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Background: Senescence marker protein 30 (SMP30), which plays a pivotal role as a suppressor protein 
in cell proliferation, among other regulatory actions, is a marker of aging that shows decreased expression 
during senescence. Decreased SMP30 has been identified in several human cancers, but its expression and 
role in human non-small cell lung cancer (NSCLC) remain unclear. 
Methods: Using tumor tissue and matched adjacent normal tissue from 341 patients with resected NSCLC, 
we assessed SMP30 expression using immunohistochemical methods. The relationship between SMP30 
expression and clinicopathologic characteristics was investigated by Kaplan-Meier survival analysis and 
multivariate analysis. Cell viability assay, colony formation assay, EdU incorporation assay and in vivo tumor 
xenograft models were also performed to investigate NSCLC cell proliferation using A549 and H1299 cell 
lines. Recombinant lentivirus-meditated in vivo gene overexpression and Western blot were performed to 
clarify the underlying molecular mechanism of SMP30 inhibiting NSCLC proliferation. 
Results: SMP30 expression was frequently downregulated in NSCLC tissue, as compared with adjacent 
non-tumor tissue. Kaplan-Meier survival analyses revealed NSCLC patients with low SMP30 expression had 
a significantly worse overall survival (OS), with median OS of 18 vs. 67 months in high SMP30 expression 
group. SMP30 overexpression significantly inhibited A549 and H1299 cell proliferation both in vitro and in 
tumor xenografts and downregulated the expression of c-Myc and CyclinD1 protein. Moreover, Western blot 
analyses confirmed that SMP30 overexpression significantly inhibited the histone deacetylase 4 (HDAC4) 
level in NSCLC cells, and HDAC4 overexpression reversed SMP30-mediated NSCLC repression both  
in vitro and in vivo. 
Conclusions: SMP30 inhibited NSCLC proliferation by reducing HDAC4 expression, and SMP30 and 
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Introduction

Lung cancer remains the leading cause of cancer-related 
deaths worldwide, and non-small-cell lung cancer (NSCLC), 
mainly consisting of lung squamous cell carcinoma (LUSC) 
and lung adenocarcinoma (LUAD), is the predominant 
type, accounting for approximately 85% (1). Despite 
great progress in therapeutic regimens, including surgical 
resection, chemotherapy, radiation therapy, immunotherapy, 
and targeted biological agents, the prognosis of NSCLC 
patients remains poor, with a 5-year survival rate of 
approximately 26% (2,3). Clearly, there is a desperate 
need of novel diagnostic and therapeutic targets that can 
promote better evaluation of prognosis and optimization of 
treatments for individual NSCLC patients. Recent studies 
reported that senescence marker protein 30 (SMP30), a 
calcium-binding protein, may function as a tumor suppressor 
against tumor development and progression (4,5).

SMP30, also known as regucalcin, shows decreased 
expression during senescence and is a marker of aging (6).  
SMP30 was reported to be associated with aging and 
partial loss of hepatology function (7) and is involved in the 
regulation of intracellular Ca2+ levels, modulation of several 
cellular signaling pathways, and has antioxidant properties (8).  
Decreased levels of SMP30 leads to increased generation 
of reactive oxygen species, regarded as the most influential 
factor causing senescence (9). SMP30 has a protective action 
against oxidative damage through modulation of the activity 
of enzymes involved in generation of oxidative stress, as well 
as in antioxidant defense (9). 

SMP30 plays a pivotal role as a suppressor protein in 
cell proliferation (4,5). It has been demonstrated that 
SMP30 overexpression (OE) suppressed cell proliferation 
via decreasing DNA synthesis (10-12). Additionally, OE 
of SMP30 upregulated p53 and p21, while downregulating 
the mRNA expression of c-Myc and H-ras, suggesting 
that SMP30 inhibits cell proliferation by modulating 
the expression of pro-oncogenes and tumor suppressor 

genes (13,14). The expression of c-Jun and chk2 cell-cycle 
regulators was decreased in SMP30-transfected NRK52e 
cells (11). Interestingly, accumulating evidence demonstrates 
that suppression of SMP30 expression is involved in 
carcinogenesis (4,15,16). Decreased SMP30 expression has 
been found in several human cancers, such as pancreatic 
cancer, breast cancer, and liver cancer (5,17,18). Moreover, 
low SMP30 level was also associated with poor prognosis 
in these cancers (5,16). However, SMP30 expression and its 
role in NSCLC are still unknown.

HDAC4 is a member of the class IIa HDAC family and 
is associated with a wide range of cellular and epigenetic 
processes as a transcriptional corepressor, similar to other 
members of the family (HDAC5, HDAC7, HDAC9) (19).  
It  was reported that the OE of HDAC4  promotes 
proliferation, metastasis and invasion of gastric cancer (20), 
esophageal carcinoma (21) and glioma (22). Moreover, 
elevated HDAC4 expression also correlated with poor 
prognosis (21,23,24). HDAC4 was also reported to 
promote progression of lung cancer by regulating epithelial 
mesenchymal transition, autophagy and apoptosis (25,26). 
Additionally, HDAC inhibitors were reported to exert 
growth arrest and apoptosis effect on tumor cells (27) and 
several HDAC inhibitors were used in NSCLC (28,29). 
However, the oncostatic actions of HDAC4 and its detailed 
underlying molecular mechanisms in NSCLC remain 
largely unclear.

