 2016; Jackson et al. 2016; Lambon
Ralph et al. 2016), and from studies on semantic demen-
tia, a type of neurodegenerative brain disorder that is
associated with damage to the ATLs and a profound
loss of semantic knowledge (Snowden et al. 1989, 2017;
Rogers et al. 2004; Patterson et al. 2007). A prominent
alternative model is the theory of convergence zones
(Barsalou 2009; Meyer and Damasio 2009; Martin 2016),
where multiple heteromodal regions, for example, in the
posterior inferior parietal lobe (IPL; e.g., angular gyrus,
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AG), middle temporal gyrus (MTG) and inferior frontal
gyrus (IFG), are suggested to play equally central roles.
Meta-analytic neuroimaging evidence based on fMRI and
positron emission tomography (Binder et al. 2009; Pulver-
müller 2013), as well as neurocomputational modeling
of word learning (Tomasello et al. 2017) supports the
existence of multiple semantic convergence zones.

The hub-and-spokes model makes predictions about
the role of the semantic hub that can be used to explicitly
test the model against other frameworks. More specif-
ically, the hub is proposed to act as a mediator layer
of the network that receives input from the sensory
regions, for example, visual cortex for the visually pre-
sented words, and mediates concept retrieval through
establishing multiple connections to other key semantic
areas (Rogers et al. 2004; Patterson et al. 2007; Chen et al.
2017). As a result, we hypothesized that both the neural
activity within the hub area and its connectivity with the
rest of the semantic network should be modulated by
semantic variables as of the earliest stages of seman-
tic processing. We tested these two key hypotheses by
leveraging the fine spatiotemporal resolution of source-
reconstructed electroencephalography (EEG) and magne-
toencephalography (MEG) to trace modulation of brain
activity and effective connectivity (via Dynamic Causal
Modeling; DCM) over time.

For this purpose, we examined the contrast of visually
presented concrete and abstract words across three
tasks from two experiments. The concreteness contrast
was chosen, as in a number of previous neuroimaging
studies (Fiebach and Friederici 2004; Binder et al. 2005;
Dhond et al. 2007; Hoffman 2016; Gao et al. 2019),
because concrete and abstract words differ with respect
to their general semantic processing demands and
their reliance on distributed semantic areas (Binder
et al. 2005; Dhond et al. 2007). More specifically, the
representations of concrete words are thought to be
mediated through interactions between the heteromodal
semantic system and the brain regions that underlie
nonverbal imagery or provide context availability (Jessen
et al. 2000; Sadoski et al. 2006; Paivio 1990; Hoffman 2016;
Taylor et al. 2019). Abstract words, on the other hand, rely
more strongly on symbolic semantic representations in
the heteromodal regions, and thus can be expected to
place more demand on putative hub areas (Jessen et
al. 2000; Sadoski et al. 2006; Paivio 1990; Hoffman 2016;
Taylor et al. 2019). Furthermore, superior comprehension
of concrete than abstract concepts is a well-established
feature of semantic dementia (Reilly et al. 2006; Jefferies
et al. 2009; Loiselle et al. 2012; Hoffman et al. 2013).
Therefore, this “concreteness contrast” can be expected
to modulate activation in and connectivity profiles of the
putative hub(s).

In order to identify core semantic effects of con-
creteness that are minimally confounded by specific
task demands, we sought results based on accumulated
evidence across three tasks: lexical decision, concrete-
ness decision, and semantic target detection. Previous

research on concreteness effects has typically used a
single task, for example, concreteness judgment, or
lexical decision. Concreteness decisions have the benefit
of explicitly forcing participants to think about the
dimension of interest, but confound concrete versus
abstract conditions with different responses (e.g., “yes”
vs. “no”). Lexical decision removes the confound of
different response types (since both conditions require a
“yes” response), but can potentially be performed without
deep semantic processing. In addition to these two most
commonly used tasks, we ran a third, semantic target
detection task, where participants silently read stimuli
and only responded to rare targets that were not of
interest, thus requiring semantic processing without any
response to the non-targets of interest. This allowed us
to identify the commonalities in concreteness effects
across tasks.

Our analyses focussed on two aspects of our data,
namely evoked brain responses and effective connectiv-
ity. First, we conducted vertex-wise general linear mod-
eling (GLM) of the evoked brain activity over multiple
time windows spanning 50–450 ms post-stimulus. Using
whole-cortex cluster-based permutations, we identified
the spatiotemporal clusters whose activity was modu-
lated by the main effect of concreteness across tasks.
Second, using DCM of evoked responses (David et al.
2006), we tested for the presence of a central hub within
the heteromodal semantic subnetwork that links sensory
inputs to different nodes of this network in two latency
ranges (within 250 and 450 ms). For this purpose, we
constructed a hierarchy of model comparisons compris-
ing two levels, and asked: 1) are models with a single
connectivity hub preferred over models with no hubs,
and 2) in the preferred models, do the areas that function
as a hub change across the course of semantic retrieval?
In order to obviate task- and experiment-specific effects,
here we identified the winning family of DCM models in
each level of hierarchy based on accumulated Bayesian
evidence across the three tasks.

Materials and Methods
We present data from two separate EEG/MEG experi-
ments, all based on visual word recognition paradigms,
and the contrast of concrete and abstract words. The first
experiment used a concreteness decision task and the
second a lexical decision as well as a semantic target
detection task.

Experiment 1—Concreteness Decision
Participants

Twenty healthy native English speakers participated in
the study, but three participants were removed due to
excessive movement artifacts or measurement error.
Hence 17 participants (age 27 ± 6 years, 12 female)
entered the final analysis. A mean handedness laterality
quotient of 82 (min 41, max 100) was obtained from a
reduced version of the Oldfield handedness inventory
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Table 1. Psycholinguistic properties of stimuli in Experiment 1
for relevant stimulus dimensions

Concrete
(average ± std)

Abstract
(average ± std)

Number of Letters 5.95 ± 0.8 5.95 ± 0.8
CELEX Frequency 11.8 ± 14.9 15.28 ± 15.4
Orth Neighborhood 1.64 ± 2.1 1.38 ± 2.2
Number of Syllables 2.0 ± 0.6 2.1 ± 0.8
Bigram Frequency 19705.18 ± 8020.2 21530.53 ± 11210.2
Trigram Frequency 1704.99 ± 1339.9 2200.4 ± 3304.8
Concreteness Rating 590.0 ± 26.0 303.0 ± 39.0

std: standard deviation.

