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Abstract
Introduction Sepsis is a leading cause of mortality in burn patients. One of the major causes of sepsis in burn patients is 
Pseudomonas aeruginosa. We hypothesized that during dissemination from infected burn wounds and subsequent sepsis, P. 
aeruginosa affects the metabolome of the blood resulting in changes to specific metabolites that would serve as biomarkers 
for early diagnosis of sepsis caused by P. aeruginosa.
Objectives To identify specific biomarkers in the blood after sepsis caused by P. aeruginosa infection of burns.
Methods Gas chromatography with time-of-flight mass spectrometry was used to compare the serum metabolome of mice 
that were thermally injured and infected with P. aeruginosa (B–I) to that of mice that were neither injured nor infected, mice 
that were injured but not infected, and mice that were infected but not injured.
Results Serum levels of 19 metabolites were significantly increased in the B–I group compared to controls while levels of 
eight metabolites were significantly decreased. Thymidine, thymine, uridine, and uracil (related to pyrimidine metabolism), 
malate and succinate (a possible sign of imbalance in the tricarboxylic acid cycle), 5-oxoproline (related to glutamine and 
glutathione metabolism), and trans-4-hydroxyproline (a major component of the protein collagen) were increased. Products 
of amino acid metabolism were significantly decreased in the B–I group, including methionine, tyrosine, indole-3-acetate, 
and indole-3-propionate.
Conclusion In all, 26 metabolites were identified, including a unique combination of five metabolites (trans-4-hydroxypro-
line, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate, and indole-3-propionate) that could serve as a set of biomarkers 
for early diagnosis of sepsis caused by P. aeruginosa in burn patients.

Keywords Burn · Gas chromatography with time-of-flight mass spectrometry · Infection · Metabolomics · Pseudomonas 
aeruginosa · Sepsis

1 Introduction

Sepsis is a major cause of mortality in critically ill 
patients, including severely burned patients (Manning 
2018; Nitzschke et al. 2017). The diagnosis of sepsis in 
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such patients is a limiting step in successful treatment. In 
severely burned patients, this diagnosis is particularly dif-
ficult, since the common clinical signs and symptoms of 
sepsis are masked by a baseline hypermetabolism (Nunez 
Lopez et al. 2017; Parent et al. 2016; Peltz et al. 2015), as 
well as an inflammatory immune response (Bortolotti et al. 
2018). Laboratory testing for substantiation of sepsis is 
based on a combination of host reactants that are elevated 
during the acute phase immune response, which can be 
caused by infectious or immune inflammatory diseases, 
cancer, or trauma; and blood cells and metabolites that are 
altered during sepsis, septic shock, and/or organ dysfunction 
caused by sepsis (Biron et al. 2015; Bortolotti et al. 2018). 
Tests for the acute phase reactants C-reactive protein and 
procalcitonin have been standardized and are widely used for 
diagnosis of inflammation related to infection and predict-
ing progression to sepsis, respectively (Biron et al. 2015; 
Fleischmann-Struzek et al. 2018; Markanday 2015). Simi-
larly, levels of the metabolite lactate have been standardized 
for indication of sepsis and septic shock (Rhee et al. 2015). 
Levels of the proinflammatory cytokines interleukin-6 and 
tumor necrosis factor-alpha, which stimulate the production 
of the acute phase reactants, offer potential for additional 
markers to diagnose sepsis (Sun et al. 2015). The use of Fc-
gamma receptor-1 (CD64) and high-mobility group box 1 
protein are undergoing research for feasibility in assessment 
of sepsis in humans, but are not currently available (Hatada 
et al. 2005; Livaditi et al. 2006; Markanday 2015). Although 
blood cultures are recommended for diagnosis of the etio-
logic agent of sepsis, their results are negative in at least 
50% of patients with sepsis (de Prost et al. 2013). Failure 
to recover a microorganism could be due to low microbial 
load in the bloodstream, prior treatment of the patient with 
antibiotics, or presence of an organism that cannot be grown 
in conventional blood culture (virus, parasite, or fastidious, 
slow-growing bacterium). However, sepsis can also be diag-
nosed by confirming an infection in the urinary tract, lower 
respiratory tract, a surgical site, or other body fluid (CSF, 
synovial fluid, peritoneal fluid, etc.) in a patient with signs 
and symptoms of sepsis (Comstedt et al. 2009; Heffner et al. 
2010). Additionally, a noninfectious etiology, such as pan-
creatitis, cancer, autoimmune inflammatory disease, or burns 
or other trauma including surgery, is found for 18–38% of 
patients presenting with sepsis symptoms (Comstedt et al. 
2009; de Prost et al. 2013; Heffner et al. 2010), a diagnosis 
often referred to as the noninfectious systemic inflammatory 
response syndrome (niSIRS) (Cabrera et al. 2017; Mearelli 
et al. 2018; Watt et al. 2015). Thus, identifying specific bio-
markers for sepsis is an area of significant research interest. 
This will help differentiating between the various agents and 
conditions associated with sepsis, since numerous microbial 
species can be the cause (Gauer 2013). Also, the rise in 
multidrug resistance in certain species such as Pseudomonas 

aeruginosa makes it harder to empirically treat infected 
patients prior to knowing the cause; yet delay in initiating 
appropriate antibiotic treatment can substantially increase 
mortality in patients suffering from sepsis (Liu et al. 2017; 
Micek et al. 2005).

Pseudomonas aeruginosa, an opportunistic Gram-nega-
tive bacterium, is one of the major pathogens causing local-
ized and systemic infections in different patient populations 
(Greenhalgh 2017). P. aeruginosa can spread systemically 
from localized infections at different body sites, including 
ventilator-associated pneumonia, urinary tract infection, or 
wound infection (Bassetti et al. 2018). We used a murine 
model of thermal injury and metabolomic analysis of serum 
to search for biomarkers specific for sepsis caused by dis-
semination of P. aeruginosa from infected burn wounds. 
We hypothesized that during sepsis, P. aeruginosa affects 
the metabolome of the blood by either consuming specific 
metabolites, thus decreasing their concentration; or by pro-
ducing other metabolites, consequently increasing their 
concentration. These metabolites would be indicative of 
P. aeruginosa bloodstream infection and could represent 
potential biomarkers for early diagnosis of sepsis caused 
by P. aeruginosa. In this study, we identified a set of 26 
metabolites related to amino acid and protein metabolism, 
glycolysis/gluconeogenesis, pyrimidine metabolism, fatty 
acid and lipid metabolism, and the tricarboxylic acid (TCA) 
cycle, including two unique to this study – trans-4-hydroxy-
proline and glycerol-3-galactoside, that have the potential to 
serve as novel biomarkers for P. aeruginosa causing sepsis 
in severely burned patients.

