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Spike-timing-dependent plasticity learning of
coincidence detection with passively integrated
memristive circuits
M. Prezioso1, M.R. Mahmoodi1, F. Merrikh Bayat1, H. Nili1, H. Kim1, A. Vincent1 & D.B. Strukov1

Spiking neural networks, the most realistic artificial representation of biological nervous

systems, are promising due to their inherent local training rules that enable low-overhead

online learning, and energy-efficient information encoding. Their downside is more

demanding functionality of the artificial synapses, notably including spike-timing-dependent

plasticity, which makes their compact efficient hardware implementation challenging with

conventional device technologies. Recent work showed that memristors are excellent

candidates for artificial synapses, although reports of even simple neuromorphic systems

are still very rare. In this study, we experimentally demonstrate coincidence detection using

a spiking neural network, implemented with passively integrated metal-oxide memristive

synapses connected to an analogue leaky-integrate-and-fire silicon neuron. By employing

spike-timing-dependent plasticity learning, the network is able to robustly detect the coin-

cidence by selectively increasing the synaptic efficacies corresponding to the synchronized

inputs. Not surprisingly, our results indicate that device-to-device variation is the main

challenge towards realization of more complex spiking networks.
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The development of spiking neural networks (SNNs) has
been largely driven by the hope of replicating the
extremely high energy efficiency of biological systems.

The main hypothesis behind the energy efficiency is the SNN’s
considerably higher information capacity (e.g., in terms of
Vapnik–Chervonenkis dimension), compared to the more pop-
ular firing-rate-type neural networks such as multi-layer per-
ceptron1–3. Moreover, training for the firing-rate networks
typically relies on a backpropagation algorithm, the efficient
implementation of which is challenging owing in part to the
centralized method for computing weight updates and the
requirement for large high-precision memory. By contrast, most
popular SNNs’ weight updates rules are local, requiring only
information from pre- and post-synaptic neurons (e.g., see Eq. 2
below), which could be a significant advantage for compact and
low power implementations of real-time training, and scaling
towards more complex networks4.

In the simplest SNN models, the information is encoded in
spike−time correlations1,2, while the network functionality is
defined by the neural link strengths, i.e., the synaptic efficacies,
which are adjusted based on the relative timing of spikes that are
passed via synapses. A key network element is a leaky-integrate-
and-fire (LIF) neuron, whose operation is described by the
equation:

C
dU tð Þ
dt

¼
X

i

GiV
pre
i ðtÞ � 1

RL
U tð Þ; ð1Þ

where U, C, and RL mimic the membrane potential, capacitance,
and its leakage resistance, correspondingly. The dot product in
Eq. (1) is a current flowing into the neuron, which is proportional
to the sum of the individual synaptic currents, i.e., the products of
pre-synaptic spike voltages Vpre(t) and corresponding synaptic
conductances (weights) G. The second term on the right-hand
side of Eq. (1) is a membrane leakage current. Note that RLC is
membrane characteristic time, which determines the integration
rate of the LIF neuron. Additionally, Eq. (1) does not explicitly
include the resting potential. Instead, the resting potential is used
as a reference for U(t).

Another important SNN feature is spike-timing-dependent
plasticity (STDP), which is a timing-dependent specialization of
Hebbian learning1,2,5,6. A typical goal of STDP learning is to
strengthen the synaptic efficiency when two events happen in the
expected causal temporal order, and to weaken it otherwise.
STDP rule formally describes the change in synaptic weight as a
specific function fSTDP of a difference in firing times between pre-
synaptic (tpre) and post-synaptic (tpost) spikes, i.e.,

ΔG ¼ fSTDP tpre � tpostð Þ: ð2Þ

For example, a very common STDP rule found in biological
synapses of neocortex layer 5 is shown in Fig. 1c6, according to
which weight is increased (decreased) when pre-synaptic spike
reaches the synapse before (after) the post-synaptic one.

