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Environmental DNA allows upscaling spatial
patterns of biodiversity in freshwater ecosystems

Luca Carraro 1'2@, Elvira I\/\échler1'2, Remo Wiithrich23 & Florian Altermatt® 1245

The alarming declines of freshwater biodiversity call for efficient biomonitoring at fine spa-
tiotemporal scales, such that conservation measures be grounded upon accurate biodiversity
data. Here, we show that combining environmental DNA (eDNA) extracted from stream
water samples with models based on hydrological first principles allows upscaling biodi-
versity estimates for aquatic insects at very high spatial resolution. Our model decouples the
diverse upstream contributions to the eDNA data, enabling the reconstruction of taxa dis-
tribution patterns. Across a 740-km? basin, we obtain a space-filling biodiversity prediction at
a grain size resolution of 1-km long stream sections. The model's accuracy in matching direct
observations of aquatic insects’ local occurrence ranges between 57-100%. Our results
demonstrate how eDNA can be used for high-resolution biodiversity assessments in rivers
with minimal prior knowledge of the system. Our approach allows identification of biodi-
versity hotspots that could be otherwise overlooked, enabling implementation of focused
conservation strategies.
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lobal biodiversity!2, and freshwater biodiversity in parti-

cular3-9, are declining at large, unprecedented rates with

potentially devastating effects on ecosystems’ state and
function®’, and, subsequently, deleterious consequences for
human well-being. To mitigate these threats, effective manage-
ment and policy making are pivotal, thereby calling for accurate
biodiversity data at high spatiotemporal resolution®-11, However,
most current practices in biomonitoring are still based on loca-
lized point-estimates of biodiversity!2-14, which prevents an
adequate upscaling at spatially fine scales.

The recent advent of environmental DNA (eDNA, i.e., detec-
tion of traces of organisms’ DNA in environmental samples)
opened new avenues for broadly applicable, fast, efficient, and
non-invasive biodiversity assessment in terrestrial, marine and
freshwater ecosystems!>~17. In particular, the use of meta-
barcoding techniques!®1? allows parallelized and simultaneous
taxonomic identification of many species from a single analyzed
eDNA sample. Nonetheless, spatial projections of eDNA data and
their quantitative interpretation to derive patterns of species’
richness (let alone abundance) are still challenging, which is why
eDNA has hitherto mostly been used for local assessments of
biodiversity20-22, However, knowledge on biodiversity at large
scale and high spatial resolution is paramount for effective bio-
diversity management and identification of regions of high con-
servational value. Recently, it has been postulated that, owing to
the transport of genetic material with stream water, the use of
eDNA in rivers conveys information on biodiversity of the
upstream catchment?3. Specifically, the eDNA sampled at a river’s
site results from the aggregation of locally shed DNA traces and
the dynamics of molecules transported?4-26, from a number of
upstream sources (i.e., the species’ locations) along a dendritic
river network towards the sampling site. On the one hand, this
feature highlights the potential key role of eDNA as a tool for
monitoring biodiversity at large scales!!; on the other hand, it also
poses additional challenges with regards to the reconstruction of
spatial patterns of biodiversity at highly resolved scales, because a
DNA signal may not always match with a species’ local occur-
rence. Furthermore, eDNA advection is not a sole transportation
process only, but is also subject to decay dynamics typically
dependent on several abiotic (e.g., temperature, pH, substrate)
and biotic (e.g., microbial activity) factors, which can differently
impact the fate of eDNA molecules in space and time2425-27-29,

Here, we develop an integrated hydrology-based modeling
framework (hereafter termed eDITH—eDNA Integrating Trans-
port and Hydrology), built on the approach of refs. 3931, to
analyze metabarcoding eDNA data collected at 61 locations in a
740-km? river basin and derive the spatial patterns of all aquatic
insect taxa belonging to the orders of may-, stone-, and caddisflies
(Ephemeroptera, Plecoptera, and Trichoptera, abbreviated as
EPT). EPT taxa show a high spatial variation in their richness and
community composition!43233 and are characterized by a high
sensitivity to pollutants, which makes them widely used as indi-
cators of water quality>*. We then produce spatially finely
resolved maps of presence and relative abundance of each taxon
at a mean resolution of 1-km long stream segments (2.5th-97.5th
percentiles: 0.07-3.18 km), which are validated by comparison
with local abundance data obtained via standardized> kicknet
sampling. The ensemble results enable us to identify the portions
and locations of the catchment with highest EPT taxa richness.

Results

Data collection and model structure. Three independently
replicated eDNA samples and a pooled benthic invertebrate
kicknet sample were taken at each of 61 sites (60 for kicknet)
across the Thur catchment in Switzerland (Fig. 1) in June 2016.

Site selection, data collection and technical processing of samples
for both eDNA and kicknet are described in the “Methods”
section and in Michler et al.36, the original publication of the
presented sequencing data. In short, amplicon sequencing of a
short barcode region of the cytochrome c oxidase I (COI) was run
for each of the 183 water samples (three per site) with Illumina
MiSeq sequencing platform, allowing us to identify 50 EPT
genera, present in at least one replicate at one site. The meta-
barcoding procedure and subsequent bioinformatic pipeline
resulted in 423,043 sequences (i.e., reads) for the detected EPT
genera; the median number of reads per site, pooled over genera
and replicates, was 3,406; the median number of reads per genus,
pooled over sites and replicates, was 1,637. Organisms collected
via kicknet belonged to 47 EPT genera, of which 36 were also
found via eDNA.

