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Abstract

Proteus spp. are commensal gastrointestinal bacteria in many hosts, but information regard-

ing the mutual relationships between these bacteria and their hosts is limited. The tree

shrew is an alternative laboratory animal widely used for human disease research. How-

ever, little is known about the relationship between Proteus spp. and tree shrews. In this

study, the complete genome sequencing method was used to analyse the characteristics of

Proteus spp. isolated from tree shrews, and comparative genomic analysis was performed

to reveal their relationships. The results showed that 36 Proteus spp. bacteria were isolated,

including 34 Proteus mirabilis strains and two Proteus vulgaris strains. The effective rate of

sequencing was 93.53%±2.73%, with an average GC content of 39.94%±0.25%. Briefly,

3682.89±90.37, 2771.36±36.01 and 2832.06±42.49 genes were annotated in the NCBI

non-redundant nucleotide database (NR), SwissProt database and KEGG database,

respectively. The high proportions of macrolide-, vancomycin-, bacitracin-, and tetracycline-

resistance profiles of the strains were annotated in the Antibiotic Resistance Genes Data-

base (ARDB). Flagella, lipooligosaccharides, type 1 fimbriae and P fimbriae were the most

abundantly annotated virulence factors in the Virulence Factor Database (VFDB). SNP vari-

ants indicated high proportions of base transitions (Ts), homozygous mutations (Hom) and

non-synonymous mutations (Non-Syn) in Proteus spp. (P<0.05). Phylogenetic analysis of

Proteus spp. and other references revealed high genetic diversity for strains isolated from

tree shrews, and host specificity of Proteus spp. bacteria was not found. Overall, this study

provided important information on characteristics of genome for Proteus spp. isolated from

tree shrews.

Introduction

Proteus spp. are common commensal gastrointestinal bacteria in many hosts and belong to the

Morganellaceae family [1–2]. Currently, the genus comprises Proteus mirabilis, Proteus
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vulgaris, Proteus penneri, Proteus hauseri, and unnamed genomospecies 4, 5, and 6 [3–4].

These bacteria are considered as opportunistic human pathogens and have been isolated from

different clinical sources, such as urine and wounds [5]. Many studies have demonstrated their

roles in the pathogenesis of infections in human beings, indicating that their virulence factors

enable the bacteria to reach and survive different niches of host organisms. However, Proteus
spp. is actually a normal, ubiquitous commensal constituent of human flora and it is recog-

nized that the gut is a reservoir for this proteolytic organism. Previous studies have illustrated

the Proteus spp. antagonistic or commensal relationships with numerous animals and some-

times found cooperated relations with different animal hosts, acting as animal symbionts [5–

7]. However, the complicated interdependence between Proteus spp. and animals coexisting

with the bacteria in the environment is still unclear. Information regarding the mutual rela-

tionships between Proteus spp. bacteria and their natural habitats is currently limited.

The tree shrew (Tupaia belangeri) is a new laboratory animal belonging to the family

Tupaiidae, order Scandentia, widely distributed in South Asia, Southeast Asia and Southwest

China [8]. This small mammal is similar in appearance to the squirrel and feeds on insects,

fruits and small vertebrates. There are six subspecies of Tupaia belangeri in China, namely, T.

belangeri gaoligongensis, T. belangeri modesta, T. belangeri yaoshanensis, T. belangeri tonquinia,

T. belangeri yunalis and T. belangeri chinensis [9]. Previous studies have indicated that tree

shrews are closely related to humans in genomic signature, biochemical metabolism and physi-

ological function [10–11]. Due to its small body size, life span, short reproductive cycle and

low cost of maintenance, tree shrews have been increasingly used as alternative laboratory ani-

mals in recent years. Several human diseases have been successfully studied by using this ani-

mal, such as hepatitis, influenza, dengue fever, Alzheimer’s disease, social stress and

depression [12–15]. Our previous study [16] revealed the gut microbial community between

tree shrew and human was different, if we used tree shrew as laboratory animal to study

human diseases, especially in gastrointestinal tract, could this animal reflected the pathophysi-

ological features of human infection? Whether there was somewhat similar gut bacterial popu-

lations between tree shrew and human, and this might be helpful to know for future clinical

research applications. Because Proteus spp. was the most isolated bacteria from feces of tree

shrew by using culture method [16], in this study, the complete genome sequencing method

was used to analyse the characteristics of Proteus spp. isolated from tree shrews, and compara-

tive genomic analysis was performed to reveal their relationships.