Compact, low power hardware implementation of STDP
learning is of particular importance, because practically valuable
neural networks require a massive number of synapses. Owing to
the extremely high density and analogue functionality, resistive
switching memory devices (‘memristors’) are considered as one
of the most attractive candidates for artificial synapses7. Indeed,
crossbar circuit arrays with passively integrated memristors8,9

enable the most efficient hardware for dot-product computa-
tion10. Moreover, STDP learning in memristors can be imple-
mented by applying specific bipolar pulses (see Fig. 1)11.

There have been many experimental demonstrations of various
STDP rules12–18 and more advanced synaptic functionalities

based on memristors19–21 (also see comprehensive reviews in
refs. 22,23). However, memristor implementations of even simple
SNNs, which rely on STDP learning, are so far very scarce24–28.
For example, Milo et al. used nine discrete memristors, connected
in 1 transistor+ 1 resistor (1T1R) configuration, to demonstrate
learning of 3 × 3 patterns24. In ref. 25, Kim et al. reported SNN
implementation based on CMOS-integrated 2T1R phase-change
memory devices. Their demonstration did not include LIF
neurons, so that the post-spikes were triggered externally after
post-processing the neuron input. The focus of ref. 26 was on
emulating homoeostasis using organic-based devices immersed in
an electrolyte. However, the demonstrated coincidence detection,
i.e. detection of the occurrence of temporally close but spatially
distributed input signals, was performed without any learning.
Ambrogio et al. reported the experimental STDP dynamics for
hafnium-oxide memristors and used these results to simulate an
SNN based on 1T1R discrete memristors27. A more advanced
demonstration of STDP-based spatial pattern recognition was
demonstrated more recently by the same group, though still based
on the same discrete 1T1R memristors28.

Here, we experimentally demonstrate operation and STDP
learning in SNN implemented with the most prospective, pas-
sively integrated (0T1R) memristive synapses connected to a
silicon LIF neuron. Similar to ref. 26, the focus of our work is on
coincidence detection, i.e., the task of identifying correlated
spiking activity. Coincidence detection functionality is found in
various parts of nervous systems, such as auditory29,30 and
visual31 cortices and is generally assumed to play a very impor-
tant role in the brain32–34. In fact, entire neural systems have been
hypothesized based purely on synchrony35.

Results
Experimental setup. The implemented SNN features 20 input
neurons connected via 20 memristive crossbar-integrated
synapses to a single LIF neuron (Fig. 2). Figure 3 shows parti-
cular voltage spike shapes employed in the coincidence detection
experiment. (More details on the experimental setup and spike
parameters are reported in Methods section.) The specific
amplitudes and durations of voltage pulses were chosen to ensure
balanced STDP windows, with approximately 50−200% max-
imum changes in conductance, for a majority of the devices. The
post-synaptic spike has a larger amplitude negative pulse, which
was needed owing to larger absolute values of reset switching
thresholds compared to those of set transition.

In the coincidence detection task, STDP learning mechanism is
employed for training a single neuron to fire an output spike
when it receives simultaneous (i.e., correlated) spikes from several
input neurons. Figure 2a shows an example of a spike pattern
applied to the rows of the crossbars in the experiment. The
correlated input spikes, i.e., rows 11 through 15 in Fig. 2a, were
always synchronized and repeated every 840 ms, which represents
one ‘frame’ of spiking input. Furthermore, in some experiments,
the position of each synchronous spike was randomly shifted
by tjitter to emulate temporal jitter. The uncorrelated (‘noise’)
inputs were approximated by randomly generating spikes, with
a probability pspike for each row in each frame. The position of
these spikes within the frame was also generated probabilistically,
by adding a random offset Δoffset to the specific reference time,
corresponding to the shifted spike phase—see Supplementary
Figure 1 for more details.

