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Combinatory cytotoxic effects produced by E1B-55kDa-deleted
adenoviruses and chemotherapeutic agents are dependent
on the agents in esophageal carcinoma
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We examined possible combinatory antitumor effects of replication-competent type 5 adenoviruses (Ad) lacking E1B-55kDa

molecules (Ad-delE1B55) and chemotherapeutic agents in nine human esophageal carcinoma cells. Ad-delE1B55 produced

cytotoxic effects on all the carcinoma cells and the cytotoxicity is not directly linked with the p53 status of the tumors or with the

infectivity to respective tumors. A combinatory treatment with Ad-delE1B55 and an anticancer agent, 5-fluorouracil (5-FU),

mitomycin C or etoposide, produced greater cytotoxic effects than that with either the Ad or the agent. Administration of 5-FU could

minimally inhibit the viral replication and a simultaneous treatment with the Ad and 5-FU achieved better cytotoxicity than

sequential treatments. We also confirmed the antitumor effects by the combination of Ad-delE1B55 with 5-FU in vivo. Cisplatin,

however, did not achieve the combinatory effects in most of the cells tested. These data indicate that the Ad-delE1B55 produce

combinatory antitumor effects with a chemotherapeutic agent irrespective of the administration schedule, but the effects depend on

an agent in esophageal carcinoma.
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Introduction

Esophageal carcinoma frequently develops in aged
persons, and surgical procedures often decrease the
quality of the patient’s life. Esophageal carcinoma in
general responds to chemotherapy and radiotherapy but
further improvement in prognosis is required.1 Gene
therapy with replication-competent adenoviruses (Ad) is a
possible strategy to improve the quality and prognosis
of patients. Ad lacking the E1B-55kDa molecules
(Ad-delE1B55) replicate preferentially in tumors,2 and a
number of clinical trials have been conducted with the Ad
to show acceptable safety profiles even in the systemic

delivery.3–5 An advantage of such replication-competent
Ad is a continuous spread of the virus progenies released
from damaged tumors into neighboring uninfected tumor
cells, which enhances antitumor effects even if the initial
transduction efficiency to tumors may not be great.
Ad-delE1B55 was originally hypothesized to target only
tumors deficient of functional p53 by virtue of the
inability to express the p53-inactivating E1B-55kDa
protein2 and in fact showed greater cytotoxicity to
p53-mutated tumors than wild-type (WT) p53 tumors.6

Further investigations, however, did not support the
direct correlation between the cytotoxicity and the p53
status in target cells.7 In addition, recent studies revealed
a novel function of E1B-55kDa molecules in viral mRNA
transport into cytoplasm.8 The study showed efficient Ad-
delE1B55 mRNA transport in tumor cells but not in
normal cells, which resulted in preferential cell lysis of
tumors. Precise mechanisms of the preferential replication
in tumors in fact remain uncharacterized; however,
clinical studies empirically demonstrated the enhanced
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tumor cell death by Ad-delE1B55 and the potential
therapeutic potential for cancer treatment.3–5,9

The majority of Ad-delE1B55 sequences including the
fiber-knob regions is derived from type 5 Ad, which
use primarily the coxsackievirus and Ad receptor as the
primary receptors for binding to target cells.10 Efficacy of
Ad-delE1B55-mediated cytotoxicity is influenced by the
infectivity and the replication ability. The coxsackievirus
and Ad receptor expression level therefore has a crucial
role in the cytotoxicity. Head and neck cancer is a major
target of Ad-delE1B55 in clinical settings, and in
particular a combinatory administration with an anti-
cancer agent has been investigated.9,11 A few studies,
however, have studied efficacy of the replication-compe-
tent Ad in esophageal carcinoma,12 most of which are
pathologically the same squamous cell carcinoma as head
and neck cancer. Moreover, the efficacy of Ad-delE1B55
in esophageal carcinoma was not analyzed from the
standpoint of the p53 status or the Ad infectivity, and
combinatory effects of the replication-competent Ad with
chemotherapeutic agents have not been well studied.
Efficacy of replication-competent Ad-mediated cytotoxi-
city can partly depend on the productivity of the viral
progenies, and anticancer agents might be inhibitory to
the viral protein syntheses. The combination therefore
could impair the Ad production and subsequently
decrease the antitumor effects. An administration sche-
dule of the Ad and chemotherapeutics might also be
influential to the combinatory cytotoxicity, and these
issues have not been well investigated particularly with
esophageal carcinoma.
In this study, we examined the cytotoxicity of Ad-

delE1B55 with a panel of human squamous esophageal
carcinoma cells and sought to find any correlation
between the cytotoxicity and the p53 status or the
infectivity. We also analyzed the effects of an anticancer
agent on the viral replication and further tested possible
combinatory antitumor effects of Ad-delE1B55 and
5-fluorouracil (5-FU), mitomycin C (MMC), etoposide
(VP-16) or cisplatin (CDDP), some of which are
commonly used for esophageal carcinoma treatments.