(Oldfield 1971). All participants had normal or corrected-
to-normal vision with no reported history of neurological
disorders or dyslexia. The experiment was approved by
the Cambridge Psychology Research Ethics Committee,
it was undertaken with the understanding and written
consent of each participant, and volunteers were paid for
their time and effort.

Stimuli

Participants were presented with 184 abstract and con-
crete words (92 per category), matched for a number of
psycholinguistic variables including Kucera–Francis and
CELEX word frequencies, familiarity, concreteness, and
imageability ratings as well as the number of letters/-
phonemes/syllables (for details, see Table 1). Concrete-
ness ratings were taken from the MRC Psycholinguistic
Database (Coltheart 1981) and CELEX frequency, ortho-
graphic neighborhood, bigram and trigram frequencies
were taken from the MCWord Database (Medler and
Binder 2005). The two categories differed significantly
on concreteness (ts > 19.3575, Ps < 0.0005) as indicated
by independent samples t-tests, but not with respect to
the other aforementioned variables. As a post-hoc test
(conducted after data collection), we also calculated mor-
phological complexity for the stimuli based on the Mor-
phoLEX database (Sánchez-Gutiérrez et al. 2018). Of the
184 stimuli, 149 were monomorphemic (82 concrete, 67
abstract), 34 were bimorphemic (10 concrete, 24 abstract),
and 1 was trimorphemic (0 concrete, 1 abstract). Of the
bimorphemic and trimorphemic stimuli, 3 were transpar-
ent compounds (all three concrete), 1 was opaque com-
pound (1 concrete), and the remaining 31 were prefixed
or suffixed words.

Procedure and Task

Single-word stimuli appeared as 28-point Arial font
in white on a black screen within a visual angle of 4
degrees in a slightly dimmed and acoustically shielded
MEG chamber at the MRC Cognition and Brain Sciences
Unit, University of Cambridge. Duration of stimulus
presentation was 150 ms, with an average SOA of
2400 ms (uniformly jittered between 2150 and 2650 ms).
Participants performed a concreteness decision task,
by performing button presses with their right hand,
using index and middle fingers to distinguish concrete

and abstract words. Short breaks were included after
approximately every 50 trials. Participants were given a
few minutes of practice prior to the experiment, using
different stimuli, until they felt comfortable with the
task. The first two trials (filler items) after each break
and at the beginning of each block were not included in
the analysis.

Experiment 2—Semantic Target Detection and
Lexical Decision
This experiment included two tasks, a semantic target
detection and a lexical decision task. Similar to the pre-
vious experiment, we investigated the contrast of con-
crete and abstract words using a visual word recogni-
tion paradigm. Stimuli for this experiment were selected
using a separate word rating study, with a separate group
of participants who did not have any overlaps with par-
ticipants of the EEG/MEG part of the study (for details of
word rating, see Supplementary Material 1).

Participants

Twenty-six healthy native adult English speakers (age
18–40 years) participated in the study, of which two
were removed due to problems with structural MRI
scans, three were removed due to inadequate behavioral
response accuracies, and three were removed due to
excessive movement artifacts. Hence, 18 participants
(mean age 27.00 ± 5.13 years, 12 female) entered the final
analysis. A handedness laterality quotient of 89.84 ± 0.2
was obtained from a reduced version of the Oldfield
handedness inventory (Oldfield 1971). All participants
had normal or corrected-to-normal vision with no
reported history of neurological disorders or dyslexia.
The experiment was approved by the Cambridge Psy-
chology Research Ethics Committee, it was undertaken
with the understanding and written consent of each
participant, and volunteers were paid for their time and
effort.

Stimuli

Participants were presented with 150 concrete words
grouped into three categories of visual, auditory and
hand-action words (50 words per category) as well as
50 abstract words. For this analysis, we selected 50 con-
crete words to match the abstract words with respect
to a number of psycholinguistic variables (details pre-
sented in Table 2). Concreteness ratings were obtained
based on the complementary word rating study (see
Supplementary Materials 1) and CELEX frequency, ortho-
graphic neighborhood, bigram, and trigram frequencies
were taken from the MCWord Database (Medler and
Binder 2005). Additional filler pseudowords and words
were also included in the experiment, which are not
of interest in this study. Similar to Experiment 1, we
ran a post-hoc test (conducted after data collection) to
calculate morphological complexity for the stimuli based
on the MorphoLEX database (Sánchez-Gutiérrez et al.
2018). Of the 100 stimuli, 77 were monomorphemic (46

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data


4552 | Cerebral Cortex, 2022, Vol. 32, No. 20

Table 2. Psycholinguistic properties of stimuli in Experiment 2
for relevant stimulus dimensions

Concrete
(average ± std)

Abstract
(average ± std)

Number of Letters 6.2 ± 1.21 6.44 ± 1.51
CELEX Frequency 17.43 ± 23.87 18.03 ± 21.19
Orth Neighborhood 1.62 ± 2.44 2.12 ± 3.61
Number of Syllables 1.8 ± 0.64 2.22 ± 1
Bigram Frequency 21313.27 ± 11343.31 20652.47 ± 7988.63
Trigram Frequency 2167.46 ± 3420.88 2022.06 ± 1282.76
Concreteness Rating 5.61 ± 0.96 2.68 ± 0.48

concrete, 31 abstract), 18 were bimorphemic (4 concrete,
14 abstract), and 5 were trimorphemic (0 concrete, 5
abstract). Of the bimorphemic and trimorphemic stimuli,
4 were transparent compounds (2 concrete, 2 abstract),
and the remaining 19 were prefixed or suffixed words.