Coincidence detection results. At the beginning of coincidence
detection experiments, conductances of all memristors were set to
approximately 16 μS (Figs. 4e–h, 5b) using an automatic tuning
algorithm36, which roughly corresponds to the middle of the
device’s dynamic range8,9. Figure 4 summarizes evolution of the
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system for the first set of experiments. The left panels show
specific frames of spiking input, while the right panels show the
trajectory of each synaptic weight (during 20 epochs or a total of
1.68 s of spiking activity for Fig. 4e–g and 60 epochs for Fig. 4h),
with thick/thin lines corresponding to the synchronized/

uncorrelated inputs. (One epoch is defined as an application of
ten frames. In each frame the spikes have the same reference
positions with different random jitter and offsets.) Specifically, for
all these experiments, pspike= 1 so that the average spiking
activity for all inputs was 1.19 Hz. To investigate the impact of
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Fig. 2 Spiking neural network setup. a Example of pattern of spikes applied to the inputs of the crossbar circuit. b Scanning electron top-view image of the
utilized crossbar circuit. Scale bar is 2 µm. c LIF neuron implementation. See Methods section for more details on the crossbar circuit and neuron
implementations
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noise inputs, (Δoffset)max was first set to 0 (Fig. 4a), which
represents the simplest and more reproducible case with non-
overlapping spikes. The (Δoffset)max was then increased up to 432
ms (Fig. 4d), i.e., approximately 750% of the duration of pre-
synaptic voltage spikes, in which case all 15 uncorrelated input
spikes can fully overlap in time by chance and provide a current
three times higher than the maximum current from the all-
synchronous spikes.

Figure 5 shows coincidence detection results for another study,
which demonstrate that the same neuron can learn a new pattern,
while forgetting the previously learnt one. In this case, to simplify
the experiment, pspike was set to 0.2, so that the average spiking
activity was 0.238 Hz for each of the 15 noise inputs (Fig. 5a).
(Δoffset)max was set to 500 ms, so that, again, all of the noise spikes
can overlap in time by chance. Note that the relative spiking
activity of the noise inputs with respect to the synchronous ones
was still much higher, and hence the considered task is more
challenging, compared to those studied in ref. 28.

Figure 3 provides more details on the dynamics of the system
by showing two representative voltage waveforms recorded by the
oscilloscope. The recorded data in Fig. 3a shows that the pre-
synaptic synchronous pulse and post-synaptic pulse overlapped
in time. The former pulse was sent earlier in time, causing
membrane potential to reach a firing threshold and, subsequently,
generate the post-synaptic spike, which would be required to
strengthen the synaptic efficacy. Obviously, for the considered
task, this potentiation condition has happened more frequently
and consistently for the synchronized inputs, so that their
synaptic efficacies were reinforced. Figure 3b also shows an
example of the synchronous pre-synaptic spike that was out of
phase with other synchronous inputs. In this case, the membrane
potential was below the firing threshold and leaked over time.

Finally, the additional results show that the coincidence
detection experiment can be successfully performed multiple
times using the same column (Fig. 6) and using different columns
in the crossbar (Fig. 7).
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Discussion
In both sets of experiments, the synaptic weights did not always
evolve in the proper direction e.g., synchronized input #15 in
Fig. 4. Additionally, the conductance change is not monotonic,
with clearly noticeable jumps for some of synapses. This is
partially due to random post-synaptic spikes generated by the

output neuron in response to noise, but also due to non-idealities
in memristors, most importantly their device-to-device variations
in dynamic current−voltage characteristics. Nevertheless, the
results in all experiments clearly show the progressive cumulative
potentiation of the synapses that correspond to the synchronized
inputs.
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For example, Fig. 5c shows that when the second pattern was
first applied (beginning of the epoch 31) the average synaptic
strength corresponding to the synchronized inputs was initially

well below the average across all of the devices and more than two
times lower than that of the uncorrelated inputs. However, as the
training continued, the network was able to learn to discriminate
those synchronized inputs by increasing their weights, eventually
reaching and surpassing the average strength of uncorrelated
inputs. In fact, by the end of the training, even the cumulative
strength for the uncorrelated inputs was substantially lower
compared to the synchronized ones for both patterns (Fig. 5c). In
addition, as expected, the convergence took longer for the truly
random noise input (Fig. 4h), because of the higher probability of
firing a post-synaptic spike based on the spiking activity on the
uncorrelated inputs (cf. with Fig. 4e).