Materials and methods

Sample collections

Thirty-six tree shrew faecal samples were collected at the Center of Tree Shrew Germplasm

Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking

Union Medical College in Kunming, China. The tree shrews were a closed population and

healthy, without visible signs of disease or tumours; 20 were male, and 16 were female. The

average age was 36.08±23.04 months, ranging from 2 months to 75 months. All tree shrews

were divided into four age groups based on the method of a previous study with some modifi-

cation [17]. The infant group was defined as under 7 months, the young group was between 8

and 18 months, the middle group was 19 to 42 months, and the senile group was over 43

months. Tree shrews were housed in independent sterilized stainless steel cage containing

hygienic food and water without any outside contact. The commercial full-price nutritive pel-

let was used for feeding twice a day, and the clean apple was fed once a week. The details of the

tree shrew information were shown in Table 1.
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Bacterial isolation and DNA extraction

The Proteus spp. bacteria were isolated according to previous study [18]. All faecal samples

were inoculated on MacConkey Agar and Xylose Lysine Deoxycholate (XLD) agar (Luqiao,

Beijing) and incubated at 37˚C for 24 hours. All suspected Proteus spp. colonies were selected,

purified by inoculation on Brain Heart Agar (BHI) (Luqiao, Beijing) at 37˚C for 24 hours, and

finally identified using the Vitek Compact 2 biochemical identification system (bioMérieux).

Total genomic DNA of the isolated bacteria was extracted using a bacterial total genomic

DNA extraction kit (Tiangen, Beijing) following the manufacturer’s instructions. All DNA

samples were stored at -20˚C for complete genome analysis.

Table 1. The details of tree shrew information and isolation results.

Strain ID Species Host sex (tree shrew) Host age (Months) Host age group Host generation

YNTSP1 P. mirabilis Male 45 Senile F4

YNTSP12 P. mirabilis Male 14 Young F4

YNTSP13 P. mirabilis Male 15 Young F4

YNTSP16 P. mirabilis Female 27 Middle F4

YNTSP17 P. mirabilis Male 45 Senile F4

YNTSP19 P. mirabilis Female 26 Middle F4

YNTSP21 P. mirabilis Female 26 Middle F4

YNTSP22 P. mirabilis Male 9 Young F4

YNTSP24 P. mirabilis Male 9 Young F4

YNTSP26 P. mirabilis Female 9 Young F4

YNTSP3 P. mirabilis Male 59 Senile F4

YNTSP34 P. mirabilis Female 3 Infant F4

YNTSP35 P. vulgaris Female 2 Infant F4

YNTSP36 P. mirabilis Female 2 Infant F4

YNTSP40 P. mirabilis Male 2 Infant F4

YNTSP42 P. mirabilis Male 2 Infant F4

YNTSP43 P. mirabilis Male 49 Senile F4

YNTSP44 P. mirabilis Female 37 Middle F4

YNTSP48 P. mirabilis Female 62 Senile F4

YNTSP5 P. mirabilis Male 41 Middle F4

YNTSP53 P. mirabilis Male 71 Senile F4

YNTSP56 P. mirabilis Female 56 Senile F4

YNTSP57 P. mirabilis Male 50 Senile F4

YNTSP58 P. mirabilis Female 50 Senile F4

YNTSP59 P. mirabilis Male 52 Senile F4

YNTSP6 P. mirabilis Female 64 Senile F4

YNTSP62 P. mirabilis Male 75 Senile F4

YNTSP63 P. mirabilis Male 58 Senile F4

YNTSP65 P. mirabilis Male 70 Senile F4

YNTSP66 P. mirabilis Female 37 Middle F4

YNTSP67 P. mirabilis Female 37 Middle F4

YNTSP69 P. mirabilis Male 34 Middle F4

YNTSP70 P. mirabilis Male 37 Middle F4

YNTSP72 P. vulgaris Female 74 Senile F4

YNTSP8 P. mirabilis Female 26 Middle F4

YNTSP9 P. mirabilis Male 24 Middle F4

https://doi.org/10.1371/journal.pone.0229125.t001
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Genome sequencing, assembly and annotation

Bacterial genome sequencing of all isolates was performed by our laboratory on the Illumina

MiSeq platform using 2×250 bp paired-end reads. The libraries were built using a Nextera XT

DNA Library Prep Kit following the manufacturer’s reference guidelines. Generally, 1 ng

genomic DNA of each strain was used. After segment and purification, index PCR was per-

formed to add the Illumina Nextera barcodes using i5 and i7 primers, and then the purification

was executed again to remove non-target fragments. Finally, the libraries were normalized,

pooled and sequenced using an Illumina MiSeq sequencing system (Illumina, San Diego,

USA).