Materials and methods

Cells and mice
Human esophageal carcinoma cells, TE-1, TE-2, TE-10,
TE-11 YES-2, YES-4, YES-5, YES-6 and T.Tn, were
cultured with RPMI 1640 medium supplemented with
10% fetal calf serum. Paired human fibroblasts HFF cells
and their immortalized IF cells,13 which were generated
by expressing E6/E7 of type 16 papilloma viruses, were
cultured with RPMI 1640 medium with 10% fetal calf
serum. BALB/c nu/nu mice (6-week-old females) were
purchased from Japan SLC (Hamamatsu, Japan).

Anticancer reagents
5-FU (Wako, Osaka, Japan), MMC (Wako), VP-16
(Sigma-Aldrich, St Louis, MO) and CDDP (Wako) were

dissolved with dimethyl sulfoxide or phosphate-buffered
saline.

Ad preparation
Ad-delE1B55, in which the 55kDa-encoding E1B region
and a part of the E3 region are deleted,2 and replication-
incompetent type 5 Ad expressing green fluorescence
protein gene (Ad-GFP) or b-galactosidase gene (Ad-LacZ),
in which the cytomegalovirus promoter was used, were
prepared with an Adeno-X expression system (Takara,
Shiga, Japan). Ad titers were determined with tissue
culture infectious dose (TCID50) with HEK293 cells.

PCR to detect viral replication
Cells were infected with Ad-delE1B55 at 50 multiplicity of
infection (MOI) for 3 h and were washed to remove the
Ad. Cellular DNA was then extracted from the super-
natants. Wild-type Ad (Ad-WT) DNA was also used as
a control. PCRs were conducted with the following
primers and conditions: For outside of the E1B-55kDa
region, 50-GTCCTGTGTCTGAACCTGAG-30 (primer A,
forward) and 50-CACAATGCTTCCATCAAACG-30

(primer A, reverse), and 10 s at 95 1C for denaturation/
20 s at 56 1C for primer annealing/for 35 cycles; for inside
of the E1B55kDa region, 50-AGATACGGAGGAT
AGGGTGGC-30 (primer B, forward) and 50-TTACCCA
AATGCAAGGAACAGC-30 (primer B, reverse), and 10 s
at 95 1C/20 s at 58 1C/30 cycles; for glyceraldehydes
3-phosphate dehydrogenase (GAPDH) gene, 50-ACCACA
GTCCATGCCATCAC-50 (forward) and 50-TCCACCAC
CCTGTTGCTGTA-30 (reverse), and 15 s at 94 1C/15 s at
60 1C/25 cycles.

Infectivity with Ad-GFP
Cells were infected with Ad-GPF (MOI¼ 30) for 30min
and were washed to remove Ad. They were cultured for
2 days and were analyzed for the GFP-positive cell
populations with FACScan and CellQuest software (BD
Biosciences, San Jose, CA). Cell populations that showed
fluorescence greater than the brightest 5% of uninfected
cells were judged as positively stained.

In vitro cytotoxicity and viral production
Cells (5� 103/well) were seeded in 96-well plates and were
cultured for 5 days with Ad at different MOIs and/or an
anticancer agent at various concentrations. Cell viability
was determined with a cell-counting WST kit (Wako)
and the relative viability was calculated based on the
absorbance without any treatments. For the amounts of
viral progenies, cell lysate after treatments was examined
for the TICD50 with HEK293 cells.

Annexin V staining and cell cycle analysis
Cells were treated with Ad-delE1B55 and/or 5-FU in
different administration schedules as shown in Table 3,
and then stained with fluorescein isothiocyanate-conju-
gated Annexin V (BD Biosciences) and propidium iodide.
For cell cycle analysis, treated cells were fixed in ice-cold
70% ethanol, incubated with RNase (50 mgml�1) and

E1B-55kDa-deleted Ad with chemotherapy
G Ma et al

804

Cancer Gene Therapy



stained with propidium iodide. The staining profiles were
analyzed with FACScan and CellQuest software.

Western blot analysis
Cells were treated with Ad-delE1B55 and/or either 5-FU
or VP-16, and the cell lysate were subjected to SDS-
polyacrylamide gel electrophoresis. The protein was
transferred to a nylon filter and was hybridized with
antibodies against Ad E1A (Santa Cruz Biotech,
Santa Cruz, CA), Ad hexon (Abcam, Cambridge, UK)
or GAPDH (Abcam) as a control. The membranes
were developed with the ECL system (GE Healthcare,
Buckinghamshire, UK).

