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Abstract
Background/Aims: Men with terminal renal failure are often infertile. Anti-müllerian hor-
mone (AMH), a marker of Sertoli cell function, is decreased among men with chronic kidney 
disease (CKD). Recently, a microRNA, miR-155, has been shown to be a potential marker for 
subfertility. We studied miR-155 and semen parameters in patients with CKD who were not 
yet on dialysis. We also aimed to study possible associations between AMH, miR-155, and se-
men parameters to evaluate them as markers of fertility. Methods: Thirty male patients with 
CKD 1–4 as well as 18 healthy controls were enrolled. Results: Serum levels of miR-155 were 
significantly higher among men with CKD stages 1–2 (4.51 ± 3.81 [p = 0.01]) and stages 3–4 
(2.75 ± 1.77 [p = 0.006]) than in controls (1.09 ± 0.44). Sperm concentration was significantly 
lower among men with CKD 3–4 (42 ± 29) ×106/mL compared to controls (88 ± 42) ×106/mL 
(p = 0.011). High levels of miR-155 were associated with a relatively low sperm concentration 
(p = 0.02) and with a low total sperm number (p = 0.005). Low AMH levels were associated 
with a decreased percentage of motile sperm cells (p = 0.02). Conclusions: We conclude that 
men with stage 3–4 CKD had lower sperm concentrations than healthy fertile men and that 
increased serum miR-155 in men with stage 1–4 CKD was associated with semen parameters 
that indicate subfertility. Low AMH levels were associated with a low percentage of the total 
number of motile sperm cells. miR-155 and AMH may be potential markers of subfertility in 
men with CKD. © 2017 The Author(s)
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Introduction

Infertility of women with end stage renal disease (ESRD) has been extensively investi-
gated, but reproductive function in men with ESRD is less well characterized, and few data 
are available in either men or women with earlier stages of chronic kidney disease (CKD). 
CKD is divided into 5 stages. CKD 1 represents kidney damage with preserved kidney 
function, whereas CKD 5 indicates severely decreased kidney function that commonly 
requires dialysis. In men with ESRD, semen analysis often reveals a low ejaculate volume, 
low sperm count or azoospermia, and decreased sperm motility [1, 2]. The cause of subfer-
tility or infertility of men with ESRD is multifactorial. Autonomic dysfunction, endocrine 
disturbances, testicular dysfunction, vascular disease, psychological factors, and side effects 
of pharmacologic treatment are frequently involved. Deterioration of kidney function may 
also imply disturbances of the hypothalamic-pituitary-gonadal axis with increased levels of 
luteinizing hormone and follicle-stimulating hormone and decreased testosterone levels 
[3–5]. We have previously shown that anti-müllerian hormone (AMH), a marker of Sertoli 
cell function, is decreased in all men with CKD [6], being most pronounced in CKD 5 [7]. Low 
AMH levels have also been seen in subfertile men without renal disease [8] and in men with 
nonobstructive azoospermia [9]. Furthermore, CKD is associated with low-grade systemic 
inflammation (LGSI) characterized by retention of various cytokines and creation of a 
proinflammatory milieu [10] that may also influence fertility. MicroRNAs (miRNAs) are 
small, noncoding RNAs that control mRNA translation and stability. miRNAs play important 
roles in the regulation of cell activation, proliferation, and apoptosis [11]. In immune cells, 
miRNAs have been identified as key regulators of inflammation. Two of these, miR-155 and 
miR-146a, have central roles in innate immunity [12, 13]. miRNAs can be secreted from 
cells within exosomes, or as paracrine or endocrine messengers, and they can be detected 
in serum as circulating miRNAs [14]. Circulating miRNAs have been accepted as biomarkers 
for a number of diseases and inflammatory conditions such as LGSI. Diagnosis of male 
subfertility is based primarily on semen testing, which is often performed after a couple has 
unsuccessfully attempted to have children. Developing a serum test will allow screening of 
the affected population and timely intervention, and miRNAs in the serum are a family of 
such biomarkers.

Previous studies have found that male subfertility was associated with low testosterone 
levels [15] and LGSI [16]. We recently showed that increased miR-155, but not miR-146a, was 
associated with male subfertility independent of LGSI or androgens in men without CKD [17]. 

We evaluated semen parameters at early stages of CKD and miR-155 as a new potential 
marker of fertility. We also investigated possible associations between AMH and semen 
parameters because AMH is substantially decreased in men with CKD. Because little is known 
of fertility in men with early-stage CKD and it is important to effectively identify early-stage 
CKD patients who are subfertile, we investigated the value of miR-155 and AMH as predictors 
of early-stage, CKD-associated male subfertility. 

Subjects and Methods

From June 2009 to May 2012, 30 male patients with CKD stages 1–4, aged between 26 
and 47 years with a median age of 37 years, were consecutively enrolled at the Department 
of Nephrology, Skåne University Hospital, Malmö, Sweden. The patients were asked to leave 
blood samples, 2 semen samples, and to perform iohexol clearance measurements. All 30 
patients donated blood samples and performed iohexol clearance measurements, and 21 
donated semen samples. Nine out of 30 patients with CKD 1–4 did not donate semen samples. 
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In order to exclude selection bias, we performed ANOVA analysis and found no differences in 
the reproductive hormone levels between participants and non-participants.