The raw data were trimmed for quality control, and low-quality (<Q40) reads were filtered

by Trimmomatic (version 0.38) [19]. Draft genomes were assembled using SOAPdenovo (ver-

sion 2.04), with k-mer values (25, 31, 37, 47, 59, 71, 83 and 95) optimized to the best assembly

results [20–21]. Gapcloser (version 1.12r6) was used to fill the genomic gaps. GenemarkS soft-

ware (version 4.28) [22] with default parameters was used to predict the open reading frame

(ORF) of each genome, and the predicted amino acid sequences were aligned and annotated

by DIAMOND (E-value: 1e-5, top 5) [23] to NCBI non-redundant nucleotide database (NR),

SwissProt, eggNOG, KEGG, Pfam, Pathogen-Host Interaction database (PHI), Antibiotic

Resistance Genes Database (ARDB), and Virulence Factor Database (VFDB). The heatmaps

based on PHI, ARDB and VFDB database annotations were drawn using pheatmap in the R

package (version 3.2).

CRISPR, prophage and ICE analyses

Clustered regularly interspaced short palindromic repeats (CRISPR) locus screening of bacte-

ria was predicted by CRT (version 1.2), with minRL 19, maxRL 38, minSL 19 and maxSL 48

[24]. The repeat and spacer sequences of the CRISPR loci for each strain were counted and

extracted. The prophage of isolated Proteus spp. was analysed by PhiSpy (version 2.3) with

default parameters [25]. The integrative and conjugative elements (ICEs) of bacteria were

detected by ICEfinder [26], and the sequences of all predicted ICEs were extracted for further

analysis.

Variant analysis

For the detection of single nucleotide polymorphism (SNP) variants relative to the reference,

we used clean reads mapped to each reference genome (Proteus mirabilis HI4320: NC_010554

and Proteus vulgaris FDAARGOS_366: NZ_CP023965) with the BWA software package [27–

28]. The mapping quality lower than 20 and sequence depths lower than 5 of the variants were

filtered for variants calling [29–30]. The bam files were transferred to sam files using SAM-

tools, and generated the sequence depths (average = 19.47), coverage (10× = 75.38%) and map-

ping rate (average = 80.14%). Statistical analyses of SNPs, insertions and deletions (InDels)

and classification information for each strain were performed by using BCFtools. The variants

of bacteria were annotated based on each reference genome using VCFtools (version 4.2) [31].

Phylogenetic analysis and statistics

The sequences of the CRISPR repeats were aligned by MEGA 6.0 using the neighbour-joining

(NJ) method with 1000 bootstrap replicates to generate a phylogenetic tree. The SNPs of pre-

dicted ICEs were called by using the methods mentioned above, and a phylogenetic tree was

built by MEGA 6.0 with 18 reference ICE sequences (S1 Table). Phylogenetic analysis based on

total SNPs was performed for all isolated Proteus spp. in this study with 114 reference Proteus
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spp. (102 P. mirabilis and 12 P. vulgaris) from different sources and countries (S2 Table). A

maximum-likelihood (ML) tree was generated by applying PhyML version 3.1 with default

parameter (data type: nucleotide, the numbers of bootstrap replicates: 100, model: HKY85,

gamma value: e, number of relative substitution rate categories: 4 and transition/tranversion

rate: e) to the SNPs differentiating the genomes [32]. The distance-based NJ method was also

used to estimate their phylogenetic relations. The phylogenetic tree was visualized and ordered

with FigTree (version 1.4.3) and iTol.

Statistical analysis was performed using the SPSS software package (version 16.0, IBM,

USA). Kolmogorov-Smirnov Z, T-test or Kruskal-Wallis H test were used if appropriate. A P

value of<0.05 was recognized as statistically significant. The Tajima’s D values were calculated

by MEGA 6.0 for Proteus spp. in this study.

The sequence data have been deposited into the European Nucleotide Archive, www.ebi.ac.

uk/ena with Accession Numbers ERS3013925 to ERS3013960 (PRJEB30582). The sequences of

predicted ICEs were deposited into the NCBI database with GenBank Accession Numbers

from MK460213 to MK460220.

Results

Thirty-four P. mirabilis and two P. vulgaris strains were isolated in this study, and the details

of the strains with host information were shown in Table 1. For the genomic sequencing

results, 12,278,826 raw reads were obtained for 36 Proteus spp. bacteria, and 11,608,128 clean

reads were retained after quality control. The average clean Q20 (%) was 91.25±0.99, clean

Q30 (%) was 88.35±1.28, and effective rate (%) was 93.53±2.73, as shown in Table 2. The

Table 2. The statistics of all sequencing strains for the quality control, assembly, prediction and mapping results.