Animal experiments
TE-11 cells (1� 106) were subcutaneously injected into
BALB/c nu/nu mice. Tumor volume was calculated
according to the formula (1/2� length�width2). The
tumor volumes reached about 75mm3 on day 8, and mice
were randomly assigned into four groups for treatments
as follows. Mice were intratumorally injected with culture
medium or Ad-delE1B55 (108 plaque forming units
(p.f.u.)) four times every other day (days 8–14), intraper-
itoneally administered with 5-FU (30mgkg�1) three times
every other day (days 9–13), or administered everyday
with either 5-FU (30mgkg�1, three times in total)
intraperitoneally or Ad-delE1B55 (108 p.f.u., four times)
intratumorally (days 8–14). The animal experiments were
performed according the guideline on animal experiments
of Chiba University.

IC50 and statistical analysis
IC50 was analyzed with a program related to nonlinear
least squares in FORTRAN77 Version 3.5 developed
by Dr Yamaoka (Kyoto University, Kyoto, Japan, http://
www.pharm.kyoto-u.ac.jp/byoyaku/Kinetics/program/
manual.htm). Statistical analyses were performed with
analysis of variance and correlation coefficient.

Results

Replication of Ad-delE1B55 in the infected cells
We examined release of Ad-delE1B55 from infected TE-1
and YES-4 cells with PCR using primer sets that were
designed to cover the whole E1B region (Figure 1a). The
expected E1B-55kDa-deleted DNA was amplified from
the culture supernatants and the amount increased after
the infection (Figure 1b). Accompanied amplification of
GAPDH bands showed increased cell destruction by
Ad-delE1B55. We further confirmed the deleted
E1B55kDa region with two kinds of primer sets that
distinguished the deletion and Ad-WT DNA (Figure 1c).
These data showed that Ad-delE1B55 destroyed the
infected cells, and the progenies were released without
producing Ad-WT.

Cytotoxicity of Ad-E1B55kDa to esophageal carcinoma
We examined cytotoxic activity of Ad-delE1B55 in nine
kinds of squamous esophageal carcinoma cells (Figure 2a)
and found that all the cells were susceptible to
Ad-delE1B55. T.Tn cells were exceptionally sensitive to
Ad-LacZ at a high MOI, but others were insensitive to the
control. We then examined the correlation between the
Ad-delE1B55-mediated cytotoxicity and the Ad infectiv-
ity, which was evaluated with Ad-GFP (Table 1). We used
two indicators, mean GFP fluorescence intensity and
percentage of GFP-positive cells, both of which showed
Ad infectivity, although the former indicator was also
influenced by a cytomegalovirus promoter-mediated
transcriptional activity in the cells. We calculated IC50

values of Ad-delE1B55 to respective cells to represent the
susceptibility (Table 1) and found that the IC50 values
did not correlate with the mean fluorescence intensity
(P¼ 0.44) or percentages of the positive cells (P¼ 0.38),
suggesting that the Ad-delE1B55 cytotoxicity was not
directly linked with the infectivity but depended on the
cell type.

569bp
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Primer A
Primer B

E1B55kDa
(827bp in Ad-delE1B55 sequences)

Ad-WT
DNA TE-1

Ad-delE1B55
YES-4

Primer A543210Day
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1585
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Figure 1 Detection of Ad-delE1B55 DNA and the viral replication in tumor cells. (a) Diagram of primer A and B sets to amplify the outside and

inside of the E1B55-kDa-encoding region. An expected size of the PCR product with primer A sets is 2412 bp for Ad-WT and 1585 bp for

Ad-delE1B55, and that with primer B sets is 569 bp for Ad-WT and none for Ad-delE1B55. (b) Sequential increase of PCR products. DNA was

extracted from the same volume of culture supernatants from Ad-delE1B55-infected TE-1 and YES-4 cells on the indicated day. (c) Deletion of

the E1B-55kDa region in DNA extracted from the infected cells. Ad-WT DNA was used as a control.
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We also examined the correlation between the
Ad-delE1B55 cytotoxicity and the endogenous p53 status.
A direct sequencing technique revealed that four cell lines
had the WT p53 gene and five lines had the mutation
that induced amino-acid changes (Table 1). Although the
tumors with p53 mutations were more susceptible to
Ad-delE1B55 (average IC50: 27.8±7.1(s.e.)) than those
with the WT p53 (average IC50: 56.6±16.4), correlation
studies revealed that the p53 status was not associated
with the IC50 values (P¼ 0.13). The p53 status was not
linked with the Ad infectivity, the mean fluorescence
intensity (P¼ 0.53) or percentage of positive cells
(P¼ 0.37). These data collectively suggest that the infe-
ctivity and the endogenous p53 status are not a marker to

predict the Ad-delE1B55-mediated cytotoxicity. In order
to confirm that Ad-delE1B55 preferentially induced
cytotoxicity in cells devoid of functional p53, we
examined the susceptibility with a paired fibroblasts,
parental HFF normal fibroblasts and HFF-derived IF
cells that were immortalized by the papilloma E6/E7
gene.13 Our previous study also showed that Ad-GFP
infectivity was not different between HFF and IF cells
and that the p53 expression was induced by CDDP in
HFF but not in IF cells, showing that the p53 function
was lost in IF cells.14 We found that the cytotoxicity of
Ad-delE1B55 was greater in IF than in HFF cells
(Figure 2b, Po0.05). HFF and IF cells were relatively
resistant to type 5 Ad infection, and high MOIs were
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Figure 2 (a) Cytotoxic activities of Ad-delE1B55 and Ad-LacZ as a control to esophageal carcinoma cells. s.e. bars (n¼ 3) are also shown.