2  Materials and methods

2.1  Preparation of bacterial inoculum

The P. aeruginosa strain UCBPP-PA14 (PA14), originally 
isolated from an infected burn wound, was used in all the 
experiments (Liberati et al., 2006). Strain PA14 was grown 
overnight at 37 °C in Luria–Bertani (LB) broth. A 100-μL 
aliquot of the overnight culture was subcultured into fresh 
LB broth and the subcultures were grown at 37 °C for 3 h 
to an  OD600 of 0.5. A 100-μL aliquot of the subculture 
was serially diluted tenfold in phosphate buffered saline 
(PBS) to yield an infective dose of 200 to 300 colony form-
ing units (CFU) in 100 μL. This dose has previously been 
shown to produce 100% lethality in Swiss Webster mice by 
2 days after thermal injury and infection with P. aeruginosa 
(Dzvova et al. 2018; Rahme et al. 1995).



New markers for sepsis caused by Pseudomonas aeruginosa during burn infection  

1 3

Page 3 of 16 40

2.2  Murine model of thermal injury

Adult female Swiss Webster mice (Charles River Laboratories, 
Wilmington, MA) weighing between 22 and 24 g were utilized 
in the murine model of thermal injury (Rumbaugh et al. 1999). 
Briefly, mice were anesthetized by intraperitoneal injection 
of 5% sodium pentobarbital (Nembutal; Diamondback Drugs, 
Scottsdale, AZ) at 5 mg/mL and their backs were shaved. The 
mice were placed in a template that exposes approximately 
15% of the total body surface area and the exposed surface 
was placed in 90 °C water for 8 s. Such an injury is nonlethal 
but results in a full-thickness burn. Mice were immediately 
resuscitated with fluid replacement therapy. For those mice 
to be infected with PA14, 100 μL of PBS containing approxi-
mately 200 CFU was injected directly under the injured skin. 
Four groups of mice were used in these experiments: thermally 
injured and infected (B–I), the experimental group; and three 
control groups – non-injured and non-infected (NB–NI), the 
sham control; non-injured but infected (NB–I); and thermally 
injured but not infected (B–NI). After 24 h, mice in all groups 
were anesthetized and approximately 1 mL of blood was col-
lected via cardiac puncture. Livers and spleens were harvested 
from the exsanguinated mice.

Animals were treated humanely and in accordance with 
the protocol approved by the Animal Care and Use Com-
mittee at the Texas Tech University Health Sciences Center 
(TTUHSC), Lubbock, TX.

2.3  Determination of systemic infection

To determine whether PA14 bacteremia was present, 10-μL 
aliquots of the blood collected from each mouse was plated 
on LB agar and Pseudomonas isolation agar plates (Crite-
rion; Hardy Diagnostics, Santa Monica, CA). As the blood 
had begun to clot prior to plating, the numbers of CFU/mL 
was estimated rather than quantitated. To determine if PA14 
disseminated to the livers and spleens of the animals, the 
individual organs were weighed, suspended in 2 mL of PBS, 
homogenized (Precellys tissue homogenizer; Bertin Instru-
ments, Rockville, MD) and diluted tenfold. Ten μL of each 
dilution were plated on LB agar and Pseudomonas isolation 
agar plates to determine CFU/g of tissue. The remaining 
whole blood samples were allowed to stand for 1 h at room 
temperature for clot formation to occur (Tuck et al. 2009). 
The samples were centrifuged and the serum removed from 
each clot. The sera were stored at − 20 °C until use in the 
metabolomic analysis.

2.4  Gas chromatography with time‑of‑flight mass 
spectrometry (GC‑TOF‑MS)

Serum samples were submitted to the National Institutes 
of Health (NIH) West Coast Metabolomics Center at UC 

Davis for metabolomic analysis (https ://metab olomi cs.ucdav 
is.edu/; accessed 20 Aug 2019) where untargeted metabo-
lite profiling was done by GC-TOF-MS and the detected 
metabolites were identified using ChromaTOF version 2.32 
and BinBase algorithm, methods based on two independent 
parameters: retention index and mass spectral similarity, as 
previously described (Fiehn et al. 2008).

2.5  Data analysis

Peak intensities of the identified metabolites were nor-
malized using vector and median normalization methods. 
Relative peak intensities were log-transformed and scaled 
using Pareto scaling in the MetaboAnalyst program (https 
://www.metab oanal yst.ca; accessed 18 Aug 2019) (Chong 
et al. 2018). For principal component analysis (PCA) and 
hierarchical cluster analysis (HCA) of the metabolite data, 
the pre-processed and normalized dataset was imported 
into the ClustVis web tool (https ://www.biit.cs.ut.ee/clust 
vis; accessed 20 Aug 2019) and further analyzed (Metsalu 
and Vilo, 2015). One-way analysis of variance (ANOVA) 
followed by post-hoc analysis using Fisher’s least signifi-
cant difference (LSD) test was used for analysis of statistical 
significance. The alluvial plot was generated using RAW-
Graphs (https ://rawgr aphs.io/; accessed 07 Sep 2019) (Mauri 
et al. 2017). NetworkAnalyst software (https ://www.netwo 
rkana lyst.ca; accessed 20 Aug 2019) (Zhou et al. 2019) in 
conjunction with MetaboAnalyst was used to generate and 
visualize the metabolite-metabolite interaction network. The 
associations for the metabolite networks were extracted from 
STITCH (a feature of NetworkAnalyst) and only highly con-
fident interactions were included. Receiver operating charac-
teristic (ROC) curves and the areas under the curve (AUC) 
were generated using MetaboAnalyst.