Features Numbers Mean Std. Deviation Minimum Maximum

Quality control RawData (reads) 36 341,000 51,965.37 241,964 487,903

CleanData (reads) 36 322,000 52,110.64 224,518 472,403

CleanQ20 (%) 36 91.2533 0.99364 89.12 92.97

CleanQ30 (%) 36 88.3464 1.27638 85.6 90.62

CleanGC (%) 36 41.2531 0.24703 40.67 41.86

Effective Rate (%) 36 93.5264 2.72804 83.28 96.54

Assembly Scaffold total_num (>500 bp) 36 1,241.53 174.372 890 1,698

Scaffold total_len (>500 bp) 36 3,620,000 104,134.82 3,358,482 3,878,645

Scaffold N50 36 4,934.86 1,058.41 2,783 8,196

Scaffold N90 36 1,277.64 210.349 895 2,022

Max Scaffold (bp) 36 31,000 7,471.51 13,766 50,230

Min Scaffold (bp) 36 501.64 1.199 501 506

Scaffold Sequence GC% 36 39.94131973 0.247879671 39.2344172 40.6334767

Gene predict Genome_size (bp) 36 3,620,000 104,134.82 3,358,482 3,878,645

Gene_total_length (bp) 36 3,040,000 104,828.49 2,787,918 3,291,156

Gene_Number 36 3,741.39 96.938 3,467 3,947

Gene_average_length (bp) 36 813.36 29.04 720 859

Gene_total_length/Genome (%) 36 84.0486 0.77641 81.36 85.03

Mapping to references Avg_depth 36 19.47 3.29 16.53 24.95

Coverage> = 1× (%) 36 88.83 1.27 86.82 89.93

Coverage> = 4× (%) 36 84.77 1.72 81.82 86.2

Coverage> = 10× (%) 36 75.38 3.27 70.59 79.03

Map_rate (%) 36 80.14 7.78 67.58 88.99

https://doi.org/10.1371/journal.pone.0229125.t002
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average scaffold number (>500 bp) was 1,241.53±174.37, with a range from 890 to 1,698. The

minimum scaffold length was 3,358,482 bp, and 3,878,645 bp was the maximum length. The

average scaffold GC% content was 39.94±0.25 (Table 2). The predicted gene results showed

that the average genome size was 3.6±0.1 Mbp for 36 isolates, with a range from 3.4 to 3.9

Mbp. The gene numbers were 3,741.39±96.94, with a minimum of 3,467 and a maximum of

3,947. The proportion of total gene length accounted for 84.05±0.78 in the genome, as shown

in Table 2. The Kolmogorov-Smirnov Z test showed no statistical significance (P>0.05) for all

these features. The details for quality control, assembly and gene prediction results of each

strain were shown in S3 Table.

In total, 132,584 NR, 99,769 SwissProt, 159,615 Pfam, 101,954 KEGG, and 126,679 eggNOG

numbers were annotated with average numbers 3682.89±90.37, 2771.36±36.01, 4433.75

±113.67, 2832.06±42.49, and 3518.86±74.82, respectively (Fig 1A). A total of 4,803 genes were

annotated in the ARDB database for all Proteus spp. in this study, with an average number of

133.42±6.31 and a range from 120 to 151 (Fig 1A). We found 24.46% of isolates carried macB
and mphA genes, which were associated with resistance to macrolide; 10.04% of isolates car-

ried vanB, vanC, vanE and vanG genes, which were resistant to vancomycin; 8.59% of strains

carried lsa, carA and tlrC genes, which were resistant to lincosamide, streptogramin, and

Fig 1. The annotation results of Proteus spp. bacteria in this study. A. The number of annotated genes of each strain based on Pfam, NR, EggNOG, SwissProt, KEGG,

PHI, VFDB and ARDB databases. B. The heatmap of annotated ARDB resistance genes for each isolate. C. The heatmap of PHI database annotation results. D. The

heatmap of annotated virulence factors based on the VFDB database.

https://doi.org/10.1371/journal.pone.0229125.g001
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macrolide; 8.40% of isolates had bcrA gene with bacitracin resistance profile; 7.70% of strains

possessed vanA and vanD genes, which were resistant to vancomycin and teicoplanin; 6.25%

of isolates carried tetB, tetM, tetJ and otrA genes, which were associated with resistance to tet-

racycline; 5.77% of strains had mdtL, catA, catB, ceo and cml genes, which referred to multi-

drug resistant genes; 4.84% of isolates had pbp gene, which indicated the penicillin resistance.