(b) Cytotoxic activities of Ad-delE1B55 and Ad-LacZ as a control to HFF and IF cells. Asterisks show Po0.05 (HFF/Ad-delE1B55 vs IF/Ad-

delE1B55) (n¼ 3).
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required for the cytotoxicity compared with the esopha-
geal carcinoma cells tested. These data collectively suggest
that Ad-delE1B55-mediated cytotoxicity was greater in
cells with loss of p53 functions, but was more dependent
on cell-type difference in esophageal carcinoma.

Influence of 5-FU to Ad-delE1B55-mediated
cytotoxicity
We first examined whether an anticancer agent influenced
the expression levels of viral protein, as the agents inhibit
protein synthesis of host cells. We investigated expres-
sions of E1A and hexon proteins, which represent early
and late viral gene products, respectively (Figure 3a). E1A
protein was produced as early as 12 h after the infection
and the production reached to the maximum at 48 h,
whereas hexon protein became detectable after 36 h and
peaked at 48 h. We then examined the influence of
anticancer agents, 5-FU and VP-16, to viral protein
synthesis at 48 h in three different administration sche-
dules, Ad administration followed by the agent, the agent
followed by Ad and a simultaneous treatment with Ad
and the agent (Figure 3b). Production of hexon protein
was inhibited by either 5-FU or VP-16 irrespective of the
treatment procedures. In contrast, E1A production was
downregulated by 5-FU administered before the Ad and
by VP-16 after the Ad, but was relatively maintained in
other treatment schedules. These data suggest that an
anticancer agent suppressed synthesis of viral structure
proteins but was less inhibitory to that of viral transcrip-
tional factors. We also examined the p53 expression in
TE-11 cells bearing the WT p53 and found that
Ad-delE1B55 or 5-FU alone and any combinations did
not upregulated p53 (data not shown).
We next examined the production of the Ad progenies

with different treatment schedules (Table 2). Although
5-FU suppressed the production irrespective of the
schedules, the total amounts of Ad progenies produced
were not statistically different among any groups
(P40.06 in any combinations). The simultaneous 5-FU
treatment was less influential to the viral production
compared with the sequential treatments. We also

examined the cell death with flow cytometry and analyzed
Annexin V-positive populations in the combination
treatments (Table 3). The Annexin V-positive cell
population irrespective of propidium iodide staining
profiles was the greatest when TE-11 cells were simulta-
neously treated with Ad-delE1B55 and 5-FU. As
exposure times to Ad-delE1B55 and 5-FU were different,
it could not be appropriate to compare apoptotic cell
percentages among the treatment groups. Nevertheless,
the simultaneously treated group was significantly greater
in the cytotoxicity than other groups. Interestingly, Ad-
delE1B55 treatment after 5-FU enhanced the 5-FU-
mediated cytotoxicity (Po0.01), but Ad-delE1B55
followed by 5-FU did not increase the Ad-delE1B55-
mediated cytotoxicity (P40.4). The mechanism of differ-
ential cytotoxicity regarding the administration order of
Ad and 5-FU is currently unknown. Cell cycle analyses
with TE-1 cells demonstrated that the simultaneous
treatment induced more sub-G1 fractions than other
administration schedules and that 5-FU or Ad-delE1B55
treatment alone increased S and G2/M phases (Figure 3c).
The sub-G1 population of TE-11 cells was also the highest
when they were simultaneously treated with VP-16 and
Ad-delE1B55 compared with other treatment schedules
(Figure 3c) and with 5-FU with Ad-delE1B55 (data not
shown). These data collectively suggest that simultaneous
administration produced the maximal cytotoxicity in
these combinations. We then examined whether cytotoxic
effects to TE-1 cells were influenced by treatment
sequences in the case of other chemotherapeutic agents,
CDDP, MMC and VP-16 (Figure 3d). We found that
simultaneous administration was the most effective
compared with the other schedules in 5-FU-, VP-16-
and MMC-treated cases, but not in CDDP-treated cases.