We applied the eDITH modeling framework to reconstruct the
spatial distributions of the 50 EPT genera detected by the
metabarcoding analysis. Such framework couples: a species
distribution model relating target taxa abundance to environ-
mental covariates; dynamics of eDNA shedding from a multi-
plicity of sources; eDNA advection (and relative decay) along the
river network to the sampling site; and a measurement error
model that accounts for the uncertainties related to the
metabarcoding procedure. To provide a quantitative interpreta-
tion of the metabarcoding data, we assumed that read numbers
followed a geometric distribution with mean proportional to the
(site-dependent) eDNA concentration predicted by our model. By
fitting the eDITH model on read number data for the 50 different
EPT genera, we were able to assess the role of environmental
covariates in driving the spatial distribution of single taxa (Fig. 2a)
and EPT biodiversity (Fig. 2b, c) across the study catchment.
Moreover, we estimated characteristic decay times of eDNA
(mean across all genera: 1.5 h; the distribution of values is shown
in Fig. 3). The proposed approach has the ability to transform
taxon occurrence estimates from local, point-based measure-
ments into space-filling segments, framing a complete picture of
spatial patterns of relative density for the target taxa at a
catchment scale. In order to facilitate the comparison between
model results and kicknet data, relative density maps for all
genera obtained by eDITH were converted into maps of detection
probability (see examples in Fig. 4), and, in turn, by imposing a
threshold of 2/3 on detection probability®, into presence maps.
Subsequently, by summing up all genus presence maps, we
evaluated the spatial patterns of genus richness for the study
catchment (Fig. 5a).

Biodiversity predictions. According to model predictions
(Fig. 5a), the central latitude headwaters are richer in EPT genera,
while the downstream reaches and one side tributary (Glatt) host
a smaller biodiversity. This observation matches geographical
covariates for this latter portion of the catchment (THI1, TH2,
GL1, GL2—see Fig. 1b) having a significant negative effect on
many genera (Fig. 2c) and the higher pollution levels that char-
acterize the Glatt3”. In particular, eDITH enables the identifica-
tion of biodiversity hotspots (see ovals in Fig. 5a) that were not
captured by either eDNA data (Fig. 5b) or kicknet sampling
(Fig. 5¢) alone. Importantly, such a finding is not merely an
artifact of model extrapolation: in fact, our model’s predictions
are based on a number of data points from sites downstream of
these hotspots, which embed information on the upstream
regions.

As shown in Fig. 6, the distribution of genus richness predicted
by the model in the headwaters (reaches of stream order 1)
matched the one assessed via the kicknet sampling: a two-sample
Kolmogorov-Smirnov (2KS) test did not reject the null hypothesis
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Fig. 1 Overview of the study area. a Digital elevation model of the Thur catchment and the respective extracted river network used in the analysis. eDNA
and kicknet sampling sites are identified by circles. Kicknet was not performed in one site (denoted by a cross). In the bottom-left insert, the location of the
Thur catchment within Switzerland is shown. The blue triangles show the positions of the hydrological stations. b Partition of the river network into 17
clusters, corresponding to the respective geographical covariates. The legend indicates the covariates’ ID, with letters abbreviating the name of the
corresponding stream (TH = Thur, GON = Gonzenbach, DIE = Dietfurterbach, LUT = Luteren, GL = Glatt, WIS = Wissbach, NE = Necker). ¢ Strahler
stream order values for all network reaches. Note that stream order is calculated on the extracted river network; as a result, stream orders differ from those

used by Machler et al.36.

that the two samples come from the same distribution (p = 0.43).
Conversely, eDNA data alone underestimated genus richness in
low stream order reaches; a 2KS test between eDNA and kicknet
richness values at reaches with stream order 1 yielded p < 0.001.
This is presumably due to the low number of replicates per single
location and the high heterogeneity among these. Instead, the
EPT biodiversity predicted by the model at the high (24) stream
order reaches was lower than the one measured by the kicknet
dataset (2KS test: p = 0.002), whereas in these reaches the genus
richness based on eDNA data matched the kicknet-based richness
(2KS test: p = 0.98). Such results can be attributed to the fact that,
unlike the biodiversity assessments performed via kicknet and
eDNA data, model predictions are based on the ensemble of
sampling sites, thereby information on a given headwater reach is
potentially contained in all the samples taken at any location
downstream from the headwater in question. On the contrary,
model predictions at the downstream portion of the catchment
are solely based on information from downstream sampling sites,
and are thereby more prone to error, since the model might
interpret an eDNA signal detected at a downstream site as
originated from an upstream source rather than locally.

Goodness of fit and accuracy of model predictions. A goodness-
of-fit test (Fig. 7a) showed that the model adequately reproduced
the observed patterns of read numbers. In particular, we for-
mulated the null hypothesis H, that, for each genus, observed
read numbers come from the hypothesized geometric distribution
with mean predicted by our model. Remarkably, for all genera, in
>90% of all sites Hy could not be rejected, indicating a very high
goodness of fit.

The accuracy of genus presence maps produced by our
approach was assessed via comparison with the kicknet data.

Accuracy was evaluated as the fraction of sites where the presence
or absence predicted by the model matched the kicknet
observation. The average accuracy across all genera was 82.4%
(range: 40-100%; see Fig. 7b). If also false positives, that is, sites
where the model predicted presence but kicknet assessed absence,
were considered as plausible model predictions (which is likely
the case for elusive genera), average accuracy increased to 92.8%
(range: 56.7-100%).