3  Results

3.1  P. aeruginosa systemic infection occurs 
only in mice that are also thermally injured

We used a murine model of thermal injury to detect any 
differences in the serum metabolome produced by P. aerugi-
nosa infection of the burn wound (Rumbaugh et al. 1999). 
For this analysis, four groups of mice were used: the B–I 
group of mice was thermally injured and the virulent P. aer-
uginosa strain PA14 was injected directly under the injured 
skin; and three control groups, NB–NI (sham), NB–I, and 
B–NI described in Materials and methods. Blood was col-
lected from all mice 24 h post treatment. Whole blood was 
plated to detect bacteremia and serum was harvested for 
the metabolomic analysis. The livers and spleens were pro-
cessed to determine systemic spread of infection. Only the 

https://metabolomics.ucdavis.edu/
https://metabolomics.ucdavis.edu/
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
https://www.biit.cs.ut.ee/clustvis
https://www.biit.cs.ut.ee/clustvis
https://rawgraphs.io/
https://www.networkanalyst.ca
https://www.networkanalyst.ca
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B–I mice group suffered from systemic infection as indicated 
by recovery of PA14 from the blood (≈ 400 CFU/mL), livers 
(≈ 125,000 CFU/g) and spleens (≈ 100,000 CFU/g) of mice 
in the B–I group but not from the NB–NI, NB–I, or B–NI 
groups (Online Resource 1). Thus, the B–I group, the 24-h 
time point represents early or uncomplicated sepsis as the 
animals had BSI with dissemination to internal organs but 
were not yet moribund or dead. Without intervention PA14 
has been shown to cause 100% mortality from sepsis at 48 h 
(Dzvova et al. 2018; Rahme et al. 1995). In contrast, the 
B–NI control group represents the effect of trauma without 
infection (similar to niSIRS).

3.2  Thermal injury plus P. aeruginosa infection 
specifically altered the metabolomic profile

To identify potential biomarkers present in the blood dur-
ing early sepsis caused by P. aeruginosa infection of burn 
wounds with dissemination to the bloodstream, we utilized 
an untargeted metabolomic approach using GC-TOF-MS 
that detected metabolites related to primary metabolism, 
including carbohydrates and sugar phosphates, amino acids, 
hydroxyl acids, free fatty acids, purines, pyrimidines, aro-
matic compounds, and exposome-derived chemicals (Fiehn 
et al. 2008). We detected 531 primary metabolites among 
all tested groups of sera; of these, 148 metabolites were 
successfully identified based on their mass spectra and are 
reported in Online Resource 2.

To identify metabolites that were differentially abun-
dant among the experimental and control groups, we used 
the MetaboAnalyst program (Chong et al. 2018). The peak 
intensity levels of 34 metabolites (Online Resource 2) were 
found to be significantly different (P < 0.05) among the dif-
ferent groups by ANOVA followed post-hoc by Fisher’s LDS 
test. Levels of 19 metabolites were significantly increased in 
the B–I group compared to all the control groups, including 
thymidine, thymine, uridine, uracil, malate and succinate, 
trans-4-hydroxyproline, 5-oxoproline, and glucose-6-phos-
phate (Online Resource 2); while levels of eight metabolites 
that included glucose, indole-3-acetate, indole-3-propionate, 
and nonadecanoic acid were decreased (Online Resource 
2). To define the metabolomic changes caused by P. aer-
uginosa-related sepsis following thermal injury, we used 
PCA and HCA, two forms of multivariate analysis. The 
PCA showed good separation between the samples from the 
B–I (Pa-sepsis) group and the control groups (Fig. 1a). The 
NB–NI (sham) and NB–I (infection without trauma) groups 
overlapped almost completely. This overlap is most likely 
due to the fact that uninjured mice do not become infected 
with PA14 following subcutaneous inoculation (Online 
Resource 1). Repeat PCA without the NB–I group showed 
that it may be possible to also identify metabolites that sepa-
rate the B–I (Pa-sepsis) and B–NI (niSIRS) groups from 

each other (Fig. 1b). These results were confirmed by HCA, 
which showed two main branches on the dendrogram, with 
one branch representing the B–I experimental group and 
the other branch representing the control groups (Fig. 1c).

3.3  Analysis of metabolomic changes related 
to thermal injury and systemic infection

We used the ClassyFire tool (https ://class yfire .wisha rtlab 
.com/; accessed 07 Sep 2019) (Djoumbou Feunang et al. 
2016), plus the PubChem database (https ://pubch em.ncbi.
nlm.nih.gov/; accessed 12 Feb 2020) (Kim et al. 2019), 
the Human Metabolome Database (https ://www.hmdb.
ca/; accessed 12 Feb 2020) (Wishart et al. 2007) and the 
Chemical Entities of Biological Interest (ChEBI) database 
(https ://www.ebi.ac.uk/chebi /init.do; accessed 12 Feb 2020) 
(Hastings et al., 2016) to broadly group the 148 metabolites 
into seven categories. These categories were predominated 
by amino acids and protein metabolites (40); sugars, sugar 
acids and alcohols, metabolites of glucolysis, gluconeogen-
esis and carbohydrate (34); and fatty acids and lipid metab-
olites (27); with pyrimidines and products of nucleotide/
nucleoside metabolism (12); TCA cycle intermediates (11); 
other metabolites (7); and xenobiotics (17) also represented 
(Online Resource 3).

To ensure that we had selected all potentially significantly 
altered metabolites, further analysis using the calculated 
metabolite relative peak intensities and one-way ANOVA 
cross-comparing B–I, B–NI, and NB–NI (without the NB–I 
group) was performed on all 148 metabolites. In addition 
to the previous 34 metabolites, levels of an additional 22 
metabolites were significantly increased in at least one com-
parison (Fig. 2, Online Resource 4). To more closely focus 
on those metabolites specifically altered in sepsis, we then 
performed one-way ANOVA on these 56 candidates using 
the B–I group (Pa-sepsis) as the comparator for the B–NI 
(niSIRS) and NB–NI groups. We then narrowed the pool 
of candidate biomarkers by focusing only on those that dis-
tinguished the B–I group (Pa-sepsis) from the B–NI group 
(niSIRS) resulting in a pool of 35 potential biomarkers. 
Among this group, levels of 21 metabolites were signifi-
cantly reduced in the niSIRS group compared to Pa-sepsis, 
including seven metabolites of carbohydrate metabolism, 
four of pyrimidine metabolism, four of amino acid and pro-
tein metabolism, two TCA cycle intermediates, one each 
among fatty acid, purine, and vitamin metabolism, and one 
xenobiotic (Fig. 3). Levels of 14 metabolites were signifi-
cantly elevated in the niSIRS group compared to Pa-sepsis: 
four from carbohydrate metabolism, six from amino acid 
and protein metabolism, two fatty acids, and two xenobi-
otics (Fig. 3). The remaining group of 21 metabolites did 
not distinguish Pa-sepsis from niSIRS (Online Resource 5). 
Further investigation will be necessary to determine if these 