Combinatory cytotoxic effects of Ad-delE1B55
and anticancer agents
We further examined the cytotoxicity by the combination
of Ad-delE1B55 and anticancer agents, 5-FU, MMC,
VP-16 or CDDP, in six esophageal carcinoma cells. Cells
were treated with Ad-delE1B55 or an anticancer agent

Table 1 Infectivity of Ad-GFP and IC50 values of Ad-delE1B55 to human esophageal carcinoma cells with mutated or wild-type p53 gene

Cells p53 status Infectivity tested with Ad-GFP (average±s.e.) a IC50
b

(MOI)

Mean fluorescence intensityc Percent positive cells

TE-1 Mutated 133±5.8 8.1±1.20 49.3

TE-2 Wild-type 48.7±10.9 0.79±0.14 102.5

TE-10 Mutated 418.7±4.2 16.2±0.52 30.6

TE-11 Wild-type 365.9±6.4 22.9±0.53 57.6

YES-2 Mutated 36.2±5.4 5.1±1.3 15.6

YES-4 Wild-type 134.2±4.7 27.2±0.16 37.8

YES-5 Mutated 583.7±10.4 22.2±0.32 9.5

YES-6 Wild-type 33.7±1.8 16.6±0.25 28.4

T.Tn Mutated 26.4±3.4 0.5±1.0 34.2

Abbreviations: Ad-GFP, adenoviruses expressing green fluorescence protein; MOI, multiplicity of infection.
an¼ 3.
bIC50 values were calculated from Figure 2a data (n¼ 3).
cIntensity is expressed as an arbitrary unit.
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alone, or simultaneously with the Ad and the agent
(Figures 4a–d). The combination with 5-FU, MMC or
VP-16 produced greater cytotoxic effects than the
treatment with Ad or the agent alone in all the carcinoma
cells tested (Po0.05). In contrast, the combination with

CDDP did not increase the cytotoxicity except in T.Tn
cells, which were more susceptible to the combinatory
use (Po0.05). We calculated respective IC50 values in
the cytotoxicity test when the cells were treated with
the anticancer agent alone or the combination of

Hexon 

GAPDH

E1A

(-) 5-FU

Ad

5-FU

5-FU

5-FU

Hexon 

E1A

Ad

GAPDH

(-) VP-16

Ad VP-16
+

Ad

Hexon 

E1A

VP-16 Ad VP-16

GAPDH

TE-1 Sub-G1 G0/G1 S G2/M

75%

100%

0%
(-)

5-
FU

Ad-
de

lE
1B

55

5F
U p

rio
r t

o 
Ad

Ad 
pr

ior
 to

 5
-F

U

Sim
ult

an
eo

us

(-)

VP-1
6

Ad-
de

lE
1B

55

VP-1
6 

pr
ior

 to
 A

d

Ad 
pr

ior
 to

 V
P-1

6

Sim
ult

an
eo

us

25%

50%

TE-11

50%

75%

100%

0%

25%

Agent only Agent prior to Ad

Ad prior to agent Simultaneous treatment

5-FU
*

*
* VP-16

*
*
*

*
*
* *

R
el

at
iv

e 
vi

ab
ili

ty
R

el
at

iv
e 

vi
ab

ili
ty

R
el

at
iv

e 
vi

ab
ili

ty

MMC

*
*

CDDP

80

100

20

40

60

0

80

100

20

40

60

0

*
*

60

80

100

20

40

0

R
el

at
iv

e 
vi

ab
ili

ty

60

80

100

20

40

0

hr(-) 12 7260483624

+
Ad

Ad

Ad

Figure 3 (a) Sequential expression of hexon, E1A and GAPDH in TE-11 cells after Ad-delE1B55 infection (MOI¼ 10). (b) Expression of hexon,

E1A and GAPDH in TE-11 cells treated with three different schedules. Ad-5-FU or VP-16, Ad-delE1B55 (MOI¼10, day 1) followed by 5-FU

(1.25mM, day 2) or VP-16 (1.25mM, day 2); 5-FU or VP-16-Ad, 5-FU or VP-16 (day 1) followed by Ad-delE1B55 (day 2); Adþ 5-FU or VP-16,

Ad-delE1B55 plus 5-FU or VP-16 at the same time (day 1). The cells treated with the agent only or infected with the Ad only were also tested. Cell

lysates were prepared 2 days after Ad-delE1B55 infection. (c) TE-1 or TE-11 cells were treated with Ad-delE1B55 (MOI¼ 10) and/or 5-FU

(10mM) according to the schedule indicated in (b), and cell cycle was analyzed on day 4 (TE-1) or day 6 (TE-11). Respective cell populations

showed the average of three samples. (d) Cytotoxic activity of the combination of Ad-delE1B55 (MOI¼10) and anticancer agents (5-FU, 10mM;

MMC, 0.625mM; VP-16, 2.5mM; CDDP, 10mM) to TE-1 cells with different treatment schedules. Asterisks show Po0.05.

E1B-55kDa-deleted Ad with chemotherapy
G Ma et al

808

Cancer Gene Therapy



Ad-delE1B55 and the agent (Table 4). These esophageal
carcinoma cells showed differential sensitivity to respec-
tive agents, but all the cells became more susceptible to
the combination than to the agent alone in the case of
5-FU, MMC or VP-16. The combination with CDDP,
however, rather decreased or did not improve the
cytotoxicity except in the case of T.Tn cells.