All those ARDB annotated genes and profiles mentioned above were shown in hot spots of Fig

1B. There were 17,185 PHI annotated genes for all strains; the average number was 477.36±
12.52, with a range from 449 to 503 (Fig 1A). Reduced virulence (53.28%), unaffected pathoge-

nicity (15.87%), loss of pathogenicity (13.24%), and increased virulence (hypervirulence)

(5.43%) were the dominant PHI phenotypes of the mutant deposited in the PHI database, as

shown in Fig 1C. The virulence factor investigation showed 15,577 annotated genes obtained

from the VFDB database in total, and the average number was 432.69±18.87, with a range

from 377 to 470. Flagella (9.24%) was the most annotated virulence factor overall, followed by

LOS (lipooligosaccharide) (7.27%), type 1 fimbriae (4.21%), peritrichous flagella (3.96%), type

IV pili (3.48%), HitABC (3.28%), capsule (3.07%), P fimbriae (3.03%), FbpABC (2.94%), T6SS

(2.89%), pyoverdine (2.28%), alginate (2.02%), and TTSS (2.00%) (Fig 1D). Two isolated P.

vulgaris strains had different virulence factors than P. mirabilis; for example, a high proportion

of ompA and RTX toxins were found in P. vulgaris, but a low proportion of T6SS and type 1

fimbriae were found, as shown in Fig 1D. The annotation numbers according to each database

had no statistical significance (P>0.05) among the isolates.

CRISPR analysis revealed 245 loci for all strains. Among them, YNTSP16 and YNTSP40

had 12 CRISPR loci, followed by YNTSP22 (11 loci), YNTSP34 (11 loci), YNTSP35 (11 loci),

and YNTSP69 (11 loci) (Fig 2A). The details of CRISPR information for each strain were

shown in S4 Table. The phylogenetic analysis based on sequences of CRISPR repeats showed

five clustering groups for all Proteus spp. bacteria, presented with red, yellow, green, blue and

purple colours, as shown in Fig 2B. The sequences of the CRISPR repeats revealed highly poly-

morphic characteristics of the isolates in this study, since few identical sequences were found

in the phylogenetic tree. However, only eight strains (YNTSP13, YNTSP19, YNTSP34,

YNTSP35, YNTSP43, YNTSP44, YNTSP48 and YNTSP56) had prophages, as shown in Fig

2A. The largest numbers of prophage genes were found in YNTSP35 (109), followed by

YNTSP48 (89), and YNTSP34 (74); the annotation details of all prophages were shown in S5

Table.

The ICE prediction results showed that eight P. mirabilis isolates had putative ICEs with

T4SS structures and belonged to SXT/R391 family, as shown in Fig 3A. Although all predicted

ICE types (SXT/R391) were identical, high diversity was found among them. The locations

and insertion sites of ICEs were different. The largest length ICE was 289,114 bp (ICEP-
miYNTSP19), while the shortest was 86,907 (ICEPmiYNTSP40). Phylogenetic analysis

revealed four clustered groups, indicated with red, yellow, green and blue colours (Fig 3B).

Eight ICEs in this study were clustered in green and blue groups, differentiated with other ref-

erence ICEs (red and yellow groups). All of the reference ICE strains were isolated from diar-

rhoea patients or domestic animals (S1 Table), while all of the isolates in this study were from

laboratory animals.

For SNP variant investigation, P. mirabilis HI4320 and P. vulgaris FDAARGOS_366 were

used as reference genomes. Thirty-four P. mirabilis and two P. vulgaris strains in this study

were mapped to each reference. The depths for all of the sequencing results were>16, with

an average depth of 19.47±3.29, and the coverage of sequencing was shown in Table 2. The

average mapping rate for all of the Proteus spp. was 80.14±7.78. In total, 422,163 SNPs were

identified for all of the Proteus spp., with an average of 11,700±2,493.98 SNPs. However, only

3,794 and 2,234 SNPs were found for two P. vulgaris (YNTSP35 and YNTSP72). A total of
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9320.24±2117.44 base transitions (Ts) were obtained for Proteus spp., compared with 2910.35

±602.98 base transversions (Tv) (Z = 4.007, P = 0.000), as shown in Fig 4A. The number of

homozygous mutations (Hom) was much higher than the number of heterozygous mutations

(Het) in this study (Z = 4.243, P = 0.000), and the average number was 12,014.50±2,857.33 and