https://classyfire.wishartlab.com/
https://classyfire.wishartlab.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.hmdb.ca/
https://www.hmdb.ca/
https://www.ebi.ac.uk/chebi/init.do
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metabolites would be useful in discriminating between indi-
viduals with niSIRS from trauma or other causes and those 
with infections who do not manifest sepsis.

3.4  Diagnostic performance of potential markers 
for P. aeruginosa sepsis following thermal injury

To test their diagnostic potential as markers for early sepsis 
with P. aeruginosa, we determined the ROC curves for all of 
the identified metabolites. Due to the small number of sam-
ples in our study, we applied a cut-off of ≥ 0.96 for the AUC. 
For 25 metabolites, the AUC were determined to be 1 (1.0) 
(95% confidence interval calculated using 500 bootstraps), 

indicating these metabolites could be considered predic-
tive of Pa-sepsis (Table 1). Two metabolites not selected 
in our first analysis – tagatose and taurine (Table 1)—were 
included in the 25. Taurine had been selected as statisti-
cally significant in subsequent analyses of the data (Figs. 2 
and 3b), but tagatose was shown not to be useful for dis-
criminating Pa-sepsis from niSIRS (Online Resource 5). The 
AUC for five metabolites was 0.96 (glycerol-3-galactoside, 
fructose, phosphoenolpyruvate, tyrosine, and 5-methyl-
tryptamine), suggesting that they might also be predic-
tive (Fig. 3, Online Resource 5). However, as for tagatose, 
statistical analyses did not support 5-methyltryptamine as 
a potential biomarker for Pa-sepsis. Five of the original 

Fig. 1  Metabolomic multivariate analysis of the mice plasma. a Prin-
cipal component analysis (PCA) of the serum metabolomes from the 
4 experimental groups (n = 3 for each group). PCA shows the distinct 
clustering of B–I samples separated from control groups. b PCA of 
the serum metabolites repeated without the NB–I group shows dis-

tinction of the B–NI group from the NB–NI group. c Heatmap and 
hierarchical clustering analysis of the serum metabolomes. Columns 
represent samples within each group and the rows show the different 
metabolites. Color scale implies the abundance of metabolites; green 
for higher abundance, purple for lower abundance
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metabolites (glycolate, lactate, oxalate, p-tolyl glucuronide, 
and conduritol-β-epoxide) were eliminated by their AUC 
(Table 1). One metabolite with an AUC of 1.0, 3-ureidopro-
pionate, had produced variable results in statistical analyses 
of the relative peak intensity data. Further analysis of the 
peak intensities without the NB–I group and using the B–I 
group as comparator revealed significant differences similar 
to those of uracil and uridine (Table 1). Interrogation of 
the Human Metabolome Database showed that 4-methylb-
enzenesulfonamide and 3,6-anhydro-D-galactose (as well 
as conduritol-β-epoxide) have been found in mice but not 
in humans. These metabolites were removed from consid-
eration. The final set of 26 metabolites for consideration as 
potential diagnostic biomarkers of sepsis from P. aeruginosa 
included nine amino acids and their metabolites; seven sug-
ars, sugar phosphates, and sugar acids; five pyrimidines and 
derivatives; three fatty acid and lipid metabolites; and two 
intermediates of the TCA cycle (Table 1).

3.5  Pathway analysis of metabolomic changes 
occurring with thermal injury and systemic 
infection

To investigate whether these metabolites would map to 
pathways related to the physiological changes that occur 
in the murine sera after thermal injury and systemic infec-
tion with P. aeruginosa, we mapped the set of metabolites 
using the murine Small Molecule Pathway Database within 

MetaboAnalyst by implementing over representation analy-
sis with Fisher’s exact test and pathway topology analysis 
using relative-betweenness centrality (Jewison et al. 2014). 
Pathway enrichment analysis for the metabolites revealed 
seven pathways with significant changes – six related to 
carbohydrate metabolism and pyrimidine metabolism 
(P < 0.05) (Fig. 4a). To further discover any possible metab-
olite-metabolite interaction, we used the network explorer 
function within MetaboAnalyst followed by application of 
NetworkAnalyst software (Zhou et al. 2019). This analysis 
supported the previous results, showing that the pathway 
for pyrimidine metabolism (metabolites thymidine, thy-
mine, uridine, and uracil) was the most notable pathway 
(P < 0.001) (Fig. 4b).

4  Discussion

In this study, we identified a set of 26 potential biomarkers 
for early sepsis related to P. aeruginosa infection of ther-
mal injury in mice. We demonstrated that only thermally 
injured mice infected with P. aeruginosa developed sepsis 
within 24 h (Online Resource 1). The GC-TOF-MS analy-
sis of murine sera showed a difference in the abundance of 
numerous metabolites during P. aeruginosa-related sepsis 
compared to control groups. Similar to previously reported 
studies, we found differential abundance of amino acids, 
metabolites of glycolysis and gluconeogenesis, pyrimidines, 