In the current study, we built the SMP30 OE NSCLC 
cell lines to investigate the actions of SMP30 on NSCLC 
proliferation both in vitro and in vivo. Western blot results 
revealed that SMP30 OE dramatically affected HDAC4 
expression. Then we evaluated the role of HDAC4 in 
SMP30-mediated tumor proliferation. Furthermore, the 
expression of SMP30 in 341 paired human NSCLC tissues 
and its correlation with related clinicopathologic features 
and survival were analyzed. We also analyzed whether the 
expressions of SMP30 could serve as predictive marker for 
prognosis of NSCLC patients. We present the following 
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article in accordance with the ARRIVE reporting checklist 
(available at https://dx.doi.org/10.21037/tlcr-21-982).

Methods

Database-mining

To evaluate the expression of SMP30 in NSCLC tissue and 
paired normal tissue, data from Oncomine database (https://
www.oncomine.org/, Human Genome U133 Plus 2.0 Array, 
Reporter ID: 210751_s_at) were analyzed. Correlation 
analysis of SMP30 expression and clinicopathologic 
parameters was also performed. Moreover, we also analyzed 
the associations between SMP30 expression and NSCLC 
patient prognosis using data from Kaplan-Meier plotter 
database (https://kmplot.com/, use earlier release of the 
database: all 2015 version, n=2,437) and The Human 
Protein Atlas database (the RNA-seq data based on The 
Cancer Genome Atlas, http://www.proteinatlas.org/).

NSCLC tissue samples and tissue microarray 
immunohistochemistry (IHC)

We included 341 patients who underwent NSCLC surgery 
at Tangdu Hospital between May 2009 and December 
2013 in this retrospective study. Among them, 152 patients 
were of early clinical stage (stage I/II) and 189 patients 
were of late clinical stage (stage III/IV). None of the 
patients had received radiotherapy or chemotherapy before 
surgery, and the final follow-up was updated until death 
or December 2018, whichever came first. All procedures 
performed in this study involving human participants were 
in accordance with the Declaration of Helsinki (as revised 
in 2013). This study was approved by the Ethics Committee 
of the Fourth Military Medical University (No. TDLL-
202110-03) and informed consents were not required for 
this retrospective study. Using paraffin-embedded tissue 
microarray containing 341 pairs NSCLC and matched 
adjacent normal lung tissues, IHC staining was conducted 
using the primary antibodies of anti-SMP30 (1:50, 17947-
1-AP, Proteintech), and standard protocols were followed as 
previously described (30). 

The IHC staining score was based on two criteria: (I) 
percentage of positive cells (0, ≤5%; 1, 6–25%; 2, 26–50%; 
3, 51–75%; and 4, >75%); (II) staining intensity (0, negative; 
1, yellow; 2, brown; and 3, tan). The two scores were 
multiplied to produce the total score and the median score 
was used to divide the NSCLC samples into those with low 

and high SMP30 expression.

Cell culture and lentivirus (LV) infection

Human NSCLC A549 (ATCC Cat# CRM-CCL-185, 
RRID: CVCL_0023) and H1299 (ATCC Cat# CRL-
5803, RRID: CVCL_0060) cell lines were purchased 
from the American Type Culture Collection (ATCC, VA, 
USA) in January 2018, and the A549 and H1299 cells were 
authenticated by the ATCC upon purchase (5 months prior 
to experimental research) using morphology, karyotyping, 
and PCR based approaches to profile the cytochrome C 
oxidase I gene (COI analysis) and short tandem repeat to 
confirm the identity of human cell lines and to rule out 
both intra- and interspecies contamination (see ATCC 
website https://www.atcc.org/CellAuthenticationMatters.
aspx). Cells were cultured in DMEM with high glucose 
(Gibco, NY, USA), supplemented with 10% fetal bovine 
serum (Gibco), penicillin-streptomycin solution (100 
units/mL; Solarbio, Beijing, China). SMP30, HDAC4 and 
paired empty vector LVs were purchased from Genechem 
(Shanghai, China). LV infection of A549 and H1299 cells 
was performed according to the Genechem protocols. Next, 
SMP30 and HDAC4 OE cells or negative controls (NCs) 
were selected with puromycin.

Cell viability assay

The A549 and H1299 cell viability assay used the CCK-
8 kit according to the manufacturer’s instructions (7Sea, 
Shanghai, China). Optical density values were measured 
at 450 nm through a microplate reader (SpectraMax 190, 
Molecular Device, USA).

Colony formation assay

A total of 500 A549 and H1299 cells were seeded and 
cultured in 6-well plates for 12–14 days, after which the 
plates were photographed and colonies containing >50 cells 
were counted after staining with 0.1% crystal violet.