Some previous studies have reported ATL modula-
tion by transparent compounds, but no modulation
by opaque compounds (Brooks and De Garcia 2015),
suffixed, or pseudo-suffixed words (Flick et al. 2018)
compared with monomorphemic stimuli. Interestingly,
Flick et al. (2018) argued that ATL sensitivity to trans-
parent compounds is potentially linked to its sensitivity
in semantic composition (e.g., Pylkkänen 2019) and its
role for combining concepts. Considering that non-
monomorphemic stimuli in both our experiments
are predominantly prefixed/suffixed words, with only
3 of 184 transparent compounds (all concrete) in
Experiment 1, and 4 of 100 transparent compounds
(2 concrete, 2 abstract) in Experiment 2, we expect
the confounding effect of morphological complexity on
semantic processing, especially in ATL, to be minimal in
our study.

Procedure and Task

The EEG/MEG experiment consisted of four randomized
blocks, and lasted approximately 90 minutes. We
included short breaks every 3 minutes and longer breaks
between the blocks. Duration of stimulus presentation
was 150 ms, with an average SOA of 2400 ms (uniformly
jittered between 2150 and 2650 ms). Stimuli appeared
as 30-point Arial font in black on a gray screen within
a visual angle of 4 degrees in a slightly dimmed and
acoustically shielded MEG chamber. Three blocks of the
experiment consisted of semantic target detection tasks
and the fourth block was a lexical decision task, where
half of the subjects performed the lexical decision block
before semantic blocks and half of them afterwards.
Details of these blocks were as follows:

1) Semantic target detection blocks:
In each block, participants were presented with con-
crete and the abstract words, as well as the filler
items (overall 300 stimuli), in addition to 30 tar-
gets. They were asked to quietly read the strings of
letters as they appeared on the screen and make
button press responses with the middle finger of
their left hand whenever a target appeared on the

screen. Each block had different targets which were
selected from three groups of “non-citrus fruits”,
“something edible with distinctive odor”, and “food
that contains milk, flour, or egg”. These semantic
target categories were chosen in order to require
access to specific semantic information, and did
not require an explicit distinction between concrete
and abstract meanings. Blocks were presented in
a random order and data obtained from the three
blocks were pooled in the later EEG/MEG analyses
so as to obviate possible question-specific effects.

2) Lexical decision task:
In addition to the target detection task, participants
also performed a lexical decision task with all the
words and pseudowords (and additional 150 filler
pseudowords compared to semantic blocks in order
to match the overall number of words to acquire
response balance). Participants were asked to make
button press responses with the index and ring fin-
gers of their left hand indicating whether or not
“the following string of letters refers to a meaningful
word”.

EEG/MEG Data Acquisition
MEG data for both experiments were acquired in a mag-
netically shielded room using a Neuromag Vectorview
system (Elekta AB, Stockholm, Sweden), with 204 planar
gradiometers and 102 magnetometers (i.e., 306 channels
overall). EEG data were collected concurrently using
a 70-electrode EEG cap (EasyCap GmbH, Herrsching,
Germany). EEG reference and ground electrodes were
attached to the nose and left cheek, respectively.
The electrooculogram (EOG) was recorded by placing
electrodes above and below the left eye (vertical EOG) and
at the outer canthi (horizontal EOG). Data were acquired
with a sampling rate of 1000 Hz and a band pass filter of
0.03–330 Hz. Prior to the MEG recording, the positions of
5 head position indicator (HPI) coils attached to the EEG
cap, 3 anatomical landmark points (two ears and nose) as
well as approximately 50–100 additional points covering
the whole EEG cap were digitized using a 3Space Isotrak
II System (Polhemus, Colchester, Vermont, USA) for later
coregistration with MRI data.

Rationale for Using Concurrent EEG/MEG

The choice of concurrent EEG and MEG in this study was
made to maximize spatial resolution. EEG/MEG source
estimation is an ill-posed problem, where sources of
brain activity can only be estimated using mathemati-
cal inverse solutions but cannot be exactly determined.
Previous studies have shown that using combined MEG
and EEG results in higher spatial resolution (Sharon et
al. 2007; Molins et al. 2008; Henson et al. 2009; Hauk
et al. 2019). This will specifically allow us to obtain
improved source-localized signals from the candidate
hubs of interest. In particular, due to issues pertaining to
sensor coverage, MEG and EEG have been shown to yield
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less accurate signals from frontal and temporo-parietal
brain regions, respectively (Coquelet et al. 2020; Hill et
al. 2020). Therefore, using both modalities is expected
to allow accessing their complementary strengths for
obtaining signals from the candidate hubs in the frontal
and parieto-temporal regions. While this combination
can arguably allow us to detect any interesting effects
more accurately, it remains to be determined in the
future studies whether and how the results will differ if
a single modality is used.

EEG/MEG Data Processing in Sensor Space
The first step of data preprocessing included applying
signal-space separation implemented in the Maxfilter
software (version 2.0) of Elekta Neuromag to the raw
MEG data in order to remove noise from sources distant
to the sensor array (Taulu and Kajola 2005). The Maxfilter
software also involved movement compensation and bad
channel interpolation for MEG data. All the next analysis
steps (except DCM and general linear modeling) were
performed in the MNE-Python software package (http://
martinos.org/mne/stable/index.html) (Gramfort et al.
2013, 2014). Raw data were visually inspected for each
participant, and consistently bad EEG channels were
marked and interpolated. Data were then FIR band-pass
filtered between 1 and 48 Hz, using forward–backward
filtering to achieve zero phase delay. Independent
component analysis (ICA) was applied to the filtered data
in order to remove eye movement and heart artifacts.
We used the FastICA algorithm (Hyvärinen and Oja 2000)
as included in scikit-learn python package (Pedregosa
et al. 2011) and implemented in MNE-Python meeg-
preprocessing package (with minor manual changes to
achieve a better artifact rejection for some participants).
After ICA, data were divided into epochs, between -
500 ms and 700 ms for Experiment 1 and between −300
and 600 for Experiment 2, around the word onsets.
Epochs were rejected if peak-to-peak amplitudes were
higher than the following thresholds, based on previous
norms: 120 μV in the EEG (except for two cases where
we increased the threshold to 150 μV, because high
rejection rates could be identified as due to excessive
alpha activity despite good behavioral performance),
2500 fT in magnetometers, 1000 fT/cm for gradiometers.
Trials with incorrect responses were also excluded from
further analysis.