Fig. 2  Thermal injury and P. 
aeruginosa infection signifi-
cantly increased or decreased 
the abundance of 58 metabolites 
in murine sera. Peak intensities 
were normalized using vector 
and median normalization 
methods and significance was 
determined by comparing B–I, 
B-NI, and NB–NI groups using 
one-way ANOVA followed by 
Fisher’s least significant dif-
ference test. Metabolites with 
P ≤ 0.05 are displayed from 
highest relative peak intensity to 
the lowest. Each bar represents 
3 biological samples ± SEM. 
B–I, thermally injured/infected 
(Pa-sepsis); B-NI, thermally 
injured/not infected (niSIRS); 
NB–I, not injured/infected 
(control); NB-NI, not injured/
not infected (sham control)
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fatty acids and lipids, and the TCA cycle (Figs. 2 and 3) 
(Hoerr et al. 2012; Lin et al. 2016; Liu et al. 2010; Ludwig 
and Hummon 2017; Wei et al. 2016). Differences in mod-
els, including the protocol used to induce sepsis (infection 
of burn wound, intraperitoneal injection, or cecal ligation 
and puncture [CLP]), the organism(s) used (P. aeruginosa, 
Staphylococcus aureus, Streptococcus pneumoniae, E. coli, 
or mixed infection from CLP), timing of harvest of samples 
(4 h post infection, 12 h, or 24 h), and methods used to 
detect metabolites (LC/MS versus 1H NMR versus GC/MS) 

makes it difficult to directly compare the entire sets of results 
from these different studies. In several studies, the major-
ity of reported metabolites constituted acylcarnitines and 
lipid molecules best discovered by LC/MS (Lin et al. 2016; 
Liu et al. 2010; Wei et al. 2016), which makes it difficult to 
compare the metabolites we detected by GC-TOF/MS. How-
ever, Hoerr et al. (Hoerr et al. 2012), who used 1H- NMR, 
found 43 metabolites differentially abundant in mice infected 
with P. aeruginosa by intraperitoneal injection compared 
to the 56 we found in mice with P. aeruginosa burn wound 

Fig. 3  Thermal injury and P. aeruginosa infection significantly 
increased the abundance of 21 metabolites and decreased the abun-
dance of 14 in murine sera of B–I mice compared to B–NI mice. Peak 
intensities were normalized using vector and median normalization 
methods and significance was determined using one-way ANOVA 
using B–I as the comparator to B–NI and NB-NI, followed by Fish-
er’s least significant difference test. Each box plot represents 3 bio-
logical samples and -whiskers represent their distribution. Differential 

abundance of a metabolites of pyrimidine and purine metabolism, 
intermediates of the TCA cycle, ascorbic acid metabolite, and fatty 
acid and lipid metabolites; b metabolites of amino acid and protein 
metabolism and xenobiotics; c sugars, sugar acids, and other metabo-
lites of carbohydrate metabolism. B–I, thermally injured/infected (Pa-
sepsis); B-NI, thermally injured/not infected (niSIRS); NB–NI (sham 
control); *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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Table 1  Potential biomarkers for diagnosis of P. aeruginosa sepsis

AUC  area under the curve; RPI relative peak intensity; PI peak intensity; ns no significance; *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001
a For AUC, the cut-off for diagnostic discrimination was set at ≥ 0.96
b 3-Ureidopropionate was selected in the first and second rounds of analyses and failed the third; as the AUC was 1.0, evaluation of the peak 
intensity values was done
c Metabolite has not been reported in humans; information obtained from the Human Metabolome Database (https ://www.hmdb.ca/; accessed 12 
Feb 2020) (Wishart et al. 2007)

Pathway or source/metabolite Relative peak intensities P value ≤ 0.05 AUC ≥ 0.96a Included in 
the set of 26

B–I (Pa-sepsis) B–NI (niSIRS) B–I:B–NI

Purine metabolism
Uric acid 0.893 ± 0.15  − 0.277 ± 0.37 0.0042** 0.93 No
Pyrimidine metabolism
3-Ureidopropionate – RPI 1.090 ± 0.17  − 0.367 ± 0.65 ns 1 Follow-upb

3-Ureidopropionate – PI 3969 ± 550.8 1809 ± 618.4 0.0314* 1 Yes
Thymidine 1.330 ± 0.225  − 0.687 ± 0.27 0.0074** 1 Yes
Thymine 1.350 ± 0.21  − 0.857 ± 0.525 0.0040** 1 Yes
Uracil 1.250 ± 0.04  − 0.780 ± 0.08  < 0.0001**** 1 Yes
Uridine 1.327 ± 0.20  − 0.430 ± 0.345 0.0288* 1 Yes
Fatty acid and lipid metabolism
Cholesterol 1.017 ± 0.04  − 0.110 ± 0.25 0.0301* 1 Yes
Glycerol-3-galactoside  − 0.953 ± 0.19 0.393 ± 0.52 0.0258* 0.96 Yes
Nonadecanoic acid  − 0.830 ± 0.11 0.357 ± 0.15 0.0007*** 1 Yes
Amino acid and protein metabolism
5-Oxoproline 0.880 ± 0.08  − 0.160 ± 0.22 0.0049** 1 Yes
Creatinine 1.250 ± 0.21 0.087 ± 0.11 0.0098** 1 Yes
Hippurate  − 1.333 ± 0.53  − 0.037 ± 0.27 0.0377* 1 Yes
Indole-3-acetate  − 1.220 ± 0.43 0.023 ± 0.23 0.0256* 1 Yes
Indole-3-propionate  − 1.583 ± 0.75 0.287 ± 0.12 0.0235* 1 Yes
Leucine  − 0.283 ± 0.24 0.710 ± 0.11 0.0351* 0.81 No
Methionine  − 1.033 ± 0.18 0.730 ± 0.41 0.0044** 1 Yes
Taurine 1.190 ± 0.18  − 0.770 ± 0.77 0.291* 1 Yes
trans-4-Hydroxyproline 0.967 ± 0.06  − 0.410 ± 0.16  < 0.0001**** 1 Yes
Tyrosine  − 0.863 ± 0.28  − 0.030 ± 0.29 0.0448* 0.96 Yes
TCA cycle
Malate 1.127 ± 0.27  − 0.593 ± 0.07 0.0016** 1 Yes
Succinate 1.280 ± 0.31  − 0.433 ± 0.14 0.0015** 1 Yes
Glycolysis and gluconeogenesis
3,6-Anhydro-D-galactose  − 0.990 ± 0.23 0.340 ± 0.07 0.0005*** 1 Noc