5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay

Cell proliferation was assessed by EdU incorporation assay. 
A BeyoClick EdU Cell proliferation kit with Alexa Fluor 
594 (Beyotime, Shanghai, China) was used according to the 
manufacturer’s instructions. Cells were imaged by Olympus 
FV1000 confocal microscope (Olympus, Tokyo, Japan). 

https://www.oncomine.org/
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4561Translational Lung Cancer Research, Vol 10, No 12 December 2021

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(12):4558-4573 | https://dx.doi.org/10.21037/tlcr-21-982

EdU-positive cells were manually counted and expressed as 
the percentage of cells calculated from nuclear labeling with 
Hoechst 33342.

In vivo tumor xenograft models

Animal experiments were performed under a project license 
(No. IACUC-20210609) granted by the Animal Ethics 
Committee of the Fourth Military Medical University, in 
compliance with the institutional guidelines for the care 
and use of animals. A protocol was prepared before the 
study without registration. For each part, 5 athymic nude 
mice (male, 4–6 weeks, 18–20 g) were obtained from the 
university’s Laboratory Animal Center. They were housed 
singly under the conditions of 12 h light/12 h dark cycle, 65–
75 ℉ (18–23 ℃) and 40–60% humidity with adequate food 
and water. The left and right flanks of 5 nude mice (male, 
4–6 weeks, 18–20 g) were subcutaneously inoculated with 
LV-control and LV-SMP30 cells separately while another 
5 mice received LV-SMP30 + LV-HDAC4 and LV-SMP30 
+ LV-control cells, respectively. Different groups of 5×106 
H1299 cells were separately inoculated subcutaneously into 
the right or left flank of 6-week-old male nude mice for in 
vivo tumor xenograft assay. The tumor size and body weight 
were assessed every 3 days (the longer diameter of the tumor 
should not be >20 mm). Twenty-one to Twenty-eight days 
after injection, the animals were anesthetized and the tumors 
were excised for additional analysis before the humane death 
of the animal. After photographing and weighing the tumor, 
part of each sample was fixed in formalin, and another part 
was prepared for further analysis.

Western blot

Western blot was performed as previously described (31).  
Antibodies against  SMP30  (1:1,000,  17947-1-AP, 
Proteintech), against HDAC4 (1:1,000, Proteintech Cat# 
17449-1-AP, RRID: AB_2118864), anti-CyclinD1 (1:1,000, 
60186-1-Ap, Proteintech), anti-c-Myc (1:1,000, #5605, CST) 
anti-β-actin (1:5,000, ab6276, Abcam), and anti-tubulin 
(1:1,000, #2148, CST) were used. The 1:5,000 dilution of 
horseradish-peroxidase-linked anti-mouse or rabbit IgG 
was used as the secondary antibody (Zhongshan Company, 
Beijing, China).

Cell treatment

The pan-HDAC inhibitor vorinostat (SAHA), and the 

specific class IIa inhibitor TMP269, were obtained 
from MedChemExpress and prior to the experiment 
were prepared in DMSO and diluted in culture media 
immediately. One day after seeding onto culture dish, 
normal cells and HDAC4 overexpressing cells were divided 
into four groups: (I) control group; (II) 0.625 μM SAHA/20 
μM TMP269 group; (III) 1.25 μM SAHA/40 μM TMP269 
group; (IV) 2.5 μM SAHA/60 μM TMP269 group. After 
the above treatments for 48 h, cells were analyzed.

Statistical analysis

Data analyses were carried out with SPSS 23.0 (SPSS Inc., 
IL, USA) software. The relationships between SMP30 
expression and the clinicopathologic parameters of the 
NSCLC patients were evaluated by χ2 test or Fisher’s exact 
test. Survival analyses were examined by Kaplan-Meier 
method, then compared with the log-rank test. Univariate 
and multivariate survival analyses were conducted using 
Cox hazards regression models. Results were compared 
between groups by Student’s t-test. Data are presented as 
the mean ± standard deviation (SD). P<0.05 was considered 
as statistically significant.

Results

Expression of SMP30 in NSCLC patients

To investigate the expression of SMP30 in NSCLC, we 
initially conducted database-mining to compare the gene 
expression profiles of SMP30 between normal lung and cancer 
tissues. Oncomine database (https://www.oncomine.org/)  
analysis revealed that the SMP30 mRNA level was 
significantly lower in various cancer types compared with 
normal tissues, but especially in lung cancer (Figure S1A). 
Results showed that SMP30 mRNA levels in NSCLC, 
including large-cell lung carcinoma, LUAD and LUSC, 
were significantly decreased compared with normal lung 
tissue samples (Figure S1B). To further validate the SMP30 
expression in NSCLC tissues, we performed IHC analysis 
to detect the SMP30 level in a tissue microarray containing 
341 paired tumor-normal lung tissues (Figure 1A) and it 
was clearly lower in NSCLC than in adjacent noncancerous 
lung samples (Figure 1B).