Comparing genus distribution maps with faunistic knowledge.
Remarkably, a fair agreement can be observed between the
eDITH-based predictions of spatial distribution of taxa (Fig. 4),
the related predicted role of covariates (Fig. 2a) and the ecological
and faunistic knowledge on taxa3%. We here discuss the results
obtained for three representative taxa. Only two species belonging
to the mayfly genus Habroleptoides (H. confusa and H. auberti) are
known to occur in Switzerland and in the Thur catchment.
Habroleptoides auberti is reported in the upper Thur and Necker
basins, which largely reproduces the patterns displayed in
Fig. 4a, d. Habroleptoides confusa is reported to occur in waters of
neutral pH, which may explain the negative relation of swamps
(covariate L-SW) and peat (G-PE) found by the model (see line 31
of Fig. 2a). Both species are sensitive to pesticides, which justifies
the predicted negative role of urban areas (L-UR), drainage area
(L-DA) and orchards (L-OR). As for the stonefly Protonemura,
three species (P. brevistyla, P. auberti, and P. nitida) are expected
to be present in larval stages in the Thur catchment in late June
(when the sampling was performed), while the emergence of
P. lateralis is likely to occur earlier in the season. All three species
are commonly found in spring brooks, epirhithral and metarhi-
thral (i.e., upper and middle upland) streams, but also in unpol-
luted waterbodies. This is in agreement with the predicted
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Fig. 2 Relationship between covariates and genus density. a Effect of covariates on predicted genus density. Genus IDs are as in Supplementary Data 1,
covariate IDs are as in Supplementary Table 1. A covariate effect is deemed positive (negative) if the 95% equal-tailed credible interval of the posterior
distribution of the corresponding 8 parameter is above (below) zero. Non-significant effects are those whose 95% equal-tailed credible interval of the
posterior distribution of the corresponding f parameter encompasses zero. Horizontal lines identify the genera whose distribution maps are shown in
Fig. 4. Bottom row: aggregate effect of morphological, geological, land cover (panel b), and geographical (panel ¢) covariates on all genera. The x-axis
displays the number of genera for which a given covariate has a significant positive or negative effect.

4 NATURE COMMUNICATIONS | (2020)11:3585 | https://doi.org/10.1038/s41467-020-17337-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-020-17337-8 ARTICLE

10

- 30 _

— €
=5 =3
2 8
S 5- 205
(2]

§ 5
>

e -10 §
[

o

47 _ 4 5 13__9__2 39 27 _4 2 71117 41 19_ 21 42 22 _46_18__50 31 15
49 28 345 48 25 38 8 32 3 40 010 24 1 123526 333644 930 6 34 37 629 823 16 14

Genus ID

Fig. 3 Estimates of decay times. Values displayed correspond to the medians of the sampled posterior distributions. Genus IDs are as in Supplementary

Data 1. The right y-axis converts decay times into distances, by assuming a constant water velocity equal to 1ms~'. Source data are provided as a Source
Data file.
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Fig. 4 Examples of relative density maps (top row) and detection probability (bottom row) for three genera belonging to the three different orders.
Values shown correspond to medians of the sampled posterior distributions of kp; (top row) and their equivalent in terms of detection probability according
to Eq. (6) (bottom row). Source data are provided as a Source Data file.
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Fig. 5 Genus richness maps and accuracy of eDITH predictions. a Genus richness map predicted by the eDITH model. Black ovals identify possible
biodiversity hotspots highlighted by model results. b Genus richness from eDNA data; here presence of a genus at a site is attributed if at least 2 out of 3
replicates have nonzero read numbers3®. ¢ Genus richness obtained by kicknet sampling. Source data are provided as a Source Data file.
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Fig. 6 Distribution of genus richness as evaluated by the eDITH model,
the eDNA data, and the kicknet sampling as a function of stream order.
Central lines represent medians; bottom and top boxes' edges represent
25th and 75th percentiles, respectively; whiskers span the data range, up to
1.5 times the interquantile range; data points exceeding such threshold are
considered outliers (marked with crosses). Genus richness values are as in
Fig. 5. Sample sizes n = numbers of reaches/sites for each column of the
boxplot are also reported. Stream order values across the river network are
displayed in Fig. 1c. Source data are provided as a Source Data file.

distribution maps shown in Fig. 4b, e and with the positive role
found for scree (G-SC, see line 50 of Fig. 2a), local elevation
(M-LE) and the upper geographical clusters of the Thur (THS6,
TH7, TH8—compare with Fig. 1b). Finally, the stonefly Athrip-
sodes is mostly represented by the species A. albifrons in the study
catchment. This eurythermal species is typically found in lower
rhithral and epipotomal reaches, characterized by midsize to large
river widths and warm summer temperatures. The predicted
distribution maps for Athripsodes (Fig. 4c, f) and the positive role
found for geographical clusters TH1, TH2, TH4 and NE2 (see line
14 of Figs. 2a and 1b) match such empirical observations, although
model results predict absence of Athripsodes in clusters TH3 and
NE1, which are also plausible habitats for this taxon.

Cross-validation analysis of the effect of sample size. To cor-
roborate our results, we also performed a cross-validation study,
where additional model simulations (AS) were trained on subsets
of the eDNA sampling sites and their performance was compared
to the one of the original, complete model (CM—see “Methods”
section). Genus-specific results are displayed in Fig. 7c, d, while
aggregated results are reported in Table 1. Notably, the predictive
performance of the model is only minimally affected by the
reduction in sampling points: simulations trained on only 40% of
the sites had an average loss of goodness of fit and accuracy of
6.55% and 4.07%, respectively. Expectedly, the loss of goodness of
fit of models trained on a limited set of sites is mainly to be
attributed to validation sites, whereas the fit on calibration subsets
is improved with respect to CM, as indicated by the negative
values in the corresponding row of Table 1. This is reasonable, as
models trained on small datasets s cannot perform worse than
models calibrated on larger datasets [ > s (i.e., s is a subset of [)
with respect to s. Indeed, if this were not the case, it would imply
that the calibration of the model trained on s did not converge.