3-Phosphoglycerate 1.767 ± 0.25  − 0.267 ± 0.53 0.0055** 1 Yes
Fructose  − 0.807 ± 0.45 0.297 ± 0.26 0.0422* 0.96 Yes
Fructose-6-phosphate 1.640 ± 0.45  − 0.240 ± 0.30 0.0012** 1 Yes
Gluconate 0.510 ± 0.36  − 0.743 ± 0.49 0.0488* 0.78 Yes
Glucose  − 1.103 0.13 0.103 ± 0.21 0.0015** 1 Yes
Glucose-6-phosphate 2.270 ± 0.23  − 0.397 0.26  < 0.0001**** 1 Yes
Lactate 0.593 ± 0.16  − 0.653 ± 0.37 0.0101* 0.85 No
Mannitol  − 0.497 ± 0.14 0.237 ± 0.13 0.0331* 0.89 No
Mannose 0.850 ± 0.06  − 0.273 ± 0.11 0.0023* 1 Yes
Phosphoenolpyruvate 1.000 ± 0.11 0.070 ± 0.33 0.0219* 0.96 Yes
Vitamins and derivatives
Oxalate 0.553 ± 0.25  − 0.113 ± 0.07 0.0474* 0.85 No
Xenobiotics
4-Methylbenzenesulfonamide 0.813 ± 0.38  − 0.407 ± 0.22 0.0169* 1 Noc

Conduritol-β-epoxide  − 0.573 ± 0.46 0.553 ± 0.17 0.0037** 0.89 Noc

Raffinose  − 0.880 ± 0.07 0.990 ± 0.66 0.0334* 0.89 No

https://www.hmdb.ca/
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Fig. 4  Mapping the metabolites 
to pathways and networks. a 
Pathway enrichment analysis 
of the 35 metabolites showing 
significant changes in the B–I 
group. Pathways labeled in red 
contain the highest number of 
mapped metabolites (P < 0.05). 
The map was produced by 
analyzing the metabolites 
through over-representation 
analysis with Fisher’s exact test 
and pathway topology using 
the murine Small Molecule 
Pathway Database within 
MetaboAnalyst. b Metabolite-
metabolite interaction network 
highlighting potential functional 
relationships among the anno-
tated metabolites. Metabolites 
in shades of red are those with 
higher concentration in ther-
mally injured and P. aeruginosa 
infected mice; those in shades 
of green are those with lower 
concentration. All gray circles 
are metabolites linked to, but 
not present in, our dataset
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infections (Fig. 2) (Hoerr et al. 2012). We found 35 metabo-
lites in common with their study, but only 10 were similar 
in levels; notably, glucose was reduced in both studies and 
amino acids and protein metabolites were found in similar 
abundance: 2-hydroxybutyrate, creatinine, taurine and phe-
nylalanine were elevated while asparagine was reduced and 
isoleucine, alanine and glutamine were detected but levels 
were the same in sepsis and controls (Online Resource 4) 
(Hoerr et al. 2012). Thus, comparison of functional groups 
of metabolites or even individual metabolites provides a way 
to determine which metabolites might be used for the diag-
nosis of sepsis related to P. aeruginosa.

Among the metabolites that were increased in the blood 
of thermally-injured mice septic with P. aeruginosa were 
thymidine, thymine, uridine, and uracil, which are involved 
in pyrimidine metabolism (Fig. 3a). These nucleobases and 
nucleosides serve fundamental roles in the replication of 
genetic material, gene transcription, protein synthesis, and 
cellular metabolism. Thymine and uracil are incorporated 
into DNA and RNA, respectively, during their synthesis. 
Uracil was among nine metabolites identified by Liu et al. 
that were changed when thermally injured rats became septic 
(Liu et al. 2010). While we did not identify all nine of their 
markers, two –gluconate and uric acid – followed the same 
pattern of increase in the septic animals and decrease in the 
animals that were thermally injured only (Online Resource 
4) (Liu et al. 2010). It has been demonstrated that uracil 
influences quorum sensing and biofilm formation in P. aer-
uginosa by enhancing transcription of quorum sensing genes 
with subsequent increase in biofilm formation (Ueda et al. 
2009). Since uracil was only increased in the B–I group, 
PA14 dissemination preceded the increase in uracil. Whether 
the increase in serum uracil would then help those PA14 
organisms remaining in the wound to establish biofilm, 
leading to more dissemination, is not known at this time. P. 
aeruginosa can also utilize pyrimidines as a carbon and/or 
nitrogen source (West and Chu 1986). Interestingly, 3-urei-
dopropionate, which is a metabolite of uracil, was identified 
by ROC analysis as a distinguishing marker in septic mice 
(Table 1, Online Resource 3).

Trans-4-hydroxyproline is a major constituent of the 
collagen protein found in connective tissue, muscle, and 
skin (Ananthanarayanan 1983). This molecule is released 
due to collagen breakdown (Wu et al. 2011). While the 
release of trans-4-hydroxyproline could occur with tissue 
injury, the level was reduced in the B–NI group compared 
to the NB–NI group (Online Resource 4). P. aeruginosa is 
known to be able to degrade collagen (Hao et al. 1999). 
The increase in trans-4-hydroxyproline in the B–I group, 
compared to all control groups, is most likely a result of the 
collagen degradation happening when P. aeruginosa invaded 
the tissue and disseminated. Werthén et al. (2004) showed 
that P. aeruginosa degrades the collagen in skin biopsies 

within hours of inoculation (Werthén et al. 2004). Moreover, 
P. aeruginosa, which can use trans-4-hydroxyproline as a 
carbon and nitrogen source, has an uptake system for it that 
is induced by the presence of the molecule (Li and Lu 2016).

The increase in 5-oxoproline, also known as pyroglu-
tamic acid, in septic mice could be indicative of imbalance 
in glutamine and glutathione metabolism as previously 
documented in critically ill patients that experience low 
glutathione levels (Liu et al. 2014). Known as pyroglutamic 
acidosis, this can also occur with other conditions besides 
sepsis such as chronic therapeutic paracetamol (acetami-
nophen) use, malnutrition, antibiotics and renal impairment 
(Hunter et al. 2016). However, 5-oxoproline could be used 
in conjunction with other potential diagnostic markers to 
indicate Pa-sepsis.