In this study, we only conducted statistical compar-
isons between concrete and abstract words in source
space (details in the following sections). However, to pro-
vide a complete presentation of the data, in Supplemen-
tary Material 2 we also show sensor-space group averages
per task and separately for each sensor type (EEG, MEG
gradiometers, and magnetometers). Please refer to (Sup-
plementary Figures 1 and 2).

Forward Model and Inverse Solution
We used MNE and MNE-Python software packages to
compute forward and inverse models, respectively. The

forward model was computed based on a boundary ele-
ment model (BEM) of the head derived from structural
MR images for each participant. EEG/MEG sensor con-
figurations and MR images were coregistered based on
the aforementioned digitization points. Structural MR
images were processed using the automated segmen-
tation algorithms in FreeSurfer software (version 5.3;
http://surfer.nmr.mgh.harvard.edu/) in order to obtain
the reconstructed scalp surface (Dale et al. 1999; Fis-
chl et al. 1999). The result of the FreeSurfer segmenta-
tion was processed further using MNE software pack-
age (version 2.7.3) and the original triangulated cortical
surface, which included more than 160 000 vertices per
hemisphere, was down-sampled to a tessellated grid in
which the average edge of each triangle was approxi-
mately 2.5 mm (Segonne et al. 2004). A three-layer BEM
containing 5120 triangles per layer was created for EEG
and MEG from scalp, outer skull surface and inner skull
surface, respectively. The noise covariance matrices for
each dataset were computed and regularized using diag-
onal loading with a regularization factor of 0.1 for all
channel types. Baseline intervals of 500 ms duration pre-
stimulus were used for noise covariance estimation. The
resulting regularized noise covariance matrix was used
to assemble the inverse operator for each participant
using L2 minimum-norm estimation (L2 MNE) with a
loose orientation constraint value of 0.2 and without
depth weighting.

Source-Reconstructed Evoked Analysis
The inverse operator described in the previous section
was next used for source reconstruction. After removing
bad trials according to aforementioned criteria in Section
EEG/MEG Data Processing in Sensor Space, the number
of epochs was equalized between concrete and abstract
words by matching the time of trial presentation. Trials
for each condition were averaged in sensor space in
order to yield an evoked response per participant and
condition, which were then projected onto the source
space using L2 MNE. We used MNE-Python’s default
Signal to Noise Ratio (SNR) = 3.0 for regularization of
the inverse operator for evoked responses. In order
to obtain an unsigned evoked response, we computed
activity with the loose orientation constraint. Afterwards,
the individual participant results were morphed to
the standard average brain (fsaverage5) in Freesurfer
software, yielding time courses of activity for 20 484
vertices for each participant and condition. Source-
estimated time courses were then averaged in four time
windows from 50 to 450 ms with 100 ms increments for
statistical analysis. These four time windows allowed
us to cover the early stages of semantic processing up
to, and including, the N400 time window, particularly the
critical stages reported previously, e.g., up to 150 (Moseley
et al. 2013; Teige et al. 2018); 150–250 ms (Bemis and
Pylkkänen 2011; Hauk et al. 2012); 250–350 ms (Dhond et
al. 2007); 350–450 ms (Lau et al. 2013).

http://martinos.org/mne/stable/index.html
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Whole-Cortex Statistical Inference
General Linear Model

In order to find modulation of cortical evoked activity
by semantic variables, we used a whole-cortex statisti-
cal analysis. For this purpose, we applied general linear
modeling (GLM) and obtained t-statistics to summarize
the main effect of concreteness across the three tasks
in every brain vertex, as well as each of the four time
windows of interest. The design matrix for the model
is shown in Figure 1a, where columns 1–3 encode each
task and columns 4–21 encode repeated subjects (among
semantic target detection and lexical decision tasks from
Experiment 2). It is worth noting that because the two
experiments comprise different participants, this GLM
design takes both within- and between-group variance
into account. The GLM is conducted using GeneralLinear-
Model function in NIPY, and under the assumption of
white Gaussian residuals.

Cluster-Based Permutations on GLM Results: Correction for
Multiple Comparisons

For whole-cortex analyses, as we conduct here, it is
essential to correct the results for multiple comparisons.
We used spatiotemporal cluster-based permutations
(Maris and Oostenveld 2007) in order to correct across
both vertex and time dimensions and obtain significant
clusters. For this purpose, we first thresholded the
t-maps at a t-value corresponding to P-value = 0.05
(two-tailed). Cluster-based permutation was applied
to these thresholded t-maps and randomization was
replicated 5000 times in order to obtain the largest
random clusters. The cluster-level significance for the
original clusters was then calculated as the percentile
of the cluster size compared to the largest random
clusters across the 5000 permutations. Additionally,
considering the low spatial resolution of EEG/MEG of
our source localization method for deeper brain areas
(for more details, see Liu et al. 1998; Hauk et al. 2011;
Farahibozorg et al. 2018), before conducting cluster-based
permutation, the areas highlighted in green in Figure 1b
were excluded.

Defining ROIs and Extracting ROI Time Courses
for DCM
We defined four candidate semantic hub regions in ATL,
IFG, MTG, and AG as the key heteromodal semantic
areas proposed in previous literature, in particular with
reference to the meta-analytic evidence by Binder et al.
(2009) and a review by Pulvermüller (2013). It is worth
noting that subdivisions of the temporal cortex in hetero-
modal semantics are not fully established, and previous
studies have considered different numbers of subregions
(Binder et al. 2009; Pulvermüller 2013; Lambon Ralph et
al. 2016; Jackson et al. 2018). Here, we defined MTG based
on the aforementioned meta-analytic evidence, except
for the anterior part of the temporal lobe, which was
defined as an independent ROI informed by studies of
semantic dementia and the hub-and-spokes model of

semantics (Patterson et al. 2007; Lambon Ralph et al.
2016). Additionally, we defined Angular Gyrus and parts
of the Supramarginal Gyrus (SMG) as one seed labeled
“AG.” This seed has been identified as a key semantic area
by Binder et al. (2009). Figure 1c shows the defined ROIs.