Discussion
As widely recognized!1:1023, the use of eDNA in rivers leads to a
faster and less invasive biodiversity monitoring as compared to
kicknet sampling, but its results consist in a number of pointwise
estimates that could hardly be projected into biodiversity maps at
high spatial resolution. Moreover, these estimates are confounded
by eDNA advection and can therefore only be used for an
aggregated, qualitative biodiversity assessment. Our approach,
instead, by coupling spatially distributed eDNA samples with a
model based on hydrological first principles, allowed an estima-
tion of the catchment-scale spatial distribution of aquatic insects’
presence at a high spatial resolution, which is hardly achievable
via traditional sampling techniques'l!4. This potentially con-
stitutes a game-changer in biodiversity and ecosystem studies,
with clear benefits for biomonitoring and conservation programs.
Our framework opens avenues for freshwater ecosystem
management, as it allows non-invasive and efficient localization
of, for example, endangered or invasive taxa, pathogens, as well as
biodiversity assessments over taxonomic groups wider than those
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Fig. 7 Goodness of fit and accuracy of model predictions. Genus IDs are as in Supplementary Data 1. a Goodness-of-fit test for all genera. In the y-axis
label, Hy is the null hypothesis that the triplet of read numbers evaluated at a site for a given genus comes from a geometric distribution with mean
predicted by Eq. (3). b Accuracy of the modeled presence maps with respect to the kicknet sampling for each genus. Genera for which only true negative
and false positive sites were identified are those undetected by kicknet sampling. ¢, d Goodness of fit (panel €) and accuracy (panel d) of model results as a
function of number of sampling sites used in calibration. White bars in panels ¢ and d reproduce the same values as in panels a and b, respectively. Colors
identify simulation groups, corresponding to different sizes of calibration subsets. For a given color, each symbol type identifies each particular simulation
(corresponding to a given calibration subset). Note that identical symbols with different colors do not indicate any relationships among the respective
simulations. Colored vertical lines, spanning ranges of variables for each genus and simulation group, are added for visual purposes. Source data are
provided as a Source Data file.
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Table 1 Performance of additional simulation models.

Simulation group AS1 AS2 AS3
Fraction of sites used in calibration 80% 60% 40%
Loss of GOF with respect to CM (all sites) 1.88% 3.87% 6.55%
Loss of GOF with respect to CM (calibration subsets) —0.27% —0.77% —1.04%
Loss of GOF with respect to CM (validation subsets) 10.67% 1.03% 11.81%
Loss of accuracy with respect to CM (all sites) 1.86% 2.04% 4.07%

Aggregated statistics for the performance of additional simulation (AS) models, trained on subsets of eDNA sampling sites, as compared to the complete model (CM). Aggregation is performed by
averaging results for all genera and all simulations within a simulation group. Note that the loss of goodness of fit (GOF) on all sites is given by the average of the same variable calculated on calibration
and validation subsets, weighted by the sizes of the subsets. Source data are provided as a Source Data file.

here used as case study!l:1923:3% Indeed, applying eDITH to
motile organisms (such as freshwater fish, crustaceans or mol-
lusks) is possible because the scale distance of hydrological
transport in rivers (say, considering a reference water velocity of
Ims~!) is much larger than that of mobility of most
organisms#?41L. In principle, application to terrestrial taxa inha-
biting areas with high drainage density of the stream network is
also possible. In this case, the source area A, (see Eq. (1)) should
be defined as the subcatchment area, rather than the riverbed area
as in the present case. However, further caution in the modeling
approach is required, as only a fraction (possibly dependent on
the distance from the drainage network) of the eDNA shed by
such organisms will be transported downstream by the
streamflow.

The eDITH model relies on estimates of relevant hydrological
variables such as water velocity and discharge across the catch-
ment. In the case study here presented, we obtained these data
from power-law regressions based on four hydrological stations.
This approach allows capturing the essential features of hydro-
logical transport and hydrological dynamics at large scales, as
studied herein, and is supported by longstanding evidence in
hydrology and geomorphology*2-44. Importantly, all uncertain-
ties associated with the processes of eDNA shedding, transpor-
tation, decay, extraction, and bioinformatic processing (all of
which are coarsely accounted for in the eDITH approach) are at a
scale that a more elaborate hydrological model would not sig-
nificantly improve the predictions of taxa distribution and bio-
diversity. The use of universal hydrological relationships also
allows the application of our approach to riverine systems with
scarce hydrological data, thereby enabling monitoring of highly
biodiverse but hardly accessible ecological systems*°.

In our case study, biodiversity predictions produced by eDITH
proved to be rather robust to the choice of sampling sites, as
highlighted by our cross-validation analysis (see Fig. 7¢, d and
Table 1). However, the subsamples of sites used in such investi-
gation were chosen such that the proportions of sites from the
upstream and downstream portions of the catchment (reflected
by the stream order values of the corresponding reaches) were not
altered with respect to the original set of sites. We also observed
that including information from downstream sampling sites in
the eDITH model is instrumental in evaluating taxon abundance
in the upstream reaches (due to eDNA transport), but generally
leads to poor prediction of taxon abundance at local, downstream
communities (see Fig. 6). We therefore suggest using our model
to assess biodiversity in the portion of the catchment located
some kilometers upstream of the most downstream eDNA sam-
pling site. Measurements taken at this site are still needed for
estimation of the upstream pattern of taxon distribution, but will
not be informative enough to disentangle the contribution to the
eDNA signal from the nearest sources. Moreover, further stu-
dies?® are needed to investigate how the positioning of eDNA
sampling sites within a catchment influences the prediction
power of the eDITH model.