In vivo antitumor effects by the combination
We investigated whether the combinatory effects were
also produced in a TE-11 xenograft model (Figure 5). The
mice were started to receive treatment on day 8 with
intratumoral Ad-delE1B55 injection, intraperitoneal
5-FU injection or the combination. The tumor growth
was retarded with 5-FU or Ad-delE1B55 administration
alone, but the combination produced greater therapeutic
effects than the monotherapy until day 28 (Po0.05).
The antitumor effects in the combination group were

significantly greater than those in the 5-FU group after
day 28 (Po0.05). No systemic toxicity such as body
weight loss was observed during the experiment.

Discussion

In this study, we investigated cytotoxic activity of
Ad-delE1B55 with a panel of esophageal squamous cell
carcinoma cells and showed that the susceptibility was not
related with the p53 status or the Ad infectivity. Previous
studies suggest that the Ad-delE1B55-mediated cytotoxi-
city was greater in p53-mutated tumors than those with
WT p53, but was not always directly linked to the
endogenous p53 status.7 In this study with isogeneric
paired cells that could be equally infected with type 5 Ad,
we showed that Ad-delE1B55 produced greater cytotoxi-
city in p53-inactivated cells than in the parental cells.
Discrepant results regarding the relationship between the
endogenous p53 status and the susceptibility to Ad can be
attributable to the extent of property changes caused by
loss of p53 functions. As p53-mediated signal cascades are
responsible for a number of cellular properties, such as
the proliferation rate, it could be difficult to evaluate all
the p53-mediated effects, which are also regulated by
other factors and eventually influence Ad-mediated
cytotoxicity. Extensive clinical studies are required to
understand the linkage because numerous clinical cases
can minimize such cell-type differences relevant to the
p53 status.
Ad infectivity was subjected to the expression level of

the cellular receptor complexes and influences the gene
expression. We used Ad-GEP to examine the infectivity
and demonstrated that the infectivity did not affect the
Ad-delE1B55-mediated cytotoxicity. Cellular factors such
as those responsible for viral replication and for activa-
tion of apoptosis pathways could be involved in the
cytotoxicity. In particular, the transcriptional activity of
the AdE1A promoter, which has a pivotal role in
initiating the viral replication, could be different among
infected cells.15 In addition, cyclin E and E2F are cellular
factors to regulate the E1A expression level, and
subsequently the level affects the production of Ad-
delE1B55 progenies.16,17 Recently, Royds et al.18 reported
that expression of WT p53 enhanced replication of
Ad-delE1B55 and favored cell death by increasing late
viral protein synthesis. On the other hand, Ad-delE1B55
induced enhanced p53 protein expression and activated
the p53 pathways in cells with the WT p53 gene.19 These
data indicate that Ad-delE1B55 infection and p53
expression coordinately activate apoptotic pathways.
Our data, however, showed that Ad-delE1B55 infection
did not upregulate p53 expression in esophageal carcino-
ma cells with the WT p53 (data not shown). The
Ad-induced cytotoxicity therefore may not be directly
attributable to the p53-mediated pathways in esophageal
carcinoma, although the present data showed that
Ad-delE1B55 produced relatively greater cytotoxicity
to the p53-mutated tumors than those of the WT p53.

Table 2 Viral production of Ad-delE1B55 treated with 5-FU
treatment

Treatment Treatment Virus production

(day 1) (day 2) (� 105±s.e. p.f.u. ml�1)

Ad-delE1B55 (�) 2.1±0.40

5-FU Ad-delE1B55 1.5±0.23

Ad-delE1B55 5-FU 1.1±0.24

Ad-delE1B55+5-FU (�) 1.9±0.35

Abbreviations: 5-FU, 5-fluorouracil; MOI, multiplicity of infection;
TCID, tissue culture infectious dose.
TE-11 cells were treated with Ad-delE1B55 (MOI¼ 10) and/or

5-FU (1.25 mM). Cells were then washed on day 3 and harvested
2 days after the Ad infection. Cell lysates were tested for their
TCID50 with HEK293 cells. Virus amounts produced in the
groups were not statistically significant in any combinations.

Table 3 Annexin V-positive populations in cells treated with
Ad-delE1B55 and/or 5-FU

Treatment Treatment PI�/Annexin V+ PI+/Annexin V+

(Day 1) (Day 2) %±s.e. %±s.e.

(�) (�) 1.56±0.06 0.49±0.01

5-FU (�) 8.51±0.13# 2.91±0.30#

Ad-delE1B55 (�) 10.3±0.33& 3.03±0.26&

5-FU Ad-delE1B55 10.6±0.21# 4.62±0.08#

Ad-delE1B55 5-FU 10.4±0.33& 2.81±0.03&

Ad-delE1B55+5-FU (�) 32.8±0.91* 24.1±0.23*

Abbreviations: 5-FU, 5-fluorouracil; MOI, multiplicity of infection;
PI, propidium iodide.
TE-11 cells were treated with Ad-delE1B55 (MOI¼ 10) and/or

5-FU (10 mm). Cells were tested for their staining profiles with PI
and Annexin V on day 3.