In order to extract each ROI time course, we first iden-
tified a vertex within the ROI that showed the highest
sensitivity to that ROI. To this aim, we computed cross-
talk functions (CTFs) and identified the vertex inside that
ROI that showed the largest mean CTF value with other
vertices in the ROI, on average across participants (for
details of ROICTF calculations, refer to Liu et al. 1998;
Hauk et al. 2011; Farahibozorg et al. 2018). Thereafter, we
extracted ROI time courses based on this vertex for each
subject-level timeseries that were morphed to fsaverage
brain.

Dynamic Causal Modeling
Our DCM analysis focused on identification of the orga-
nization of effective connectivity among the aforemen-
tioned candidate hubs: left ATL, IFG, MTG, and AG. The
visual word form area (VWFA) in the posterior fusiform
gyrus of the left hemisphere was used as the input region.

As the first step, we computed evoked source estimates
in the same manner as outlined in Section Source-
Reconstructed Evoked Analysis with two exceptions.
First, since DCM for Evoked Related Potentials (ERP)
requires signed evoked responses (i.e., reflecting the
direction of current flow), we here computed source
reconstructed ERPs for dipole components perpendicular
to the cortical surface based on the aforementioned
source estimates with loose orientation constraint.
Second, in order to obtain more compatibility with the
previous DCM ERP literature (Garrido et al. 2008; Phillips
et al. 2015; Chennu et al. 2016), we used a band-pass filter
between 1 and 35 Hz. Next, as elaborated earlier, we used
CTFs to identify the vertex with the highest sensitivity
to each ROI, the time course of which was extracted and
utilized in the subsequent analyses.

After extraction of the ROI time courses, we used
SPM12 (version r6909) for DCM analysis. The model
space, as displayed in Figure 2, comprised 28 models.
We defined a hierarchical organization of DCM families
in two levels. In the first level of hierarchical com-
parison, the 28 models were categorized into three
“grand” families of hub models, no-hub models, and
no-modulation models. Subsequently, in the second
level of hierarchical comparison, fine-grained families
within the winning grand-family from hierarchy 1 were
compared (Figure 2). Models within each fine-grained
family spanned different scenarios of self-modulation of
the candidate hub areas. It is worth noting that we chose
to include the self-modulation of VWFA in all the models.
In this way, we can avoid attribution of any possible
modulations within this region to the candidate hubs.
Finally, we compared single models within the winning
fine-grained family in order to examine whether or not
one of the models stood out as a conclusive winner.
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Fig. 1. Specifics of GLM and DCM: (a) design matrix of whole-cortex vertex-wise GLM analysis; (b) vertices excluded from whole-cortex statistical analyses:
green labels are defined manually (informed by the previous studies; e.g., Liu et al. 1998; Hauk et al. 2011; Farahibozorg et al. 2018) and mark deeper
brain areas that were removed from the whole-cortex statistical analysis due to the limited spatial resolution of the EEG/MEG source localization; (c)
five regions of interest in DCM models include anterior temporal lobe, inferior frontal gyrus, middle temporal gyrus, supramarginal/angular gyrus, and
visual word form area in the left fusiform gyrus.

Each model included evoked responses to both con-
crete and abstract words, and was fit for each participant
separately. Intrinsic connections were assumed to be
common between the conditions, while extrinsic con-
nections were used to model condition-induced modula-
tions of the preselected set of connections. Each model
was inverted within two time-windows of 0–250 and

0–450 ms, where the former was considered an “early”
time-window and the latter was considered a “later”
time-window. Because DCM is a dynamical system mod-
eling of signal in response to a perturbation, it requires
the data to start at the point of stimulus onset. Thus, both
early and late time-windows start from 0 ms (i.e., stim-
ulus onset). Data were reduced to eight spatial modes,
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Fig. 2. DCM model space delineating grand-families and fine-grained families encompassing 28 models. ATL: Anterior temporal lobe, IFG: Inferior frontal
gyrus, MTG: Middle temporal gyrus, AG: Angular gyrus, WFA: Word form area, Cov Zn: Convergence zone, SA: Semantic area.

and we used the traditional ERP model for DCM inversion
(David et al. 2006), with no down-sampling, detrending or
Hanning window. Furthermore, considering the lengths
of the time windows of the DCM analysis (i.e., 250 and
450 ms), we included modulations of both forward and
backward connections in the model (cf., Garrido et al.
2007). This choice was made heuristically and informed
by the previous literature where semantic effects have
been reported as early as 150 ms (Moseley et al. 2013).

Finally, we used family-level Bayesian Model Selection
(BMS) with Fixed Effect Inference (FFX) on the free energy

approximation to the model evidence, in order to identify
the winning families in each hierarchy of DCM evalu-
ations (Stephan et al. 2007). In the FFX inference, the
free energy values were pooled across the three tasks
in order to identify the families that provided the high-
est overall Bayesian evidence. FFX was considered as a
suitable approach for the current study because we are
studying a homogenous group of healthy young adults,
and therefore it is reasonable to assume that the same
model applies for all participants. We verified that win-
ning models were not driven by outliers in the free energy.
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Results
Behavioral Results
We computed reaction times (RTs) and error rates (ERs)
for abstract and concrete words for the concreteness
decision task from the first experiment and lexical deci-
sion task from the second experiment. In the concrete-
ness decision task, we found RTs for abstract versus con-
crete: 879 ± 118 versus 778 ± 111 ms, ERs: 8.1 ± 5.0% ver-
sus 4.5 ± 4.3%. For the lexical decision task, we found RTs
for abstract vs concrete: 658 ± 67 versus 664 ± 73 ms and
ERs: 4.1 ± 4.8% versus 6.8 ± 3.8%. Note that the semantic
target detection task from the second experiment did not
provide any behavioral output, considering that partic-
ipants were only asked to respond to target items that
were irrelevant for the main analyses.

Whole-Cortex Source-Reconstructed Evoked
Analysis
We used the contrast of the cortical evoked brain
responses to the concrete and abstract words to identify
potential hubs based on modulation of their activity. We
defined four time-windows of interest covering multiple
stages of written word comprehension: 50–150, 150–250,
250–350, and 350–450 ms (which we will subsequently
refer to by their central time points, e.g., 100 ms for
50–150 ms). In line with the hub-and-spokes model,
we hypothesized the hub activity to be modulated at
the earliest stages of semantic processing. As outlined
earlier in Materials and Methods, we used EEG/MEG
source reconstruction, together with vertex-wise GLM
and spatiotemporal cluster-based permutations.