A key challenge towards a quantitative use of metabarcoding
data is expressing the relationship between number of reads and
the underlying eDNA concentration for a given taxon. Although
several studies (e.g., refs. 4/~4%) found that high numbers of reads
are generally related to high abundances/biomass of species,
which is potentially reflected in high eDNA concentrations, a
deterministic relationship cannot be found, due to the high sto-
chasticity of read number values resulting from the uncertainties
of multiple steps of the eDNA laboratory procedures. For
example, different extraction methods can influence diversity
results (e.g., refs. °0°1), sequencing platforms have specific error
rates when generating DNA sequences (see ref. °2), and primer
bias can lead to distorted abundance proportions (e.g., refs. >3->°).
However, it has to be noted that the efficiency of the primer used
herein is relatively similar among the three inspected insect
orders: an in-silico evaluation of primer performance showed that
the efficiencies of the forward primer for Ephemeroptera, Ple-
coptera and Trichoptera are 76%, 77%, and 80% respectively,
while those of the reverse primer are 100%, 100%, and 98%,
respectively®®. We expect that recently developed primers®’ even
more optimized for EPT taxa additionally strengthen the
approach proposed here. Furthermore, in our approach the
parameter py, which transforms relative density distributions—
proportional to exp(B7X(i))—into read numbers, was estimated
independently for each genus by the calibration procedure.
Hence, possible differential affinities between different eDNA
sequences do not affect model results.

In this work, we propose the use of a geometric distribution for
read number data from the same sample, whose mean is pro-
portional to the eDNA concentration of the sample. Such choice
enables exploiting the quantitative information contained in the
read number values, while accounting for their large stochasticity.
The choice of such distribution was based on the analysis of the
data available for this case study (see “Methods” section), but it
would benefit from a validation based on a lab study. Therefore,
we call for further research to better elucidate this aspect.

Finally, it is worthwhile to note that a quantitative inter-
pretation of eDNA data in rivers is crucial even if the ultimate
goal is to make biodiversity predictions based on estimates of
presence or absence of the investigated taxa. Indeed, in order to
understand eDNA advection and decay dynamics across a river
network, it is essential to adopt a mechanistic approach such as
eDITH, which frames the problem of eDNA transport in terms of
quantities of eDNA shed in the different upstream sources. This
enabled us to derive predictions of spatial patterns of relative
taxon density (Fig. 4); however, as a conservative assumption,
both the ground-truthing of model predictions against the kicknet
data and biodiversity estimates were operated on a presence/
absence basis.

In summary, our work shows how the combined use of eDNA
and hydrology-based modeling allows the upscaling and predic-
tion of aquatic biodiversity across whole river networks at a very
fine resolution. Based on empirical data from a few tens of
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sampling sites for eDNA, one can reconstruct biodiversity pat-
terns on species richness at resolutions down to 1-km stream
lengths segments over hundreds of square kilometers. Our
approach thereby opens up the possibility to map biodiversity
across riverine systems worldwide. Given that biodiversity in
these ecosystems is among the most threatened, such information
is crucially needed for protection and conservation measures.

Methods

Data collection and sequencing. In June 2016, diversity data were collected at
61 sites in a 740 km? sub-catchment of the river Thur, northeastern Switzerland.
No singular rain events took place during the sampling days, and thus all sampling
was performed at base-flow conditions. Sampling sites were chosen in order to
proportionally represent all stream orders in the river network (Supplementary
Fig. 1) and to span the complete geographical extent of the catchment. At each site,
a standardized®® 3-min kicknet sampling applied to three microhabitats was per-
formed to collect benthic macroinvertebrates. The subsamples from the three
microhabitats were pooled and stored in ethanol. In the laboratory, debris was
removed and all individuals belonging to may-, stone-, and caddisflies (Ephe-
meroptera, Plecoptera, and Trichoptera, abbreviated as EPT) were identified under
a stereomicroscope to the genus or species level if applicable. One sample was lost
due to handling error, and thus we subsequently only had EPT kicknet sample data
from 60 sites.

At the same 61 sites at which kicknet data were collected, also eDNA samples
were taken. We collected three independent samples of 250 mL of river water at
each site (sampled below the surface and well above the river bottom). In small
streams (up to about 1-m wide), the water was taken from the middle of the stream,
while in larger streams the water was taken about 0.5 m away from the shore side.
All three water samples per site were filtered on site on separate GF/F filters (pore
size 0.7 um Whatman International Ltd.), which were stored on ice immediately
after filtering, and frozen at —20 °C within a few hours. Subsequently, these three
samples were analyzed separately and as independent replicates. To prevent cross-
contamination, the eDNA samples were collected a few meters upstream of the
kicknet sampling, and kicknet sampling and eDNA sampling were performed by
different people.

DNA was extracted with the DNeasy Blood and Tissue Kit (Qiagen GmbH)
from the filter in a lab dedicated to low DNA-concentrated environmental samples
(i.e., clean lab with positive air pressure, well-defined procedures and all work
conducted under sterile benches, and no handling of high-DNA concentration
samples or post-PCR products). A short barcoding region of the COI gene>®>? was
targeted, and a dual-barcoded two-step PCR amplicon sequencing protocol for
Illumina MiSeq was performed. In short, three PCR replicates were performed for
each eDNA replicate with primers that contained an Illumina adapter-specific tail,
a heterogeneity spacer and the amplicon target site. These three PCR replicates per
sample replicate were pooled and indexed in a second PCR with the Nextera XT
Index Kit v2 (lllumina). We measured the concentration of all indexed PCR
reactions and pooled them in equimolar parts to a final library, which we ran twice
on two consecutive Illumina MiSeq runs to increase sequencing depth. Raw data
were demultiplexed and read quality was checked with FastQC®. Thereafter, end-
trimming (usearch, version 10.0.240) and merging (Flash, version 1.2.11) of raw
reads were performed, before primer sites were removed (cutadapt, version 1.12)
and reads were quality-filtered (prinseq-lite, version 0.20.4). Next, we used
UNOISE3°!, which has a built-in error correction to reduce the influence of
sequencing errors, to determine amplicon sequence variants (ZOTUs). To reduce
sequence diversity, we implemented an additional clustering at 99% sequence
identity. We checked ZOTUs for stop codons of the invertebrate mitochondrial
code, to ensure an intact open reading frame. For the taxonomic assignment, all
COl-related sequences were downloaded from NCBI and ZOTUs were blasted
against the NCBI COI collection. We extracted the top five best blast hits and then
used the R packages “taxize”®? (version 0.9.7) and “rentrez”®3 (version 1.2.2) to
acquire taxonomic labels. We modified the selected COI sequences with the
taxonomic labels in order to index the database. The ZOTUs were then assigned to
taxa using Sintax (usearch) and the NCBI COI-based reference. Details of the data
collection and the bioinformatic pipeline can be further assessed in Machler et al. 3.
The OTUs found in this dataset are generally saturating®. We acknowledge that
the primers used are targeting eukaryotic diversity in general and were not only
specific to EPT taxa, which might lead to an underestimation of detections of EPT
by eDNA (i.e., false absences). This, however, is conservative with respect to our
findings, as we would miss taxa with eDNA where the kicknet sample indicated
their presence.