In order to characterize the roles of SMP30 in NSCLC, 
we analyzed whether its expression was associated with 
clinicopathologic variables (Table 1). Of the 341 samples, 
133 had a score of 0 while two samples had a score of 12. 

https://cdn.amegroups.cn/static/public/TLCR-21-982-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-982-supplementary.pdf
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The median score for the entire cohort was 2. On univariate 
analysis, SMP30 expression was significantly associated 
with tumor size, tumor invasion, lymphatic metastasis, 
distant metastasis, cancer differentiation and clinical stage 
respectively (Table 1). These results indicated that abnormal 
SMP30 expression was involved in NSCLC progression. 

Correlation of SMP30 expression and NSCLC prognosis 
and survival

We analyzed the association between SMP30 expression 
and NSCLC patient prognosis using Kaplan-Meier analysis 
and log-rank test for significance estimates. The Kaplan-
Meier survival curves showed that NSCLC patients with 

Figure 1 Correlation of low SMP30 level with worse overall survival in NSCLC patients. (A) Representative immunohistochemical (IHC) 
images for SMP30 expression in NSCLC (lung squamous cell carcinoma and lung adenocarcinoma) and adjacent noncancerous tissues. Scale 
bar, 200 and 20 μm (inset) respectively. (B) Statistical analysis of SMP30 expression in tumor tissue and adjacent noncancerous tissue of 341 
NSCLC patients through IHC staining. (C-F) Kaplan-Meier survival analyses of high/low SMP30 expression based on tissue microarray 
IHC results for 341 NSCLC patients (C), 1,926 NSCLC patients in the Kaplan-Meier plotter database (D), 1,014 NSCLC patients from 
The Human Protein Atlas (original RNA-seq data from TCGA) (E), 152 NSCLC patients in the early clinical stages, and 189 NSCLC 
patients in the late clinical stages (F). (G) Statistical analysis of SMP30 expression in different clinical stages and T classifications of 341 
NSCLC patients through IHC staining. SMP30, senescence marker protein 30; NSCLC, non-small cell lung cancer; TCGA, The Cancer 
Genome Atlas.
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Table 1 Association of SMP30 expression with clinicopathologic 
parameters of patients with NSCLC

Parameter N
SMP30 expression

Low High P value

Age, years 0.911

<60 153 88 65

≥60 188 107 81

Sex 0.503

Male 272 158 114

Female 69 37 32

Tumor location 0.803

Left lung 142 89 53

Right lung 199 106 93

Tumor size, cm 0.003

<5 124 58 66

≥5 217 137 80

T classification 0.001

T1 6 3 3

T2 130 62 68

T3 127 71 56

T4 78 59 19

Lymph node metastases <0.001

N0 156 72 84

N1–N3 185 123 62

Metastasis 0.022

No 330 185 145

Yes 11 10 1

Differentiation <0.001

Well and moderate 235 108 127

Poorly and not 106 87 19

Clinical stage <0.001

I 48 12 36

II 104 46 58

III 178 127 51

IV 11 10 1

SMP30, senescence marker protein 30; NSCLC, non-small cell 
lung cancer.

low SMP30 expression were associated with worse overall 
survival (OS) (log-rank P<0.001, Figure 1C). Consistently, 
the Kaplan-Meier plotter database (https://kmplot.com/) 
survival analysis based on 1,926 NSCLC cases suggested 
that a low SMP30 level was significantly correlated with 
poor prognosis [hazard ratio (HR) =0.58, log-rank P<0.001, 
Figure 1D]. Furthermore, we analyzed the survival of 
1,014 NSCLC cases through The Human Protein Atlas 
database (the RNA-seq data based on The Cancer Genome 
Atlas, https://www.proteinatlas.org/), and verified that low 
SMP30 level was related to poor prognosis (Figure 1E). 
Interestingly, we found that NSCLC patients with low 
SMP30 expression had worse OS when the patients were 
analyzed based on stage at diagnosis. This was evident in 
both early stage (stage I/II) and more advanced stage (stage 
III/IV) (P<0.001, Figure 1F). Our results also indicated that 
NSCLC patients with larger tumors (T3/T4) and high 
clinical stage (stage III/IV) had lower expression of SMP30 
than those with smaller tumor invasion (T1/T2) and low 
clinical stage (stage I/II) (P<0.001, Figure 1G).

To further assess whether SMP30 expression represents a 
prognostic factor for patients with NSCLC, we performed 
Cox proportional hazard regression analysis of the patients’ 
OS. Univariate analysis showed that low SMP30 expression 
negatively correlated with NSCLC survival (Table 2). In the 
multivariate survival analysis, when other risk factors such 
as tumor invasion, lymphatic invasion, distant metastasis, 
cancer differentiation, and clinical stage were taken in 
consideration, the SMP30 expression was still associated 
with a lower risk of death 0.383 (95% CI: 0.282–0.518, 
P<0.001).