When comparing the two word types, computing
the main effect of concreteness across all three tasks,
we found only one significant spatiotemporal cluster
(cluster P < 0.05), which was localized to the left ATL
(Figure 3) and was modulated between 50 and 450 ms.
Throughout all time windows, this cluster showed
higher amplitudes for abstract than concrete words.
Results of the cluster-based permutation and uncor-
rected t-maps from GLM are shown in Figure 3. In
Supplementary Material 3 (Supplementary Figure 3),
we show vertex-wise timecourses of the ATL cluster
for the contrast of concrete vs abstract, as well as the
average (unsigned) timecourse per word category within
this cluster. Additionally, in Supplementary Material
4 (Supplementary Figure 5a) we show vertex-average
timecourses of the ATL cluster (unsigned) for each task
separately. No other ROIs showed significant activity
differences in whole-cortex evoked analysis.

Next, in order to examine the more fine-grained
temporal trajectory of the ATL cluster, and determine
the cluster onset, we conducted post-hoc tests within
the significant spatial ATL cluster only. In these tests,
we first conducted one spatiotemporal cluster-based
permutation per time window, with each time win-
dow divided into small 10 ms increments: 50:10:150,

150:10:250, 250:10:350, and 350:10:450 ms. We addi-
tionally conducted spatial cluster-based permutations
on each of the 10 ms time windows separately, with
permutations used for correction across ATL voxels, and
FDR used for correction across 40 time windows. Results
are shown in Supplementary Material 3 (Supplementary
Figure 4), where we found 50–150 ms as the earliest
modulation time window (with the more fine-grained
onset at ∼100 ms onwards), and the largest effects were
found in 250–350 and 350–450 ms.

Dynamic Causal Modeling
Having established the effect of concrete vs abstract
words on cortical activity, we turned to their effects on
cortical connectivity; specifically, between the key het-
eromodal semantic areas (i.e., candidate hubs) in ATL,
IFG, MTG, and AG. For this purpose, we compared a
range of network configurations shown in Figure 2 using
DCM to identify the model that best explains the evoked
responses in those regions. The candidate hub areas were
defined based on the previous literature, as outlined
earlier in Materials and Methods, and we used VWFA as
the input region in our DCM models.

The aim of the DCM analysis was to test: 1) whether
this heteromodal network is centered around a hub in the
latency ranges 0–250 and 0–450 ms, and 2) if so, which of
the four regions act as such a hub. For this purpose, we
constructed a hierarchy of families of DCM models, and
in each level of comparison compared families within
that hierarchy.

First Hierarchy: Grand-Family of Hubs Showed the Highest
Model Evidence

In this analysis step, we compared three grand families of
models (hub, no-hub, and no-modulation families, shown
in Figure 2) using BMS. The “hub family” consisted of
models 1–16, where either of the candidate hub areas
amongst ATL, IFG, MTG, and AG played the role of a
single hub that received input from the VWFA and was
connected to all other semantic areas in the model space.
The “no-hub family” consisted of models 17–26, where
in models 17–18, all the candidate hub areas received
input directly from the VWFA, and their connections to
the input region were modulated by semantic variables,
which will resemble a multi-hub or a multiple conver-
gence zones model. In models 19–26, connections of the
VWFA to only one of the semantic areas were modulated
by the semantic contrast (no further connections to the
rest of the network were modulated). Finally, in the “no-
modulation” family, models 27–28 had no connection
that was modulated by concreteness (differing only in the
presence/absence of self-connections in the VWFA).

Accumulated Bayesian model evidence across the par-
ticipants from all the tasks identified the hub family as
the winning grand family (Figure 4—left panel), within
both 0–250 and 0–450 ms post-stimulus windows.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
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Fig. 3. Whole-cortex evoked responses for concrete minus abstract words: Brain activity was averaged within four time windows of 100 ms duration
between 50 and 450 ms. LEFT: Uncorrected univariate t-statistics from vertex-wise GLM analysis of the main effect of concreteness across three tasks.
RIGHT: Significant cluster of spatiotemporal cluster-based permutation tests. Warm colors indicate higher values for concrete words, and cool colors
for the abstract words.

Second Hierarchy: ATL and AG Hub Families Showed the
Highest Model Evidence

In the next step, in order to find areas that serve as a
hub, we compared the fine-grained families within the
grand-family of hub models, where a single candidate
hub in the intermediate layer of the network linked the
input region in the VWFA (via bidirectional connections)
to the remainder of the candidate hubs. This grand family
consisted of four fine-grained families with an ATL hub,
IFG hub, MTG hub, or AG hub. Each of these fine-grained
families consisted of four models where the hub received
input from the VWFA and established connections to the
other nodes of the heteromodal subnetwork, differing

only in which self-connections were modulated by word
type. BMS results are shown in Figure 4—middle panel.
We found that models with ATL as the hub showed the
highest posterior probabilities for the 0–250 ms time win-
dow, and models with AG as the hub showed the highest
posterior probabilities for the 0–450 ms time window
(Figure 4—middle panel).

One question that might arise from these results is
why does the winning hub family change completely
from the earlier to the more prolonged time window
(posterior probabilities of winning families > 0.99), and
does this imply that ATL’s hub-like behavior completely
diminishes over time? To address this, it is worth noting
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Fig. 4. DCM results based on two hierarchies of family comparisons: (a) DCM results within 0–250 ms. Hub models and ATL-hub model were identified as
winning families of the first and second hierarchy of comparisons, respectively. Model 3 (M3) within the ATL-hub family was identified as a conclusive
winner. (b) DCM results within 0–450 ms. Hub models and AG-hub model were identified as winning families of the first and second hierarchy of
comparisons, respectively. Model 4 (M16) within the AG-hub family was identified as a conclusive winner. BMS: Bayesian model selection, FFX: Fixed-
effect inference, ATL-H: ATL-hub, IFG-H: IFG-hub, MTG-H: MTG-hub, AG-H: AG-hub.

that the posterior probabilities of the winning models
relate to the “relative” log model evidence or Bayes factor.
Therefore, the winning families with posterior probability
∼1.0 show that the accumulated log model evidence
across participants and tasks is >150 more than the next
best family (Kass and Raftery 1995). This does not imply
that the model evidence for the non-winning families is
poor; it rather means that the evidence for the winning
family is strong enough to prefer it over the other models
considered (and therefore does not imply that there is
evidence that ATL ceases to function as a hub at later
timepoints; only that evidence supports AG as a more
likely hub). Relative log model evidence of all the 28
DCM models for each task are shown in Supplementary
Material 4 (Supplementary Figure 5).