The amino acids methionine and tyrosine were sig-
nificantly decreased in septic mice compared to the con-
trol group, while taurine was increased (Fig. 3b, Online 
Resource 4). Although the specific etiologic agent of the 
sepsis in each patient was not indicated, a previous study 
in humans showed that compared to nonseptic patients 
(n = 18), the levels of methionine and tyrosine were signifi-
cantly decreased in patients with sepsis (n = 35) on the day 
of admission to intensive care while the level of taurine was 
significantly increased (Su et al. 2015). Recently, Lawal et al. 
(2018) used analysis of volatile organic compounds to deter-
mine whether compounds specific to Enterobacter cloacae 
or P. aeruginosa would be produced when the organisms 
were grown individually or in co-culture in artificial sputum 
medium (Lawal et al. 2018). They found some compounds 
such as cyclopentanone were produced by both organisms 
individually and in co-culture; some were produced by P. 
aeruginosa alone and in co-culture (1-undecene, pyrrole, 
methyl 2-ethylhexanoate) and some by E. cloacae alone 
but greatly reduced in co-culture (2-methyl-1-propanol, 
3-methyl-1-butanol, 2-phenylethanol) (Lawal et al., 2018). 
Other compounds were found elevated only in co-culture—
methyl 2-methylbutyrate, isoamyl butyrate, 2-methylbutyl 
acetate (Lawal et al. 2018). Since other organisms besides P. 
aeruginosa can use amino acids as sources of nitrogen and/
or carbon, we would expect similar findings—some metabo-
lites unique to specific organisms and some metabolites in 
common—if other organisms such as Staphylococcus aureus 
or E. cloacae were tested.

Indole-3-acetate and indole-3-propionate, which were 
significantly decreased in septic thermally-injured mice, are 
products of tryptophan metabolism by the gut microbiota 
(Gao et al. 2018). Further, some studies showed that with 
sepsis the gut microbiome function is disrupted (McDonald 
et al. 2016; Stadlbauer et al. 2019), which could lead to the 
decrease of these metabolites. P. aeruginosa does not pos-
sess the enzymes to produce either indole metabolite from 
tryptophan (Bortolotti et al. 2016). Why the reduction in 
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indole-3-acetate and indole-3-propionate occurred primarily 
in the B–I group is not known at this time. Their decrease 
could be a sign of dysbiosis that requires further study.

Organic acids including malic, succinic, oxalic and lactic 
acids were at higher levels in septic mice, which could be 
a sign of a disturbance in the TCA cycle (malic and suc-
cinic acids) and the presence of oxidative stress (oxalic and 
lactic acids). The TCA cycle is used by aerobic organisms 
to release stored energy. Meylan et al. (2017) showed that 
TCA cycle activity drives the lethality of the aminoglyco-
side antibiotic tobramycin in P. aeruginosa (Meylan et al. 
2017). They found that supplementation of media with 
fumarate and succinate, components of the lower part of 
the TCA cycle, sensitized stationary-phase cells to killing by 
tobramycin (Meylan et al. 2017). In contrast, components of 
the upper TCA cycle such as citrate had little effect (Meylan 
et al. 2017). Numerous metabolites found as components 
of the TCA cycle were detected in our metabolomics pro-
files, including significantly increased levels of succinate 
and malate (Figs. 2 and 3), as well as the presence of cit-
rate, isocitrate, cis-aconitate, α-ketoglutarate, and fumarate 
(Online Resources 2 and 4). Besides serving as markers for 
sepsis, the increased levels of specific TCA cycle metabo-
lites might be useful in predicting alterations in tobramycin 
susceptible phenotype.

The level of the sugar mannose was increased in sera of 
mice with sepsis. Due to the abundance of mannose on host 
cell surfaces, this increase could be a result of cell damage 
and the release of mannose into the bloodstream; however, 
levels of mannose in the controls was considerably lower. 
It was recently shown that the mannose level also increases 
in the blood of trauma patients and that P. aeruginosa can 
sense that increase and upregulate its mannose transport 
system to use the sugar as a carbon source (Elmassry et al. 
2019). Compared to controls, fructose-6-phosphate (F6P) 
and glucose-6-phosphate (G6P) were found at significantly 
higher levels in B–I mice, 4.7-fold and 18-fold, respectively; 
while glucose was found to be significantly lower (− 2.3-
fold). Moreover, the average ratio of glucose to G6P in septic 
mice was 1:23, a drop of 47-fold compared to the average 
ratio of 1:1090 in the three control groups. These results 
suggest disturbances occurred within the glycolytic/gluco-
neogenic pathway.

Interest in, and understanding of, the fluidity of the 
human metabolome in response to different conditions has 
led to analyses looking for changes in metabolite abundance 
related to general demographics such as age, sex, and race 
(Lawton et al. 2008) as well as studies focused on specific 
metabolic responses present in a specific disease; such as 
examination of the metabolome to study pathophysiology 
of oxidative stress in cancer (Andrisic et al. 2018). Because 
of the lethal nature of sepsis and the rapidity with which it 
can kill, and because current markers such as serum lactate, 