Low SMP30 level and poor prognosis in both LUAD and 
LUSC patients

We further studied the prognostic role of SMP30 expression 
in LUAD and LUSC patients. The Kaplan-Meier plotter 
database survival analysis including 719 LUAD cases 
indicated that low SMP30 expression in LUAD patients was 
significantly associated with poor prognosis (HR =0.44, log-
rank P<0.001, Figure 2A). Analysis of SMP30 expression in 
131 LUAD patients in our cohort, verified that low SMP30 
level significantly correlated with worse OS, with median 
OS in low SMP30 expression group and high SMP30 
expression group was 22 and 47 months respectively (log-
rank P<0.001, Figure 2B). Moreover, we found the prognosis 
of LUAD patients with low SMP30 expression was worse 
in both early clinical stage (stage I/II) (median OS of 
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Table 2 Univariate and multivariate analyses of the correlation between clinicopathological variables for survival of patients with non-small cell 
lung cancer

Variable Category
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age <60/≥60 years 1.171 0.919–1.491 0.201 – – –

Sex Male/female 1.067 0.789–1.442 0.675 – – –

Tumor location Left lung/right lung 0.879 0.689–1.121 0.299 – – –

T classification I–II/III–IV 2.002 1.552–2.584 <0.001 1.393 1.005–1.930 0.046

Lymphatic invasion Yes/no 1.740 1.359–2.229 <0.001 0.991 0.714–1.377 0.959

Distant metastasis Yes/no 2.425 1.323–4.445 0.004 1.171 0.537–2.553 0.692

Differentiation Well and moderate/poorly and not 5.150 3.913–6.777 <0.001 3.272 2.452–4.365 <0.001

Clinical stage I/II/III/IV 1.549 1.332–1.800 <0.001 1.378 1.018–1.867 0.038

SMP30 expression Low/high 0.263 0.201–0346 <0.001 0.383 0.282–0.518 <0.001

Figure 2 Correlation of low SMP30 level with worse overall survival in both LUAD and LUSC patients. (A,E) Kaplan-Meier survival 
analyses of high/low SMP30 expression in 719 LUAD patients and 524 LUSC patients, respectively, based on the Kaplan-Meier plotter 
database. (B-D,F-H) Kaplan-Meier survival analyses of high/low SMP30 expression in 131 LUAD patients and 210 LUSC patients based on 
the tissue microarray immunohistochemical results. SMP30, senescence marker protein 30; HR, hazard ratio; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma.
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31 vs. 103 months) and late clinical stage (stage III/IV)  
(median OS of 13 vs. 39 months) subgroups (log-rank 
P<0.05, Figure 2C,2D). 

Interestingly, the Kaplan-Meier plotter database showed 
no significance between SMP30 expression and LUSC 
patients’ OS (HR =0.95, log-rank P=0.67) (Figure 2E), but 
our Kaplan-Meier survival analysis based on 210 LUSC 
patients showed that low SMP30 level was associated with 
poor prognosis (median OS of 13 vs. 103 months) (log-rank 
P<0.001, Figure 2F). Furthermore, we found LUSC patients 
with low SMP30 expression had significantly worse OS in 
both the early and late clinical stage subgroups (log-rank 
P<0.001, Figure 2G,2H).

Effect of SMP30 OE on proliferation of NSCLC A549 and 
H1299 cells

To verify the potential antitumor actions of SMP30 in 
NSCLC, we first examined its expression in multiple 
NSCLC cell lines (Figure 3A) and established stable SMP30 
overexpressing A549 and H1299 cell lines through use 
of the SMP30 LV. SMP30 expression was confirmed by 
Western blot (Figure 3B). Subsequently, we performed cell 
viability and colony formation assays to evaluate the role of 
SMP30 in A549 and H1299 cell proliferation. Compared 
with the NC group, we found SMP30 OE significantly 
decreased the A549 and H1299 cell viability determined by 
CCK-8 analysis (P<0.05, Figure 3C). This anti-proliferative 
effect was further validated by the colony formation assay, 
in which SMP30 OE significantly decreased the colony 
formation ability in A549 and H1299 cells (P<0.05, Figure 
3D). We also used the EdU incorporation assay to analyze 
the role of SMP30 on proliferation, and we found SMP30 
OE remarkably decreased the EdU-positive cells compared 
with the NC group (P<0.05, Figure3E). To further 
validate the effect of SMP30 OE on inhibiting NSCLC 
cell proliferation, we established H1299 cell xenograft in 
athymic nude mice and measured their tumor volumes. 
We found that all nude mice developed subcutaneous 
tumors, but the tumor volume in SMP30 OE group was 
clearly reduced compared with NC group (Figure 3F). 
Aberrant activation or expression of c-Myc contributes to 
tumor progression. Western blot analyses showed that 
SMP30 OE inhibited the expression of c-Myc both in vitro 
and in vivo (Figure 3B,3G). We further examined cell-
cycle proteins with Western blot analysis and found that 
the level of CyclinD1 was dramatically decreased in the 
SMP30 overexpressing groups both in vivo and in vitro 

(Figure 3B,3G). However, other cell cycle-related proteins 
did not significantly change in these cell lines (Figure S2A). 
Taken together, the results revealed that SMP30 had an 
antiproliferative action on NSCLC cells.