Network extraction and hydrological characterization. The river network was
extracted from a 25-m Digital Elevation Model (DEM) of the region provided
by the Swiss Federal Institute of Topography (Swisstopo) by applying the D8
method through a TauDEM routine in a GIS software®. A threshold of 800 pixels
(0.5km?2) on contributing area was applied to identify the channelized (i.e., per-
ennial, see ref. %) portion of the drainage network, whose total length equaled

751 km. We then defined a reach as a sequence of pixels of the DEM matrix,
originating from a source or a confluence, directed downstream, and ending at the
following confluence or at the outlet. This resulted in a discretization of the river
network comprising 760 reaches of median length 0.78 km (95% equal-tailed
interval of the distribution: 0.07-3.18 km). Note that a lower threshold area would
have resulted in a higher number of reaches, implying a more refined dis-
cretization of the river network but also an increased computational burden for
the subsequent model runs. Hence, we chose the highest value of threshold area
such that: i) the extracted river network retained all reaches where sampling sites
were located; ii) a qualitative comparison with the vectorial hydrographic network
provided by Swisstopo resulted adequate. For modeling purposes, reaches were
considered as nodes of a graph with edges following flow direction. All variables
referred to a node were considered homogeneously distributed within the
corresponding reach.

In order to assess values of hydrological variables for all reaches, we made use of
power-law scaling relationships, a well-established and universally applicable
concept in hydrology*2-44. In particular, river width w, river depth D and water
velocity v are known to scale (both within a single cross-section and in the
downstream direction) as a power-law of water discharge Q (refs. 4243); along the
flow direction, the relationships w~Q0->, D~Q04, w~Q0-! are valid over wide ranges
of natural streams*2. Moreover, water discharge scales linearly across a catchment
with drainage area A (ref. 44). Strictly speaking, the relationship Q~A holds for
mean annual values of Q; however, it can be reasonably extended to values of Q
averaged over shorter time windows (say, at least 1 day), provided that the time
scale of flow propagation is much shorter than 1 day, and that rainfall (and the
resulting runoff generation) can be considered spatially homogeneous if aggregated
at a daily scale. Both assumptions are reasonable for catchments up to 103 km?
(ref. ©5), as the one here studied. Mean water discharges during the sampling days
and stage-discharge relationships were available at four stations operated by the
Swiss Federal Office for the Environment (FOEN) (see Fig. 1). River widths at these
locations were estimated via aerial images. Power law relationships with drainage
area for discharge and river width were then fitted on the four stations, yielding
Q=0.072 A1:056 and w = 1.586A9-526, where A is in km2, Qin m3s~!, and w in m.
As for river depth, we discarded the station with lowest drainage area because we
observed that the values of depth measured therein were highly overestimated with
respect to the expected values, based on the other stations and the scaling exponent
0.4 (ref. 42). Hence, we limited the fit to the three other stations and obtained D =
0.073 A%463 where D is in m. By assuming rectangular river’s cross-sections, we
finally derived a power-law relationship linking water velocity v to drainage area:
v=Q/(Dw) = 0.623 A%%7, where v is in ms~!. Notably, all scaling exponents
obtained were very close to the literature values?>44. Details on the fit of these
hydrological relationships are reported in Supplementary Fig. 2.

Choice of covariates. A first set of 18 covariates was chosen as representative of
morphological, geological and land cover features of the catchment. These cov-
ariates can either reflect local or upstream characteristics. Land cover covariates
were evaluated as local values, because they are assumed to potentially have a role
in determining local taxon suitability (see also ref. %°). Geological covariates were
calculated as upstream averaged values, because they are likely to affect the che-
mical composition of streamflow at a site; such process could affect local habitat
suitability but is driven by the upstream catchment?. Morphological covariates
were obtained by analyzing the DEM of the region, while geological and land cover
raster maps were provided by Swisstopo®”-68. The list of covariates is shown in
Supplementary Table 1.

A second set of covariates was constituted by grouping all 760 reaches into 17
clusters according to geographical proximity and hydrological connectivity (see
Fig. 1c). For each cluster, a corresponding covariate vector was defined with values
equal to one for the reaches constituting that cluster, and zero otherwise. The
addition of these ‘geographical’ covariates aimed at allowing eDITH to reproduce
spatial patterns uncorrelated to any of the previous covariates (e.g., in the case of a
taxon only inhabiting a single tributary of the catchment).

The 35 covariates were z-normalized and checked for possible multicollinearity.
The 760-by-34 design matrix obtained by removing the covariate corresponding to
cluster LUT of Fig. 1c (corresponding to the Luteren tributary, and arbitrarily
chosen among the geographical covariates: each of them can indeed be expressed as
a linear combination of the other 16 geographical covariates) yielded all pairwise
correlation coefficients with absolute values lower than 0.80 and variance inflation
factors lower than 10, which minimized the effects of multicollinearity®®. The LUT
covariate was however kept in the design matrix to facilitate model fitting.