C-reactive protein, and procalcitonin have been shown to 
be insufficiently discriminating (Mann et al. 2011; Rhee 
et al. 2015), there has been much interest in metabolomics as 
a means to identify markers that could better predict which 
patients with sepsis are likely to progress to severe sepsis, 
septic shock, and/or succumb (Ferrario et al. 2016; Holder 
et al. 2016; Langley et al. 2014, 2013; Seymour et al. 2013; 
Su et al. 2014). Additionally, analysis of the metabolome has 
been used to determine which patients with signs and symp-
toms of sepsis are truly septic or are suffering from nonin-
fectious SIRS (Schmerler et al. 2012). As with the studies 
in animal models, differences in types of infections (blood-
stream versus pneumonia), timing (< 4 h post admittance to 
24 h to 3–7 days), and methods of detection of metabolites 
make comparison of the studies difficult. Comparing sepsis 
survivors and nonsurvivors to patients with niSIRS, Langley 
et al. (Langley et al. 2014) found that patients who survived 
sepsis had lower levels of malate, phosphate, and ketogenic 
amino acids, while nonsurvivors had higher levels of lactate, 
malate, phosphate, and glucogenic amino acids and lower 
levels of glucose. In our study the B–I mice will become sep-
sis nonsurvivors while the B–NI mice represent the niSIRS 
group. Compared to B–NI mice, the B–I mice had signifi-
cantly higher levels of malate and lactate and lower levels of 
glucose, but the phosphate levels were elevated in both over 
sham (normal) controls similar to the nonsurvivors (Fig. 3, 
Online Resource 5). Levels of the ketogenic amino acids leu-
cine and tyrosine were significantly reduced as were levels 
of the glucogenic amino acid methionine (Fig. 3, Table 1), 
similar to their survivors (Langley et al. 2014). Whether 
testing at 48 h (near the usual time of death in the model) 
would result in a shift in the levels of phosphate and amino 
acids closer to those observed in the nonsurvivors is not 
known at this time. Although Langley et al. (Langley et al. 
2014) reported no differences in metabolomic profiles for 
the types of pathogens present in their sepsis patients, it is 
also possible that the changes in amino acid levels could 
reflect the growth of P. aeruginosa in the B–I mice. Ferrario 
et al. (2016) also compared sepsis survivors at day 7 to their 
profiles on day 1, and nonsurvivors at day 7 to survivors 
at day 7. We detected three of the metabolites considered 
significant in the survivors at day 7— “sugars,” serine, and 
creatinine—with the exact opposite results; sugars and ser-
ine were reduced while creatinine was elevated in the B–I 
mice (Figs. 2, 3, Online Resource 4) (Ferrario et al. 2016). 
Amino acids were the major metabolites significantly dif-
ferent in the nonsurvivors at day 7 (Ferrario et al. 2016). 
We detected all six of the amino acids, but the levels for the 
two amino acids that were significantly different in our sep-
tic mice (asparagine and tyrosine) were opposite – reduced 
rather than elevated (Figs. 2, 3, and Online Resource 4) (Fer-
rario et al. 2016). Since there was no mention of specific 
pathogens isolated from the septic patients, the levels of 
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metabolites we observed may reflect the growth of P. aerugi-
nosa. Unfortunately, many of the metabolites reported in the 
human metabolome studies on sepsis were detected by LC/
MS and constitute phosphocholines, glycerophospholipids, 
sphingomyelins, and acylcarnitines, which are not detected 
by GC/MS, the method we used (Ferrario et al. 2016; Sch-
merler et al. 2012; Su et al. 2014). Despite the similarity 
of methodology within those studies, it is interesting that 
few, if any, of the metabolites identified as potential bio-
markers were the same from one study to the next (Ferrario 
et al. 2016; Schmerler et al. 2012; Su et al. 2014). What we 
found in common with these studies is that, despite the dif-
ferences in approaches, we identified metabolites from the 
same metabolic pathways.

In summary, 25 of the 26 metabolites with levels sig-
nificantly altered by thermal injury plus P. aeruginosa 
sepsis were mapped to four metabolic pathways—glyco-
lysis/gluconeogenesis, the TCA cycle, the urea cycle, and 
pyrimidine metabolism plus related amino acid metabolic 
links (Fig. 5). Additionally, 24 intermediate metabolites 
within these pathways were also detected among the 148 
identified metabolites, although the changes in their levels 

were not found to be significant enough to be considered 
among the diagnostic biomarkers (Fig. 5). Certainly, a sub-
stantial disturbance in metabolism occurs during sepsis 
from dissemination of P. aeruginosa from local infection, 
which emphasizes the value of this approach to identify 
new potential markers of sepsis.

Within our set of 26 potential biomarkers, we identified 
a group of five metabolites that constitute a unique set of 
biomarkers: trans-4-hydroxyproline (a marker of collagen 
degradation), 5-oxoproline (a marker of oxidative stress), 
indole-3-acetate (dysbiosis), indole-3-propionate (dysbio-
sis; recently implicated as a potential marker of oxidative 
stress in cancer (Andrisic et al. 2018; Ke et al. 2016)), and 
glycerol-3-galactoside (possibly reflecting glycerolipid syn-
thesis following stress (Grapov et al. 2019)). This unique 
group, together with selected metabolites from pyrimidine, 
glucose, and fatty acid metabolism and the TCA cycle (e.g., 
uracil, glucose-6-phosphate, nonadecanoic acid, malate, 
and succinate (Fig. 3) that were the most discriminatory for 
Pa-sepsis from niSIRS may have the potential to serve as 
diagnostic biomarkers for sepsis caused by P. aeruginosa in 
severely burned patients.

Fig. 5  Schematic overview of the metabolites with serum levels 
significantly altered with thermal injury and P. aeruginosa sepsis. 
Metabolites with increased levels are in red and those with decreased 
levels are in blue; bold metabolites are included in the set of poten-
tial biomarkers for Pa-sepsis—25 of the 26 metabolites in the set 
map to these four interconnected pathways. Metabolites in purple 
were among the 148 identified metabolites detected in the sera but 

changes in their levels were not considered significant; however, they 
are intermediates in the pathways shown. Metabolites in black were 
not detected in our analysis. The rounded shapes labeled in all capi-
tals contain the four metabolic pathways most interlinked. Solid lines, 
direct reactions; dotted lines, indirect reactions; arrowhead indicates 
direction of the reaction; double arrowhead, reversible reactions
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5  Conclusion

Metabolomics studies are integral to the identification of 
new markers to assist the diagnosis of sepsis in critically 
ill patients. Among the analyzed metabolites, 26 metabo-
lites were shown to have high predictive power for P. aer-
uginosa sepsis following thermal injury. It is very clear 
that these changes in the metabolome occurred only with 
thermal injury plus infection. Examination of sepsis fol-
lowing infection of burn wounds by other microbes such as 
the Gram-positive coccus S. aureus and the Gram-negative 
bacillus Acinetobacter baumannii would help establish the 
specificity of these metabolites as markers for bacterial 
sepsis in general, Gram-negative bacterial sepsis, or for the 
individual organism. The latter would be most helpful in 
early diagnosis as it would assist in the determination of 
appropriate antibiotic therapy. While we used an untargeted 
metabolomics approach to detect as many metabolites as 
possible, once a set of markers is established and validated 
in humans, shifting to a targeted approach of identifying just 
those specific “P. aeruginosa sepsis” metabolites would be 
the next step. Alternatively, should a specific pathway be 
confirmed as predictive, such as the pyrimidine metabolic 
pathway, then detection and quantitation of those metabo-
lites could be sufficient.
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