Role of HDAC4 in SMP30-mediated NSCLC inhibition

To further explore the underlying mechanism of SMP30 
OE on inhibiting NSCLC proliferation, we measured 
the level of HDAC family members in A549 and H1299 
cells among the NC and SMP30 overexpressing groups. 
Our results showed that HDAC4 was downregulated after 
SMP30 OE both in vivo and in vitro (Figure 4A,4B) while 
other members showed no significant changes (Figure 
4A,4B, Figure S2B). To further explore the role of HDAC4 
in NSCLC, we measured its levels in several NSCLC 
cell lines (Figure 4C) and then established stable HDAC4 
overexpressing A549 and H1299 cell lines using the HDAC4 
LV, and HDAC4 expression was confirmed by Western blot 
(Figure 4D). Colony formation assay was performed to show 
that HDAC4 OE significantly increased colony formation 
ability of both cell lines (Figure 4E). These results were also 
confirmed by the EdU incorporation assay (Figure 4F) and 
furthermore, Western blot results showed that the levels of 
c-Myc and CyclinD1 were elevated after HDAC4 OE in both 
the A549 and H1299 cell lines (Figure 4D).

Involvement of HDAC4 in SMP30-mediated NSCLC 
suppression

To further confirm the involvement of HDAC4 in SMP30-
mediated NSCLC repression, we upregulated HDAC4 by 
transfecting HDAC4 LV into SMP30 overexpressing H1299 
cells. The OE of HDAC4 was verified by Western blot 
and had no effect on the levels of SMP30 protein (Figure 
5A). HDAC4 OE markedly reversed SMP30 OE-induced 
c-Myc and CyclinD1 inhibition in NSCLC cells (Figure 5A). 
Moreover, we found HDAC4 OE partially reversed the 
repressed proliferative ability of H1299 cells overexpressing 
SMP30 (Figure 5B). These results were confirmed by 
the EdU incorporation assay (Figure 5C). Furthermore, 
the in vivo study showed that HDAC4 OE significantly 
increased the mean volume of tumors in the H1299 SMP30 
overexpressed xenograft group (Figure 5D). Western blot 
analyses of subcutaneous tumors indicated that the OE of 
HDAC4 reversed the c-Myc and CyclinD1 inhibition both 
in vivo and in vitro (Figure 5A,5E). Taken together, these 
results suggested that SMP30-mediated NSCLC inhibition 

https://cdn.amegroups.cn/static/public/TLCR-21-982-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-982-supplementary.pdf
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Figure 3 Effect of SMP30 overexpression on proliferative ability of A549 and H1299 cells, and tumor growth in H1299 cell tumor xenografts. (A) 

Relative protein levels of SMP30 in cell lines as determined by Western blot. β-actin was used as a loading control. (B) Representative Western blot 

results of Flag, SMP30, c-Myc and CyclinD1 in LV-SMP30 A549 and LV-SMP30 H1299 cells. (C) Growth curves of the A549 and H1299 cells. Cell 

viability was detected by CCK-8 assay and expressed as optical density values. (D) Representative images and results of the colony formation assay. 

Colonies were visualized by crystal violet staining. (E) Representative images (×20) and statistical analysis of EdU incorporation assay. The results 

are presented as the ratio between the number of EdU-positive cells (red fluorescence) and the total number of Hoechst 33342-stained cells (blue 

fluorescence). (F) Representative results of tumor weight changes after subcutaneous injection of H1299 cells. Photographs show tumor xenograft 

morphologies in the LV-control and LV-SMP30 H1299 groups. (G) Representative Western blot results of Flag, SMP30, c-Myc and CyclinD1 in H1299 

xenograft tumor tissues. β-actin was used as a Western blot loading control. The values below the Western blot band represent the relative gray values. 

All the data are shown as the mean ± SD. Student’s t-test, *, P<0.05 vs. LV-control group. LV, lentivirus; SMP30, senescence marker protein 30.
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Figure 4 Effect of HDAC4 level of SMP30 overexpression both in vivo and in vitro, and effect of HDAC4 overexpression on NSCLC cell 
proliferation. (A) Representative Western blot results of HDAC4, HDAC5, HDAC7 and HDAC9 in LV-SMP30 A549 and LV-SMP30 H1299 