The eDITH model. The eDNA transport component of the eDITH model is
derived from Carraro et al.3!

A 1 L;

C =— E A vexp<——1>p (1)

j S,i i
jSey(j) viT

where (:’j, the modeled eDNA concentration of a given taxon at site j, results from
the summation of eDNA production rates p; across all network nodes upstream of
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j. These contributions are weighted by the relative source area Ag; and a first-order
decay factor, where L;; is the along-stream length of the path joining i to j, v;; the
average water velocity along that path, and 7 a characteristic decay time. Finally, Q;
is a characteristic (mean during sampling days) value of water discharge across
node j. Production rates are assumed to be proportional to the taxon’s density and
expressed via an exponential link

Pi = po €xp (/;Tx(i))v (2)

where X(i) is a vector of (normalized) environmental covariates evaluated at node i,
B a vector of covariate effects and p is a characteristic production rate3!.
Equation (2) represents a generalized linear model, a widely used class of species
distribution models”’. Note that Eq. (1) does not explicitly account for deposition
of eDNA particles on the river bed. Decay and deposition are both relevant pro-
cesses affecting eDNA removal, and thus detection, in stream water (see e.g.,
ref. 2%). We chose not to model these processes independently because it would be
hardly possible to disentangle the roles of degradation of genetic material and that
of gravity-induced deposition. Decay time T is therefore to be seen as a char-
acteristic time (linked to half-life T}/, by the relationship T, = In(2)7) for the
presence of eDNA in water, regardless of the source of its depletion.

We here further hypothesize that the expected number of reads for a given
taxon at a given site is proportional to the taxon’s eDNA concentration in the
sample: Nj = kC'j. Equation (1) then becomes

R 1 L. .
N; = Q Z Ag,; exp (* ﬁ) poexp(BTX(0)), (3)
Tiey(j) K
where p|, = kp,. Finally, by denoting with L; and w; the length and width of reach i,
respectively, it is Ag;=Lwi, v; = D 1ep L/ Dogep, (Li/ i), Where Py is the set of
i ij
nodes constituting the path joining i to j. For the sake of clarity, all mathematical
symbols used here and in the following are listed in Supplementary Table 2.

Model calibration. Measured numbers of reads at a given site are assumed to be
distributed according to a geometric distribution with mean N] obtained from
Eq. (3). The geometric distribution is a special case of the negative binomial dis-
tribution, obtained by setting to one the parameter corresponding to the number of
failures. Reasons for this choice are multifold: (i) it is a discrete distribution, as it is
the case for read number data; (ii) it depends on a single parameter, thereby it
reduces the complexity of the problem; (iii) it has null mode, which is in agreement
with the data (in fact, the number of replicates with null read numbers ranged from
50 to 182 out of 183, depending on the genus); (iv) the distribution has fatter tails
compared to the Poisson distribution, which is also a single-parameter, discrete
distribution with null mode. Fat tails allow the interpretation of large observed
numbers of reads.

Given these assumptions on the distribution of observed numbers of reads, the

likelihood function reads
~ N,
St 1+ N1+ N,

where S is the set of sampling sites used to calibrate the model and N is a |§|-by-3
matrix whose entries are observed numbers of reads Nj, at site j and replicate o (|S|
is the cardinality of S, equal to 61 in this case).

The posterior distribution of parameters g, py, 7 was sampled by means of an
Adaptive Metropolis algorithm”!. The prior distribution adopted for p was a
multivariate normal with null mean and covariance matrix equal to 9 I, where I is
the identity matrix of order equal to the number of components of . We then
adopted a uniform prior distribution for pj and a lognormal prior distribution for
with mean equal to 2.55h and standard deviation equal to 1.36 h, equivalent to a
normal distribution for In(7) (with 7 expressed in seconds) with mean equal to 9
and standard deviation equal to 0.5; such prior distribution was derived from a
previous study®!. For each of the 50 model runs (corresponding to the 50 EPT
genera detected in the eDNA samples), Markov chains were randomly initialized;
the first 5000 elements of the chains built by the Adaptive Metropolis algorithm
were then discarded (burn-in phase), while the following 10,000 were retained.
With the above-mentioned settings, eDITH was used to generate spatial patterns of
relative density for all of the 50 genera.

f(NB.ph7) =]

jes

Assessing detection probability and presence maps. In order to enable the
comparison among maps of relative density for the different genera, we resorted to
the evaluation of detection probability. This was defined as the probability that,
given the relative density of a genus at a given reach predicted by eDITH, an eDNA
sample taken from that reach would yield a nonzero number of reads, if that reach
were unconnected from the river network. From Eq. (3), the expected number of
reads of a sample taken from an unconnected reach reads

. Ag; L
Ny, = pl =34 4 5
U,i Ppi q; €xp VT ’ ( )
where g; is the discharge directly contributing to reach i (such that Q; = )~ keyi) i)
L; and v; are length and water velocity relative to reach i, respectively. Thus,

according to the assumption of geometric distribution for observed read numbers,
the probability of a non-zero read number for a sample with expected read number
Ny, is

Ny,

= 6
1+ Ny, (©)

Pp;

Detection probabilities are evaluated by using median posterior values for
parameters f3, p;, 7. Finally, maps of detection probability are converted into
presence maps by applying the threshold3® Pp,;>2/3. The summation of presence
maps for all genera yields the genus richness map displayed in Fig. 5a.