#Po0.01, 5-FU vs 5-FU followed by Ad-delE1B55 in both PI�

and PI+ populations.
&P40.4, Ad-delE1B55 vs Ad-delE1B55 followed by 5-FU in

both PI� and PI+ populations.
*Po0.01, Ad-delE1B55+5-FU vs other treatment groups in

both PI� and PI+ populations.
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Interestingly, Zheng et al.17 also suggested that
Ad-delE1B55-induced p53 may not function to activate
the downstream pathways. These data collectively suggest
that the Ad-delE1B55-mediated cytotoxicity are subjected
to multiple cellular factors and further investigations are
required for better understanding of the cytotoxicity.
We demonstrated combinatory cytotoxic effects of

Ad-delE1B55 and anticancer agents. The mechanisms
for the increased cytotoxicity have not been well analyzed
but could be attributable to pathways that mediate Ad-
induced cell death and drug-induced cytotoxicity.4,20,21

Expressed E1A can sensitize the infected cells to
chemotherapeutic agents,20 but the E1A expression was
rather inhibited by 5-FU in this study. As chemother-
apeutics can inhibit protein synthesis of host cells, the
treatment sequences of how the agent and Ad were used
could influence the combination efficacy by impairing
production of viral proteins and consequently the viral
progenies. We therefore examined whether administration
sequences affected the viral protein synthesis, production
of the viral progeny and the cytotoxic activity. We
investigated the effects of 5-FU as it is a representative
inhibitor of DNA synthesis and is frequently used for
esophageal cancer treatment. This study showed that

5-FU and VP-16 inhibited the production of hexon
protein irrespective of the administration schedules at
48 h; however, production of viral progenies 5 days after
the infection was not significantly impaired. Among the
treatment sequences tested, the progeny production was
less influenced in the simultaneous treatment compared
with other sequential administrations. The increased
Annexin V-positive populations and sub-G1 populations
were the greatest in the simultaneous treatment among the
other treatments, and the simultaneous treatment pro-
duced cytotoxic effects better than the others in combina-
tion with anticancer agents, except CDDP. The
combinatory antitumor effects were also produced in six
cell lines when they were tested with 5-FU, MMC or
VP-16. The effects, however, were not achieved with
CDDP except the case tested in T.Tn cells. IC50 values of
the anticancer agents in respective cells were subsequently
decreased by Ad-delE1B55 treatments, but those of
CDDP were not.
Most of previous studies showed that combinatory

effects of replication-competent viruses and anticancer
agents were not affected by the treatment sequences,22,23

as we showed in this study. Viral replication was not
generally diminished by anticancer agents,4,22,23 and in
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Figure 4 Representative cytotoxicity data of an anticancer agent, Ad-delE1B55 and the combination tested in six esophageal carcinoma cells.

A concentration of the agents was selected at the point that gave the most significant cytotoxicity in the combination. (a) Ad-delE1B55

(MOI¼ 10). Concentrations of 5-FU were different among the cells (0.625–10mM). (b) Ad-delE1B55 (MOI¼ 2). MMC concentrations

(1.25–10mM). (c) Ad-delE1B55 (MOI¼ 10). VP-16 concentrations (0.625–5mM). (d) Ad-delE1B55 (MOI¼ 10). CDDP concentrations (3–100mM).
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some cases the agents even increased the viral replication
partly because the agent increased Ad infectivity.24

Gutermann et al.23 also showed that the combination
effects were independent of viral replication even if the
replication was reduced by anticancer agents, and
suggested that the antitumor effects depended on the
agents but not on tumor cells used. Interestingly, Raki
et al.25 reported that gemcitabine reduced viral replication
at the initial phase, but the production of viral progenies
in total was not affected just as we observed in this study.
We examined six cell lines with four kinds of chemother-
apeutic agents and confirmed that the combination did
not inhibit Ad-induced cytotoxicity but produced greater
antitumor effects, except CDDP, which was rather
inhibitory to the Ad-mediated cytotoxicity. The discrete
outcomes with CDDP could be linked with cell cycle
progression by the combination. For example, when G1
phase-blocking erlotinib was administered before S phase-
inducing pemetrexed, the combinatory cytotoxicity was
reduced despite synergistic effects produced in other