Single Models within ATL and AG Hub Families

Having identified ATL and AG as the most likely hubs
within 0–250 and 0–450 ms post-stimulus, respectively,
we compared models within each family. Each family
comprised four models in which interareal connections
were bidirectional and self-modulations were present on
the VWFA, but the self-modulation on the remaining
ROIs varied across models (for more details, refer to
Materials and Methods). Results are shown in Figure 4—
right panel. Within the ATL-hub family in the 0–250 ms
time window, model 3 in Figure 2 was identified as the
conclusive winner, with average free energy estimations
for the four models: M1: −710.79, M2: −646.7, M3:

−635.78, and M4: −674.31. In this model, all ROIs except
the ATL had self-connections that were modulated by
word type. Within AG-hub family in 0–450 ms time
window, model 16 (i.e., 4th model) was identified as the
conclusive winner, with average free energy estimations
for the four models as M13: −2076.1, M14: −2121.11,
M15: −1992.3, and M16: −1925.4. In this model, none of
the ROIs (except VWFA) had self-connections that were
modulated. Therefore, in the earlier time window with
ATL-hub as the winning family, there was more extensive
modulation of within-ROI and cross-ROI connectivity in
the single-winning model.

In summary, our DCM results support a single seman-
tic hub model among the heteromodal semantic areas
in ATL, IFG, MTG, and AG. These results further reveal a
fuller network modulation during earlier compared with
the more prolonged time window and uncover ATL as
an early hub and AG as a later hub during the course of
semantic word processing.

Discussion
We revealed new aspects of the spatiotemporal cortical
network that underlies semantic word processing. For
this purpose, we used source-reconstructed electro- and
magnetoencephalography data from two experiments
and three tasks. Our results provide novel evidence for
distinct roles of the anterior temporal lobe (ATL) and
angular gyrus (AG) within this network based on two

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab501#supplementary-data
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lines of evidence. First, our whole-cortex GLM analysis
of evoked brain activity revealed left ATL as the first
and only cortical region modulated by word concreteness
within 150 ms after stimulus presentation. This persisted
into later stages, especially the N400 time window, sup-
porting a central role for the ATL within this network.
Second, Dynamic Causal Modeling (DCM) of effective
connectivity among the key semantic hub candidates
(i.e., ATL, IFG, MTG, and AG) favored “single hub” models
in both time windows of investigation (i.e., within 250
and 450 ms post-stimulus), with the left ATL-hub family
winning in the earlier time-window, but the AG-hub fam-
ily winning in the prolonged time-window. Therefore, our
results suggest that while both activity and connectivity
of ATL are modulated by semantics, especially during
earlier stages of semantic information retrieval, AG also
supports semantic connectivity especially at later stages.

Only Left ATL’s Activity Was Modulated by
Semantic Variables
Left ATL’s activity modulation within 150 ms post-
stimulus provides novel data-driven evidence in support
of the key role of this region in semantic processing.
This finding is in line with increasing evidence from
neuroimaging and electrophysiology literature in recent
years based on a variety of tasks and paradigms (Hauk
et al. 2012; van Ackeren and Rueschemeyer 2014;
Westerlund and Pylkkänen 2014; Jackson et al. 2015; Rice
et al. 2015; Zhang and Pylkkänen 2015; Binney et al. 2016;
Chen et al. 2016; Lambon Ralph et al. 2016).

We observed the earliest effects in the time window of
50–150 ms post-stimulus, showing ATL activity modula-
tion at ∼100 ms onwards. This is slightly earlier than the
previously reported ATL effects at ∼150 ms (Teige et al.
2018) or 200 ms (Hauk et al. 2012). This finding is plausi-
ble in light of the previous research on ATL modulation
by semantic composition from 150 to 250 ms onwards
(Bemis and Pylkkänen 2011, 2013a, 2013b; Westerlund
and Pylkkänen 2014; Zhang and Pylkkänen 2015). For
example, Bemis and Pylkkänen (2011) reported ATL sen-
sitivity to minimal composition settings (e.g., red boat) at
∼225 ms and Westerlund and Pylkkänen (2014) reported
an interaction of semantic composition and specificity in
the ATL from 220 ms. As argued by Pylkkänen (2019), for
the left ATL to be able to combine two word meanings as
of 200 ms, the semantic system must have, in full or in
part, retrieved those concepts by that time, which is in
line with our finding of ATL modulation from ∼100 ms.
This early timing can be considered a crucial factor in
support of the hub-and-spokes framework, where ATL
as a semantic hub is proposed to act as the first link
between perceptual and semantic stimulus representa-
tions (Rogers et al. 2004; Patterson et al. 2007), thus
implying the modulation of the hub region prior to any
other semantic areas.

In addition to these early effects, left ATL activation
peaked in the established N400 latency range. Gener-
ally, we found higher absolute activations for abstract

words in all the time windows, likely reflecting higher
processing demands on the semantic system, as has
been also implicated in previous studies (Binder et al.
2005; Dhond et al. 2007; Lau et al. 2013; Jackson et al.
2015). Our approach to search across cortical vertices
and several time windows and combine data from three
tasks is unprecedented among EEG/MEG literature, and
was specifically chosen to allow for data-driven discovery
of any possible contributing regions, and their changes
over time, without a-priori restrictions to a few regions
of interest. It can thus be expected to improve the gen-
eralizability of our results in support of the left ATL as a
semantic hub.