A number of methods for threshold selection in species distribution models
exist in the literature”?; however, preliminary analyses (not reported) showed that
methods such as the prevalence approach and the average probability/suitability
approach (see ref. 72) resulted in lower accuracy estimates (see below) as opposed
to the fixed threshold approach. Moreover, the fixed threshold approach Pp;>2/3
was used by Michler et al.3%; since the eDITH model is to be seen as a way to
translate “upstream-averaged” eDNA measurements into local equivalent eDNA
measurements, it appears appropriate to keep the same criterion already used with
the raw eDNA data.

For a given genus that was found both in the eDNA and kicknet samples, the
accuracy of a presence map obtained by eDITH with respect to the kicknet data
was determined as the fraction of true positives (i.e., sites where both model and
kicknet assessed presence) and true negatives (i.e., sites where both model and
kicknet assessed absence) over all (60) sites where kicknet was performed. On the
contrary, false positives are sites where eDITH predicts presence while kicknet
indicates absence; the vice versa holds for false negatives.

We underline that the eDITH model was run for all genera that were found in
at least one replicate at one site. Such an inclusive choice was operated in a bid to
maximize the available information and avoid false absences. However, the
estimates of occurrence of taxa performed by our model remain conservative:
indeed, for the 8 genera that were never found at any site with at least 2 out of 3
nonzero read numbers (see Supplementary Data 1), the fraction of river reaches
where eDITH predicted presence was always lower than 3%.

Note that calculating the accuracy between model predictions and eDNA data
with the method used for the model vs. kicknet comparison would be formally
wrong: indeed, eDNA data are an aggregate measure of the upstream taxon
distribution, while eDITH-based presence estimates refer to a local variable,
because upstream contributions have been disentangled by the model. Conversely,
an adequate measure of consistency between model predictions and eDNA data
must compare quantities of the same type (i.e., both referred to the upstream
catchment). To this end, we utilized the goodness-of-fit test detailed below.

Goodness-of-fit test. An ad hoc goodness-of-fit test was required owing to the use
of a geometric distribution to represent the observed numbers of reads. The test
relies on a bootstrapping technique derived from that proposed by Mi et al.”3, to
which the reader is referred for details on the theoretical foundation of the method.

For a given site j, let Nj be the read number predicted by eDITH (see Eq. (3))
and Njo, 0 =1,2,3 the triplet of observed read numbers at that site. The sample
standard deviation of the data with respect to the predicted mean reads

1

°

while Pearson’s residuals are given by r;, = (N;o — I(IJ) /s;- Now, let NJ ~
Geom (N}) be a random variable that is geometrically distributed with mean equal

to Nj Let us generate a large (h =1, ..., 10°) number of triplets Njho, 0=1,2,3and
compute their sample standard deviation §;, and residuals 7;,,:

Let now d; and ajh be the sum of squared deviations of ordered residuals (of the

data and of the sampled distributions, respectively) from the medians of their
sampled distributions

4=3 (5= ) = 3 (7)) ®
o0=1 o=1
)

~(50
where 7;

triplets Njha. The p-value can thus be computed as

is the median of the residuals of the o-th components of the generated

10°
1+ 1&1/,,2,1, (h) (10)
1+ 10° ’

Gor _

bj

where 1 ., (h) is an indicator function equal to one if [ijh >d; and null otherwise.
ST
We finally assumed that the null hypothesis H that the triplet Nj, 0=1, 2, 3 is
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geometrically distributed with mean I(I) (namely, that the model correctly
reproduces the data at site j) cannot be rejected if pf® > 0.05.

Cross-validation analysis of the effect of sample size. In order to evaluate how
model predictions vary as a function of data availability, we performed 9 additional
simulations (termed AS), in which only subsets of the sampling sites were used to
calibrate eDITH: 3 of them (simulation group termed AS1) were based on 49 out of
61 sites (~80%), 3 (AS2) were based on 37 sites (~60%) and 3 (AS3) were based on
25 sites (~40%). For each simulation, a quasi-random choice of the excluded subset
of sites was operated. In particular, to ensure spatial coverage of the catchment, we
first imposed that, for each AS group, the distribution of Strahler stream order
values of the calibration subset was proportional to that of the complete set of sites
(shown in Supplementary Fig. 2). The allocation of number of excluded sites per
stream order value was determined via the D’Hondt method”#. The excluded sites
were then randomly sampled while respecting the constraint on stream order-
based allocation. Note that, for a given thus-obtained calibration set, eDITH was
run for all 50 genera.

For these additional simulations, calibration was performed as described with
regards to the complete model (CM) (see “Model calibration” section), except that
Markov Chains were here shorter (burn-in phase: 1000 elements; length of the
retained chain: 5000 elements) to speed up the computational process.

Finally, performance indices were calculated in analogy to CM. Specifically,
these were goodness of fit and accuracy. Goodness of fit is defined as the ability of
the modeled spatial patterns of expected read numbers to reproduce the observed
read numbers, and is evaluated as the fraction of sites (either all sampling sites,
calibration or validation subsets) where the null hypothesis that observed read
numbers come from the hypothesized distribution cannot be rejected (see
“Goodness-of-fit test” section). Accuracy is defined as the agreement between
model-based genus presence predictions and kicknet observations, and is evaluated
as the fraction of sites marked as true positives or true negatives (see “Assessing
detection probability and presence maps” section). We then calculated loss of
goodness of fit as the difference between the goodness of fit of the AS simulations
and that of CM. Loss of accuracy is analogously calculated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Sequence data that support the findings of this study have been deposited in European
Nucleotide Archive with the study accession numbers (secondary accession number)
PRJEB31920 (ERP114535) and PRJEB33506 (ERP116301). Hydrological and landscape
data that support the findings of this study are available in Zenodo with the identifier
https://doi.org/10.5281/zenodo.3903330. Source data are provided with this paper.

Code availability
MATLAB scripts reproducing the results of this manuscript are available at https://doi.
org/10.5281/zen0do.3903330. Source data are provided with this paper.
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