treatment schedules.26 Our study showed that 5-FU,
VP-16 and MMC enhanced cell cycle at S phase and then
induced G2/M phase entry, whereas CDDP induced G1
phase arrest (data not shown). As Ad-delE1B55 also
induced S phase and G2/M phase, G1 phase arrest by
CDDP was inhibitory to the Ad-mediate cell cycle
progression and subsequently was unfavorable to Ad-
mediated cytotoxicity. On the other hand, the Ad-induced
S phase and G2/M phase could impede CDDP-mediated
cytotoxicity and thus the cytotoxicity between Ad and
CDDP may generate cross-resistance. In contrast, che-
motherapeutics that induced S phase and G2/M phase
could enhance replication of replication-competent Ad as
the Ad showed greater cytotoxicity in S but not in G1
phase.27 Nevertheless, Yoon et al.28 reported that
Ad-delE1B55 produced greater cytotoxicity in combina-
tion with CDDP and the cytoplasmic late viral mRNA
level was greater when the infected cells were in G0/G1
phase rather than in S phase.29 A mechanism of inability
to produce combinatory cytotoxicity with Ad-delE1B55
and CDDDP therefore might need further investigations.
In contrast to this study, previous clinical trials

demonstrated that Ad-delE1A55 produced combinatory
effects with CDDP and 5-FU to head and neck cancer.11

The reason of this discrepancy regarding combinatory
effects with CDDP is also currently unknown, but
additional mechanisms might operate in vivo settings.
For example, viral infection enhanced production of
cytokines including tumor necrosis factor-a and inter-
ferons. These molecules increased sensitivity to apoptosis

Table 4 Combinatory effects of Ad-delE1B55 and anticancer agents
in human esophageal carcinoma cells

Cells Agent IC50(mM)

Agent alone Adenovirusesa

with agent

TE-1 5-FU 804 11.9

CDDP 19.3 21.3

MMC 41.7 6.19

VP-16 3.11 1.38

TE-11 5-FU 5.20 1.55

CDDP 17.9 13.3

MMC 6.51 3.55

VP-16 10.0 2.63

YES-2 5-FU 113 26.1

CDDP 6.15 5.22

MMC 2.80 1.17

VP-16 0.43 0.31

YES-4 5-FU 2.80 1.93

CDDP 0.51 0.81

MMC 3.90 3.10

VP-16 0.43 0.24

YES-5 5-FU 2.76 1.26

CDDP 19.3 21.3

MMC 9.01 0.77

VP-16 4.46 0.01

T.Tn 5-FU 8.72 7.33

CDDP 31.5 2.69

MMC 3.76 1.29

VP-16 4.43 1.50

Abbreviations: CDDP, cisplatin; 5-FU, 5-fluorouracil; MMC,
mitomycin C; MOI, multiplicity of infection; PI, propidium iodide;
VP-16, etoposide.

aAd-delE1B55 at MOI¼ 2 (YES-5) or 10 (other cell lines) were
used in combination with anticancer agents.
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Figure 5 In vivo antitumor effects by the combination of Ad-

delE1B55 and 5-FU. TE-11 tumors developed in nude mice were

treated from days 8 to 14 with culture medium (days 8, 10, 12 and 14),

5-FU (days 9, 11 and 13), Ad-delE1B55 (days 8, 10, 12 and 14) or

Ad-delE1B55 (days 8, 10, 12 and 14) plus 5-FU (days 9, 11 and 13).

Data show the mean tumor volumes with s.e. in each group (n¼ 8).
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directly or indirectly and can facilitate CDDP- or 5-FU-
mediated apoptotic processes. In particular, Ad-delE1B55
lacks the E3 region, which resulted in higher production
of tumor necrosis factor-a.30,31

We also demonstrated the combinatory effects in a
xenograft model. In a clinical setting, direct injection of
Ad-delE1B55 can be replaced by local administration of
carrier cells that were infected Ad-delE1B55. This viruses-
loaded carrier cells could be beneficial because retention
of the cells at the local tumor site is better than that of the
viruses themselves and the viruses are constantly released
from the cells. In fact, carrier cells producing replication-
competent Ad achieved better therapeutic effects than the
Ad themselves.32 A combination of chemotherapy and
radiotherapy is a common treatment strategy for esopha-
geal carcinoma in advanced cases, and the present data
suggest that direct injections of replication-competent Ad
into tumor masses with endoscopy and systemic admin-
istration of a chemotherapeutic agent are quite feasible. A
number of agents including a molecular-targeted medicine
can also be used in combination with other therapeutics,
and a recent study showed that inhibitors of heat-shock
protein 90, which are one of the candidates of anticancer
agents, enhanced replication of Ad-delE1B55.33

In summary, this study with a panel of esophageal
carcinoma and four different anticancer agents showed
that combinatory antitumor effects produced by Ad-
delE1B55 and chemotherapeutic agents were dependent
on the agents and suggests that gene therapy with Ad-
delE1B55 can be combined with the current standard
chemotherapy for esophageal carcinoma. Endoscopy-
mediated injection of Ad-delE1B55 can reduce the
toxicity caused by anticancer agents and may improve
the sensitivity of anticancer agents even in chemotherapy-
resistant cases.
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