Evidence for a Single Semantic Hub Based on
Dynamic Causal Modeling
While early modulation of the left ATL’s activity shows
a key role for this region in semantic processing, our
DCM results provide key new evidence in favor of a single
semantic hub among the heteromodal semantic areas,
whose effective connectivity depends on word concrete-
ness. More specifically, we tested models with a single
semantic hub against models with no hubs or multiple
convergence zones in two different time windows (within
250 and 450 ms). Accumulated Bayesian model evidence
across multiple tasks favored models with a single hub
as a conclusive winning grand family. Further inves-
tigation of the fine-grained families within this grand
family revealed ATL-hub as the winning family in an
early latency window (0–250 ms), and AG-hub in the
more prolonged time-window (0–450 ms). Considering
the ATL-hub family winning in the early time window, AG
is therefore likely to serve as a hub during later stages
(i.e., post 250 ms). Thus, these results suggest that the
heteromodal semantic subnetwork is coordinated by a
central hub, and suggest that this hub region is dynami-
cally relocated, from ATL to AG, as a semantic processing
unfolds in the brain.

Within the ATL-hub winning family, we found a single
winning model where all intrinsic and extrinsic connec-
tions except for the self-connections of the ATL were
modulated by the concreteness contrast, while within
AG-hub, the single winning model showed modulation
of the extrinsic but not the intrinsic connections of the
semantic areas. These results suggest that connectivity
within the semantic system is more extensively modu-
lated during the earlier time window of 0–250 ms.

ATL and AG are two brain regions that are frequently
implicated in semantic processing, but the division of
labor between them in terms of functioning as semantic
hubs has remained unresolved to date (Humphreys et
al. 2015; Binder 2016; Lambon Ralph et al. 2016). Our
results draw a distinction between their roles based on:
1) activity versus connectivity and 2) earlier versus later
modulation. This distinction can be examined from two
angles:

First, from a methodological perspective, one may ask
why DCM for evoked responses identifies AG as a hub
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during later stages while its evoked activity shows no
modulation. This can be explained in light of how the
winning models are determined: in DCM, the winning
models denote architectures that can minimize the
differences between the observed and predicted time
courses, while penalizing for model complexity. As a
result, the winning model is expected to be overall
best at explaining the temporal trajectories of each
ROI for each word category, as well as explaining the
differences between the word categories. Therefore, even
though AG activity per se is not modulated by semantics,
the models where this region coordinates effective
connectivity within the semantic network provide the
highest Bayesian evidence.

Second, from a cognitive perspective, we must ask why
the hub region of effective connectivity changes over
time from ATL to AG even though the modulation of
neural activity remains localized to the ATL? The inferior
parietal lobe (IPL) in general and AG in particular are
well known to be involved in higher cognitive function,
not only for semantics (Binder et al. 2009; Bonner et
al. 2013; Hartwigsen et al. 2016; Kuhnke et al. 2020;
Soto et al. 2020), but also for broader cognition such as
episodic memory and executive functions for complex
task demands (Humphreys et al. 2015; Humphreys and
Lambon Ralph 2015; Bonnici et al. 2016; Tibon et al. 2019).
Additionally, as a key node of the brain’s default mode
network, IPL has been suggested as a multi-purpose hub
in the brain (Buckner et al. 2009; Seghier 2012; Raichle
2015), and has been shown to be affected by brain dis-
eases such as Alzheimer’s and dementia (Buckner et al.
2008; Spreng et al. 2010). Put together with this past evi-
dence, our findings thus indicate that AG is likely to accu-
mulate information from the semantic system to act as
a bridge between different memory and cognitive brain
systems at later processing stages. In contrast, ATL as the
central semantic hub may initiate and coordinate activ-
ity within the semantic system through cortico-cortical
connections from the earliest stages of processing.

Caveats
The choice of connectivity metrics for EEG/MEG analysis
is still challenging. Here we used DCM to be able to
explicitly test some of the predictions of the hub-
and-spokes model against alternative theories. DCM is
arguably the sole available method for full modeling of
the evoked responses to experimental manipulations
based on explicit network models. Even so, the model
evidence can only find the most likely model among
those tested, so it cannot determine whether the winning
model is in fact the true model (Litvak et al. 2019). In
particular, inspired by the previous literature (Binder et
al. 2009; Martin et al. 2014; Lambon Ralph et al. 2016), we
here only focused on different scenarios spanning one-
layer networks with single or multiple parallel semantic
areas or two-layer models with a single hub in the
intermediate layer. Nevertheless, current findings do
not obviate the possibility of more complex hetero-
modal semantic networks with different permutations

of semantic areas in three or more network layers,
potentially involving multiple hubs. Moreover, DCM
makes several strong assumptions (Stephan et al. 2010;
Friston et al. 2019), the robustness of which need to
be validated in future studies using other datasets,
including more direct electrical recordings in humans
and animals. Our results are therefore presented as a
significant step forward towards the delineation of time-
resolved semantic network connectivity which will open
new doors for future investigations.

We utilized a word concreteness contrast across
multiple visual word recognition paradigms which has
been successfully and frequently used as the sole task
in previous fMRI (Binder et al. 2005) and EEG/MEG
(Dhond et al. 2007) studies, and can be assumed
to modulate the heteromodal semantic regions, in
particular, candidate hubs in the ATL, IFG, MTG, and AG.
Even though we combined evidence across multiple tasks
and experiments to minimize task-specific effects, some
of our findings might still be specific to the contrast of
concrete and abstract words. Therefore, an important
next step from our study is to tackle the time-resolved
semantic network for more general and more specific
semantic contrasts, as well as different task settings
such as auditory word presentations or nonverbal visual
inputs. Furthermore, plausible reorganizations of the
semantic network due to different tasks is another
important question that remains to be tackled in future
studies.

Conclusion
Our study provides novel insights into the dynamic
brain networks underlying semantic word processing
that could not have been provided using metabolic
neuroimaging or neuropsychological methods. Analyzing
the time course of activation and connectivity in this
study has allowed the integration of previously distinct
approaches to neural semantic networks. In particular,
we could shed new light on the central role of the ATL
for early semantic processing as previously indicated by
both patient and imaging work (Patterson et al. 2007;
Lambon Ralph et al. 2016), as well as on AG’s role in the
accumulation of information from the semantic system
for integration with broader memory and cognitive
processes (Binder et al. 2009; Humphreys and Lambon
Ralph 2015; Bonnici et al. 2016).

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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able from the following repository: https://github.com/
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