Our experimental work has confirmed one of the main chal-
lenges for SNN implementation with memristors—their device-
to-device variations37,38. Indeed, given similar pre- and post-
synaptic spikes, the conductance updates should ideally follow
the same STDP window for all synapses. In reality, the updates
vary significantly across memristive synapses (Fig. 8), primarily
due to variations in switching thresholds of the devices. Indeed,
SNNs typically rely on fixed-magnitude spikes. In SNN’s crossbar
circuit implementation, the fixed-magnitude spikes are intended
to update in parallel weights of multiple devices. In our experi-
ment, the specific spike amplitudes were selected according to
the average switching thresholds across the devices. Conse-
quently, the change in the conductances for the devices with
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larger switching thresholds is naturally smaller, e.g., device #18 in
Fig. 8, and alternatively, larger for those with smaller threshold
(device #19). For the same reason, some STDP windows appeared
to be noisy, e.g., that of device #15 in Fig. 8. In this respect,
memristor implementation of the simpler ex situ trained firing-
rate neural networks is much less challenging, as the write
amplitude voltages in these networks can be adjusted uniquely for
each device based on the feedback information during con-
ductance tuning9,38.

The STDP window for many memristors is also not balanced
with either dominant potentiation (such as device #6 in Fig. 8) or
depression (device #16). This is in part due to device-to-device
variations in the on/off dynamic range—see, e.g., impact of the
initial state on STDP function shape in ref. 12. However, these
variations only result in slight variation in the synaptic equili-
brium currents, i.e., the memristor states reached after application
of random spiking input12, and hence, are not very critical for the
network operation.

Recently, several groups reported promising devices with very
uniform switching characteristics39,40, that would naturally alle-
viate the device variation issue. An even better solution would be
to holistically optimize training algorithms, circuits, and archi-
tectures with respect to device variations. For example, learning
rules based on stochastic binary synapses41,42 would be more
robust to the non-ideal analogue switching. The device variations
could also be addressed by considering more complex imple-
mentation of synapses22,43 and/or having redundant devices in
the network44, though at the expense of larger area and power
consumption.

In fact, our choice of the rectangular-shaped pulses utilized for
pre- and post-synaptic voltage spikes is one example of the hol-
istic optimization. Such shapes were selected in part for their
simplicity of implementation but, more importantly, to ensure
more reproducible STDP windows. In principle, the use of tri-
angular pulses (e.g., those shown in Fig. 1a, b and implemented in
ref. 12) would cause smoother STDP curves, i.e., with more gra-
dual changes in conductance. However, we found that such
schemes resulted in less reproducible STDP behaviour when there
are significant device variations. This is likely due to the specific
switching dynamics of the considered devices (which is repre-
sentative for many metal-oxide memristors7,36). Specifically,
when the spikes are implemented with triangular pulses, the
dropped voltage over the device also has a triangular waveform
(see, e.g., Fig. 2a from ref. 12), and hence maximum voltage is
applied only over a short period of time. By contrast, with rec-
tangular pulse implementation, the maximum voltage is applied
over a longer time, which is comparable to pulse duration when
pre- and post-synaptic spikes are fully overlapped in time.
Because of quasi DC operation, i.e., relatively long pulse durations
compared to the intrinsic switching times, and exponential
switching dynamics with respect to the applied voltage, which
saturates in time, the latter scheme seems to be more tolerant to
memristor variations.

In conclusion, we have developed a complete SNN in which
artificial synapses were implemented with passive integrated
metal-oxide memristors, while LIF neuron was realized with
discrete conventional semiconductor circuits. A specific but
representative task for SNN, i.e., coincidence detection, which
involves training a neuron to discriminate between synchronized
inputs from uncorrelated ones, was successfully demonstrated by
employing spike-timing-dependent plasticity learning. Our work
showed that device-to-device variation in memristors’ switching
thresholds is the major challenge. Finally, we discussed several
approaches for overcoming this challenge to build more practical,
efficient memristor-based SNNs.