cells. (B) Representative Western blot results of HDAC4, HDAC5, HDAC7 and HDAC9 in H1299 xenograft tumor tissues. (C) Relative protein 
levels of HDAC4 in cell lines as determined by Western blot. (D) Representative Western blot results of Flag, HDAC4, c-Myc and CyclinD1 in LV-
HDAC4 A549 and LV-HDAC4 H1299 cells. (E) Representative images and results of colony formation assay. Colonies were visualized by crystal 
violet staining. (F) Representative images (×20) and statistical analysis of EdU incorporation assay. The results are presented as the ratio between 
the number of EdU-positive cells (red fluorescence) and the total number of Hoechst 33342-stained cells (blue fluorescence). β-actin was used as a 
Western blot loading control. The values below the Western blot band represent the relative gray values. All the data are shown as the mean ± SD. 
Student’s t-test, *, P<0.05 vs. LV-control group. HDAC histone deacetylase; LV, lentivirus; SMP30, senescence marker protein 30; SD, standard 
deviation; NSCLC, non-small cell lung cancer.
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Figure 5 Essential requirement for HDAC4 in SMP30-mediated NSCLC cell proliferation. (A) Representative Western blot results of 
Flag, SMP30, HDAC4 and c-Myc and CyclinD1. (B) Representative images and results of colony formation assay. Colonies were visualized by 
crystal violet staining. (C) Representative images (×20) and statistical analysis of EdU incorporation assay. The results are presented as the 
ratio between the number of EdU-positive cells (red fluorescence) and the total number of Hoechst 33342-stained cells (blue fluorescence). 
(D) Representative results for tumor weight changes after subcutaneous injection of H1299 cells. Photographs show tumor xenograft 
morphologies in the LV-SMP30 + LV-HDAC4 and LV-SMP30 + LV-control H1299 groups. (E) Representative Western blot results of 
SMP30, HDAC4, c-Myc and CyclinD1 in H1299 xenograft tumor tissues. β-actin was used as a Western blot loading control. The values 
below the Western blot band represent the relative gray values. All the data are shown as the mean ± SD. Student’s t-test, *, P<0.05 vs. the 
LV-SMP30 control group; #, P<0.05 vs. the LV-SMP30 group; &, P<0.05 vs. the LV-SMP30 control + LV-HDAC4 group. HDAC, histone 
deacetylase; LV, lentivirus; SMP30, senescence marker protein 30; SD, standard deviation; NSCLC, non-small cell lung cancer.
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can be reversed by HDAC4 upregulation.

Effect of pharmacological inhibition of HDAC4 on 
proliferative abilities of H1299 cells

To further confirm the role of HDAC4 in NSCLC, normal 

cells and HDAC4 overexpressing cells were incubated with 
the pan-inhibitor vorinostat (SAHA) and the specific class 
IIA inhibitor TMP269 respectively. Western blot results 
showed that, with increasing concentrations of SAHA and 
TMP269, the level of HDAC4 decreased (Figure 6A,6B). 
Consistently, the levels of c-Myc and CyclinD1 were also 
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Figure 6 Effect of pharmacologic inhibition of HDAC4 on proliferative abilities of H1299 cells. LV-control and LV-HDAC4 H1299 
cells were pretreated with SAHA or TMP269 for 48 h. (A,B) Representative Western blot results of HDAC4, c-Myc, and CyclinD1. (C,D) 
Representative images and results of colony formation assay. Colonies were visualized by crystal violet staining. (E,F) Representative images 
(×20) and statistical analysis of EdU incorporation assay. The results are presented as the ratio between the number of EdU-positive cells (red 
fluorescence) and the total number of Hoechst 33342-stained cells (blue fluorescence). *, P<0.05 vs. the LV-control +SAHA/TMP269 0 μM 
group; #, P<0.05 vs. the LV-control + SAHA1.25 μM/TMP269 40 μM group; &, P<0.05 vs. the LV-HDAC4 + SAHA/TMP269 0 μM group. 
HDAC, histone deacetylase; LV, lentivirus; SMP30, senescence marker protein 30.
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decreased and the average expressions of HDAC4, c-Myc 
and CyclinD1 in the HDAC4 overexpressing groups were 
significantly higher than in the normal cell groups (Figure 
6A,6B). Moreover, the colony formation assay showed that 
as the level of HDAC4 decreased, the cells’ proliferative 
ability was inhibited (Figure 6C,6D). These results were 

confirmed by the EdU incorporation assay (Figure 6E,6F).

Discussion

SMP30, a multifunctional protein, plays a pivotal role in cell 
homeostasis (4), through maintaining calcium homeostasis, 
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inhibiting various signaling pathways involving various 
protein kinases and protein phosphatases, suppressing 
nuclear DNA and RNA synthesis,  and preventing 
cell proliferation and apoptosis (16,32). Furthermore, 
downregulation of SMP30 during aging might contribute 
to the deterioration of cellular functions and interactivity. It 
is well known that cancer is more common with aging (33). 
Previous studies suggest that SMP30 is downregulated and 
exerts anticancer actions in human tumor tissues (15), but 
its oncostatic effects and detailed molecular mechanisms in 
NSCLC remain unclear. Consistent with previous research, 
our databases-mining results indicated that SMP30 mRNA 
levels were lower in NSCLC compared with normal lung 
tissues. Furthermore, that outcome was confirmed by our 
IHC analysis results based on tissue microarray containing 
341 paired NSCLC tumor and normal samples. SMP30 
expression negatively correlated with tumor size, tumor 
invasion, lymphatic metastasis, distant metastasis, cancer 
differentiation and clinical stage.