214.29±262.21, respectively (Fig 4B). Statistical significance was also found between synony-

mous mutations (Syn) and non-synonymous mutations (Non-Syn) (Z = 3.517, P = 0.000),

showing 5,397.29±599.89 and 6,841.97±709.67 mutations, respectively (Fig 4C). There were

695 InDels for all Proteus spp. with an average of 19.31±6.00 InDels. In general, 33.72±9.76

were insertions, and 31.36±10.51 were deletions. No significant difference was found between

the insertions and deletions (Z = 0.946, P = 0.336) (Fig 4D). A large number of Hom were

identified compared with Het (Z = 4.007, P = 0.000), and the average number was 62.53±18.45

for Hom and 2.56±2.12 for Hem (Fig 4E). The average number for non-frame shift (Non-

shift) InDels was 8.42±3.19, compared with 10.89±3.96 for frame shift (Shift), as shown in Fig

4F. Statistical significance was found between non-shift and shift InDels (Z = 1.532, P = 0.018).

Phylogenetic analysis based on ML method of P. mirabilis indicated high genetic diversity

for strains isolated from tree shrews because 136 isolates were divided into four clustering

groups, indicated with yellow, green, blue and purple colours (Fig 5A), and each group had P.

mirabilis bacteria isolated in this study (red font). Twenty-eight strains were clustered into the

purple group. Although ten isolates (YNTSP63, 42, 36, 21, 12, 59, 62, 48, 70, and 13) were

located at an identical branch, others were clustered into different branches of the tree. Most

Fig 2. The CRISPR and prophage results in this study. A. Statistical analysis of the numbers of CRISPR loci and prophage genes in each strain. B. Phylogenetic tree

according to sequences of the CRISPR repeats.

https://doi.org/10.1371/journal.pone.0229125.g002
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Fig 3. ICE analysis results in this study. A. The details of eight predicted ICEs in this study. B. Phylogenetic tree based on total SNPs of eight ICEs from

Proteus spp. with references.

https://doi.org/10.1371/journal.pone.0229125.g003
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of the reference strains in the purple group were isolated from humans, especially from urinary

tract infections, and P. mirabilis from tree shrews showed high similarity with these strains,

such as 1150_PMIR, 1134_PMIR, Pm_Oxa48, K670, GN2, 51_PMIR, 418_PMIR and 1091.

Fig 4. SNP variants and InDel analysis in this study. A. Comparison of the base transitions (Ts) and base transversions (Tv) for SNPs. B. Comparison of the

homozygous mutations (Hom) and heterozygous mutations (Het) for SNPs. C. Comparison of the synonymous mutations (Syn) and non-synonymous mutations

(Non-Syn) of SNPs. D. Comparison of the insertions and deletions for InDels. E. Comparison of the homozygous mutations (Hom) and heterozygous mutations (Het)

for InDels. F. Comparison of the non-frame shift (Non-shift) and frame shift (Shift) for InDels.

https://doi.org/10.1371/journal.pone.0229125.g004
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Furthermore, these reference strains were isolated from different countries without any epide-

miological relationship. YNTSP26 was clustered into the blue group, and most strains in this

group were also isolated from patients, except P. mirabilis Wood, which was isolated from

Lucilia sericata, BC11-24 from swine, and 25933GTA from beef. There were two strains

(YNTSP57 and YNTSP24) divided into the green group, and all of the reference isolates were

isolated from patients. The last three P. mirabilis bacteria from tree shrews were clustered into

the yellow group, and the major sources of strains were from patients as well, except for

11985-2-3 and SAS71, which were environmental strains. We further performed phylogenetic

analysis of P. mirabilis isolated from tree shrews independently, and 34 strains were clustered

into four groups, as shown in Fig 5B. The four groups were presented with red, green, blue

and pink coloured branches. Thirteen strains were clustered into the blue-branch group, fol-

lowed by ten strains in red and nine in pink; only two isolates were in the green group (Fig

5B). There was no obvious correlation between clustering groups and host information, such

as sex, age or age groups. The sex and age groups of tree shrews were randomly distributed in

each clustering group. Fourteen P. vulgaris were separated into three groups, including two

strains isolated from tree shrews in this study and 12 references (Fig 5C). YNTSP35 and

YNTSP72 were clustered into the green group, showing close similarity with 08MAS1600,

CSUR P1867, FDAARGOS_556 and CICC. These reference strains were primarily isolated

from the environment or from humans. Other reference isolates were clustered into the yellow

and red groups. The alignments and tree files mentioned above were shown as S1 Appendix.