Methods
Spiking neural network implementation. Artificial synapses are implemented
with Pt/Al2O3/TiO2−x/Pt memristors, which were passively integrated in a 20 × 20
crossbar array (Fig. 2b). (A detailed discussion of the fabrication methods and
electrical characterization results can be found in refs. 8,9.) The crossbar array was
packaged (Supplementary Figure 2c) and inserted in a custom-printed circuit
board (Supplementary Figure 2a) that allows connecting the crossbar lines either to
the input/output neurons during network operation or to a switch matrix, which in
turn is connected to a Keysight B1500A parameter analyser, for device forming,
testing, and conductance tuning.

The input neurons, one for each row of the crossbar array, were implemented
using off-the-shelf digital-to-analogue converter circuits. The output LIF neuron
was connected to the third column of the crossbar array for the experiments
reported in Figs. 3–5. (Other columns of the crossbar were grounded.) The neuron
was implemented with a combination of another dedicated custom-printed circuit
board (Supplementary Figure 2b), whose circuitry is shown in Fig. 2c, and an
arbitrary waveform generator. The design of the neuron allowed fine-tuning its
characteristic time, membrane potential threshold and the scale of synaptic current
by adjusting the neuron’s variable resistors. Operational amplifiers, TL074CN, were
used in all three stages, while typical neuron circuit parameters are as following:
R1= 5.6 KΩ, R2= 2.5 KΩ, RL= 900 KΩ, Vb1= 10 mV, Vb2= 0.8 V and C= 0.1 µF.

Upon reaching a threshold, an LIF neuron triggers an arbitrary waveform
generator. The latter was used to produce the post-synaptic spikes and, by using its
‘sync’ output, which is a transistor−transistor logic pulse synchronized with the
signal output, to temporarily connect its signal output to the crossbar column and
reset the neuron membrane potential. The entire experimental setup was controlled
from a personal computer using a custom C program. The program controlled the
generation of the pre-synaptic spikes by digital-to-analogue converters, an
additional oscilloscope which was used to measure the inputs, post-synaptic spikes,
and neuron membrane potential, and a switch matrix and parameter analyser.

Spike pulse details. For the experimental results shown in Figs. 3–7, the utilized
pre-synaptic voltage spike consists of 5-ms ramp to +0.45 V, 7-ms 0.63 V plateau,
1-ms ramp down to –0.4 V, 20-ms −0.4 V plateau and then 5-ms ramp up to 0 V
(Fig. 2). The post-synaptic voltage spike was 5-ms ramp from −0.15 V to +0.65 V,
23-ms +0.6 V plateau, 1-ms ramp down to –1.15 V, 22-ms −1.15 V plateau, and 5-
ms ramp up to −0.15 V (Fig. 2a). The constant −0.15 V in the post-synaptic spike
was for convenience of neuron implementation and not essential to the network
operation. The total durations of pre-synaptic and post-synaptic pulses were 38 and
57 ms, respectively.

The results in Fig. 8 were obtained using a different 20 × 20 crossbar circuit,
which was implemented using the same fabrication process. For this particular
experiment, the pre-synaptic voltage spike shape was 5 ms ramp to +0.63 V, 10 ms
to 0.63 V plateau, 2 ms ramp down to –0.54 V, 20 ms to −0.54 V plateau and then
5 ms ramp up to 0 V. The post-synaptic voltage spike shape was 5 ms ramp to
+0.60 V, 23 ms to +0.6 V plateau, 2 ms ramp down to –0.5 V, 22 ms to −0.5 V
plateau, and 5 ms ramp up to 0 V. The total durations of pre-synaptic and post-
synaptic pulses were 42 and 57 ms, respectively.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding author upon reasonable request.
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