To the best of our knowledge, this study is the first 
to show a connection between SMP30 negativity and 
poor prognosis, and to indicate that SMP30 may be an 
independent prognostic factor for NSCLC patients. 
NSCLC patients, both LUAD and LUSC with low SMP30 
expression had a significantly shorter OS time than those 
with high expression. Furthermore, we also found that 
NSCLC patients with low SMP30 expression had poor 
prognosis regardless of stage at diagnosis. Interestingly, the 
Kaplan-Meier plotter database showed that low SMP30 
expression was a predictor of poor prognosis in LUAD but 
not in LUSC patients, but our analysis demonstrated that 
low SMP30 level was associated with the poor prognosis 
of both LUAD and LUSC patients. We supposed that the 
differences may be due to that the Kaplan-Meier plotter 
database was based on mRNA and the expression of SMP30 
in our study was based on IHC, which may be more 
reliable.

Several studies report that SMP30 OE inhibited 
cell proliferation in pancreatic cancer (34), colorectal 
carcinoma (17), liver cancer (18), and breast cancer (5) in 
vitro. Those findings support the idea that SMP30 may 
play an important inhibitory role in human cancer cells 
and that downregulation of SMP30 expression may lead 
to carcinogenesis. We found SMP30 OE significantly 
inhibited the proliferative ability (cell viability and colony 
formation assays) of A549 and H1299 cells. Additionally, 
the suppression of tumor growth by SMP30 was further 
confirmed in a subcutaneous xenograft tumor nude mice 

model. Western blot analysis suggested that SMP30 OE 
downregulated the expression of HDAC4 both in vitro and 
in vivo. 

HDAC4 is a member of the class IIa HDAC family 
and controls a complex cellular signaling cascade (19). It 
has diverse roles in cellular regulation, mainly including 
promoting chondrocyte differentiation (35), preventing 
neuronal death (36), promoting myocyte differentiation (37)  
and promoting the proliferation of satellite cells (38). 
Recently, numerous studies reported that OE of HDAC4 
promoted cancer proliferation, invasion and metastasis 
via various signaling pathways, such as inhibition of p21 
and/or p27 (20,22,24,39) or elevation of proliferating cell 
nuclear antigen (PCNA) (40). These results indicate that 
HDAC4 may act as a putative tumor promoter. In our 
study, the Western blot results showed that HDAC4 levels 
were significantly suppressed in SMP30 overexpressing 
A549 and H1299 cell lines. Previous studies showed that 
pharmacological inhibition of HDAC suppressed the levels 
of c-Myc and CyclinD1 (41,42). Similarly, in our study, 
HDAC4 OE in the A549 and H1299 cell lines increased the 
levels of c-Myc and CyclinD1, and pharmacologic inhibition 
of HDAC4 decreased both. Intriguingly, HDAC4 OE 
dramatically reversed the inhibition of SMP30 OE on cell 
proliferation both in vivo and in vitro but had no effect on 
the level of SMP30 expression. 

Transcription factor c-Myc, product of gene MYC, 
correlates with tumor aggression and poor clinical outcome 
in a variety of tumors (43). CyclinD1, encoded by CCND1 
gene in humans, is an important regulator of the cell-cycle 
G1/S transition (44). c-Myc and CyclinD1, which were often 
dysregulated and constitutively activated in human NSCLC, 
play important roles in many cancer types, suggesting that 
they may be key targets for treatment (45,46). Previous 
studies report that c-Myc increases the levels of CyclinD1, 
and further, activates CDK4 and CDK6, promoting G1-
phase cell-cycle progression (47). In this study, SMP30 OE 
significantly inhibited the levels of c-Myc and CyclinD1 both 
in vivo and in vitro, and this was dramatically reversed by 
HDAC4 OE. These results indicated that SMP30 suppresses 
NSCLC proliferation via the HDAC4/c-Myc, CyclinD1 
pathways. 

In conclusion, we demonstrated for the first time that 
SMP30 functions as a novel tumor suppressor factor in 
NSCLC. The level of SMP30 expression was significantly 
decreased in NSCLC tumors and a low level strongly 
correlated with worse OS of patients. Our findings indicated 
that SMP30 inhibited the development and progression of 
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NSCLC through inhibiting cell proliferation via inhibition 
of HDAC4 expression. Therefore, targeting SMP30 may be 
a novel therapeutic strategy for NSCLC.

There are some limitations to this study that should 
be noted. Firstly, SMP30 was reported to be decreased 
during senescence (6) while SMP30 expression showed 
no significant changes with aging in our cohort, which 
may be due to our small size of data and deserve more 
efforts. Secondly, in the two parts: involvement of HDAC4 
in SMP30-mediated NSCLC suppression and effect of 
pharmacological inhibition of HDAC4, we used the H1299 
cell line nor the combination of A549 and H1299 cell lines, 
which may affect the reliability of our study and will be our 
subsequent work.
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