The distance-based NJ method for phylogenetic analysis revealed similar results with ML

Fig 5. Phylogenetic analysis based on ML method of Proteus spp. strains in this study. A. Phylogenetic tree of 34 P. mirabilis isolated from tree shrews with 102

reference strains. B. Phylogenetic tree of 34 P. mirabilis isolated from tree shrews in this study. C. Phylogenetic tree of P. vulgaris in this study.

https://doi.org/10.1371/journal.pone.0229125.g005
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method. Generally, three clustering groups were generated by NJ method, shown with purple,

yellow and blue colours (Fig 6A). The clustering results of strains for each group showed close

similarity with ML method. Most of the P. mirabilis from tree shrews were clustered into pur-

ple group; YNTSP26 and YNTSP43 were divided into blue group, and the rest of strains were

clustered into yellow group (red font). Phylogenetic analysis of 34 P. mirabilis isolated from

Fig 6. Phylogenetic analysis based on NJ method of Proteus spp. strains in this study. A. Phylogenetic tree of 34 P. mirabilis isolated from tree shrews with 102

reference strains. B. Phylogenetic tree of 34 P. mirabilis isolated from tree shrews in this study. C. Phylogenetic tree of P. vulgaris in this study.

https://doi.org/10.1371/journal.pone.0229125.g006
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tree shrews demonstrated four clustering groups were obtained by NJ method, shown with

red, green, blue and yellow colours (Fig 6B). In addition, three clustering groups were gener-

ated for P. vulgaris by NJ method, and the grouping results were identical with ML method

mentioned above (Fig 6C). All the alignments and tree files were shown as S2 Appendix by NJ

method. In general, the host specificity of Proteus spp. bacteria was not discovered, especially

for P. mirabilis. The Tajima’s D values indicated that no statistical significance were found for

34 P. mirabilis isolated from tree shrews and P. vulgaris (D = -0.076, P = 0.940; D = 0.742,

P = 0.458). However, statistical significance (D = -2.107, P = 0.035) was identified for all 136 P.

mirabilis in this study.

Discussion

A previous study showed that many wild and domestic animals are hosts of Proteus spp.,

including mammals, birds, amphibians, reptiles, and insects [5]. These bacteria may play a

fundamental role in animal pathogenic or physiological microbiota, especially in gastrointesti-

nal tracts. For example, Bittar et al. [33] identified both P. mirabilis and P. vulgaris inhabited in

the intestines of western lowland gorillas. Gaastra et al. [34] isolated P. mirabilis from the fae-

ces and urine of dogs with urinary tract infections, and Kroemer et al. [35] reported that P.

mirabilis bacteria caused urinary tract infections in dogs and cats in European countries. Lowe

et al. [36] revealed that P. mirabilis or P. vulgaris strains dominated the pig tonsil, and Kobashi

et al. [37] identified P. mirabilis from pig faecal samples that was resistant to tetracycline.

Other authors emphasized the role of wild birds in the transmission and spread of Proteus spp.

bacteria to domestic poultry, cattle, or humans [38–39]. However, there is no systemic report

about the relations between Proteus spp. with laboratory animals, specifically for the tree

shrew. Our results indicated that Proteus spp. strains were the most commonly isolated bacte-

ria from the gut of tree shrews, even though all of these laboratory animals were closed popula-

tions without any contact from outside environments.

Proteus species possess different antibiotic resistant abilities. Previous studies on clinical

patients revealed that polymyxins resistance was mediated via lipid A of bacteria, and they also

had intrinsic resistant abilities to tetracycline, tigecycline and colistin [40–41]. Whole genomic

sequencing of P. mirabilis HI4320 reference strain demonstrated tetAJ encoded tetracycline

resistance, cat encoded chloramphenicol acetyltransferase, bcr encoded sulfonamide resis-

tance, and multidrug efflux genes mdtG, mdtH, mdtK, mdtL were all contained in this uro-

pathogenic strain [42]. Recently, P. mirabilis acquired Salmonella genomic island 1 (SGI1) was

reported, and it was resistant to tetracycline, sulfonamides, fluoroquinolones, streptomycin,

trimethoprim, chloramphenicol, and β-lactam antibiotics [43]. Furthermore, P. mirabilis
strain PM58, an extensively drug-resistant isolate contained the New Delhi metallo-β-lacta-

mase 1 (NDM-1) gene was also reported. P. mirabilis isolate (NO-051/03), a recent sequenced

strain from a patient acquired β-lactam, trimethoprim, sulfonamides, and aminoglycosides

resistant genes [44]. Compared the ARDB annotation results of tree shrew Proteus spp. strains

with these clinical ones, we found similar antimicrobial resistant genes acquired by both Pro-
teus spp. isolates. In our study, ARDB annotations indicated high proportions of macrolide

resistance profile. The tetracycline resistance profiles were involved in tetB, tetM, tetJ and otrA
genes, and the descriptions of those genes were tetracycline efflux pump and ribosomal protec-

tion protein. mdtL and cat genes with chloramphenicol resistance profile were annotated, and

they mainly referred to multidrug resistance efflux pump and chloramphenicol acetyltransfer-

ase. lsa, carA and tlrC genes annotated with lincosamide, streptogramin, macrolide resistance

profile. The penicillin resistance profile with pbp gene was also annotated. In addition, our pre-

vious study [16] revealed that some of the Proteus spp. strains possessed NDM-1 gene resistant
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to Imipenem. All these pieces of evidences indicated that the antimicrobial resistant profiles or

genes were similar between tree shrew Proteus spp. isolates with human clinical ones.

The evolutionary relationships of different niches in humans, animals, and plants using

proper techniques could reveal the roles of Proteus spp. bacteria in these hosts. It would be

interesting to compare the features of Proteus spp. from clinical isolates and animals, explaining

the factors contributing to the different lifestyles of Proteus spp. in various environments [5].

Proteus species are considered potential pathogenic bacteria in human gastrointestinal or uri-

nary tract infections [45–46]. It is postulated that human guts are the reservoir of Proteus spp.,

especially for the P. mirabilis species. However, the interactions between Proteus spp. and hosts

may lead to the pathogenicity of this genus resulting from population expansion. Several viru-

lence factors of this genus have been revealed in previous studies. Proteus spp. possess similar

characteristics to other Enterobacteriaceae for lipopolysaccharides (LPS), such as Salmonella spp.

and Escherichia coli. The chemical structure of LPS may lead to the adaptation of Proteus spp.

bacteria to environmental conditions and enhance their pathogenic abilities [47]. In addition,

bacterial flagella are pathogenesis factors of Proteus spp. due to their immunogenic structure.

The flagellins activate the inflammatory pathways of hosts and contribute to the stimulation of

the host innate immune systems [48–49]. Furthermore, one of the essential pathogenesis factors

of Proteus spp. infections is adhesion to epithelial cells or surfaces for urinary or gastrointestinal

tracts. A previous study [50] showed 17 fimbrial operons for P. mirabilis HI4320, and six types

of fimbriae have been characterized thus far, including MR/P fimbriae (mannose-resistant Pro-
teus-like fimbriae), MR/K fimbriae (mannose-resistant Klebsiella-like fimbriae), NAF (non-

agglutinating fimbriae), ATF (ambient-temperature fimbriae), PMP (P. mirabilis P-like pili),

and PMF (P. mirabilis fimbriae). All of these fimbriae play an important role in the pathogenesis

of P. mirabilis infections. In this study, all of the Proteus spp. strains isolated from tree shrews

possessed the virulence factors mentioned above, such as LPS, flagella, type 1 fimbriae and P fim-

briae. Therefore, the laboratory animal-isolated Proteus spp. strains showed no significant differ-

ences from clinical strains, especially in their pathogenicity.

Furthermore, phylogenetic analysis based on total SNPs of strains demonstrated that P.

mirabilis from tree shrew had closer genomic relations with human clinical isolates. There was

no host specificity of Proteus spp. isolated from human patients, animals or environments.

Close similarity could be found between strains from different epidemiological resources, and

even within the same host species, such as the tree shrews in this study, and characteristics of

high genetic diversity in the isolates were also identified. This unexpected result contradicted

previous studies, and several studies have indicated that microorganism specificity to their

hosts supports the co-evolution of the host and its microbes [51–52]. However, comparative

genomics of the Proteus spp. strains from our results with other references did not reveal host

specificity of isolates.

Based on ARDB, VFDB annotations and phylogenetic relation analysis of tree shrew Pro-
teus spp., we found the antimicrobial resistance, virulence factors and genomic features of

these isolates were similar with human clinical Proteus spp. strains. These results indicated

some of the gut bacterial population was somewhat similar between tree shrew and human,

specifically for Proteus spp. However, the antimicrobial resistant bacteria and related genes,

especially for erythromycin, tetracycline and β-lactamase, were commonly existed in this labo-

ratory animal. This should be paid attention in future clinical research applications.

Conclusions

In this study, we firstly analyzed the genomics of Proteus spp. isolated from tree shrews and

compared their characteristics with other references. Overall, the host specificity of isolates
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was not discovered and Proteus spp. strains were somewhat similar between tree shrew and

human. This investigation provided important information on characteristics of genome for

Proteus spp. isolated from tree shrews.
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