Determination of CKD stages was based on measurements of iohexol clearance. The 
patients were divided into 3 groups according to Table 1. The first group was the control 
group. 

In this group, we selected partners to pregnant women who achieved pregnancy after 
less than 12 months of unprotected intercourse, without use of assisted reproduction. Among 
these 145 proven fertile men we randomly selected 18 age-matched controls. The median age 
of the controls was 37 years (26–44 years). All subjects in the control cohort presented with 
normal cystatin C values (mean: 0.68 [SD 0.11] mg/L) and were thus considered to have 
normal renal function (Table 1). This control group from the Reproductive Medicine Centre, 
Skåne University Hospital, Malmö, Sweden, has been described previously [18]. Group 2 was 
composed of patients with kidney disease and iohexol clearance above 59 mL/min/1.73 m2 
(CKD 1–2). Group 3 was composed of patients with iohexol clearance between 15 and 59 mL/
min/1.73 m2 (CKD 3–4). The patients in the groups 2 and 3 had a normal panorama of various 
kidney diseases. None of the patients were known to suffer from systemic lupus erythema-
tosus or hepatitis infection. All blood samples were drawn in the morning between 8 and 9 
a.m. Laboratory analyses are thoroughly described below.

The study was approved by the regional Ethics Committee at Lund University, Sweden 
(LU 541/2008). All study participants provided written informed consent. The study was 
conducted in accordance with the principles of the Declaration of Helsinki.

Statistical Analysis
Analyses were performed using SPSS version 22.0 (IBM Corp., Armonk, NY, USA) and the 

SAS statistical software version 9.4 (SAS, Cary, NC, USA). A p value <0.05 was considered 
statistically significant.

A Kruskal Wallis test was performed to evaluate differences between the groups regarding 
miR-155 since this parameter is not normally distributed. Regarding semen parameters and 
AMH, we initially performed ANOVA to evaluate if there were any differences among the 
groups (Table 2). However, ANOVA did not show which groups differed from each other. 
Because ANOVA showed statistical significance for sperm concentration and total sperm 
count for each analyte, we performed Tukey post hoc analyses to evaluate which groups 
differed statistically significantly from each other. In order to assess the relationships between 
semen parameters and miR-155 and AMH, respectively, we conducted linear regression 
analyses, adjusted for age, between mir-155 and AMH as independent and semen parameters 
as dependent parameters, respectively 

Table 1. Patient characteristics and renal function

Group 1 (controls) Group 2 (CKD 1–2) Group 3 (CKD 3–4)

Subjects, n 18 16 14
Age 37 (26–44) 35(26–42) 37 (29–47)
Cystatin C, mg/L 0.67 (0.11) 0.98 (0.18) 2.03 (0.56)
Iohexol, mL/min/1.73 m2 – 91 (15) 35 (15)
CRP mg/L – 0.81 (0.84) 2.04 (1.49)
Semen samples, n 18 11 10

Age is expressed as median (range). Cystatin C, iohexol clearance, and CRP are expressed as means 
(standard deviation). CKD, chronic kidney disease; CRP, C-reactive protein.

http://dx.doi.org/10.1159%2F000458711
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miRNA Expression
Serum from participating individuals was isolated and stored at –80  ° C immediately, and 

miRNA detection was performed as described previously [17]. Since no internal reference 
miRNAs exist in the serum, we exogenously introduced a control miRNA (UniSp2miRNA), 
according to the manufacturer instructions (Exiqon, Vedbaek, Denmark). RNA was extracted 
using miRCuryTM RNA isolation columns for biofluids (Exiqon). Contaminating cells or cell 
debris were/was carefully removed by 2 centrifugations: one at the stage of serum isolation 
and a second one by centrifugation at 3,000 g prior to isolation of serum RNA. CDNA was 
synthesized, and levels of miR-155 were measured by real-time PCR according to the manu-
facturer’s instructions using primers validated by the manufacturer for selective amplifi-
cation of the target miRNAs (Exiqon). Briefly, cDNA prepared with the miRCURYTM cDNA 
synthesis kit II (Exiqon) was diluted 1: 20; 4 µl were added to Exilent SYBRgreen PCR master 
mix (Exiqon) and subjected to real-time PCR under the following conditions: 1 cycle at 95  ° C 
for 10 min, 45 cycles of 95  ° C for 10 s, 60  ° C for 1 min, followed by a dissociation cycle in a 
Stratagene Mx3000p instrument. The no-template control did not produce any product. 
Results were analyzed using the Stratagene MxPro software, and the relative miRNA levels in 
the serum were measured using the 2-(ΔΔCt) method as previously described [17] using as 
baseline cycle threshold the mean of the cycle threshold values of the control group. 

Cystatin C
Plasma cystatin C levels were measured by a fully automated particle-enhanced immu-

noturbidimetric assay. The reagents were obtained from Dako (Dako A/S, Glostrup, Denmark), 
and determination of cystatin C levels was performed on the Hitachi Modular P analysis 
system. The total analytical imprecision was 2.1% for a control sample at a concentration of 
1.0 mg/L and 1.7% for a control sample at 4.0 mg/L. The reference range was as follows: 
0.55–1.15 mg/L for the age of 1–50 years and 0.63–1.44 mg/L for the age >50 years [19]. 

Anti-Müllerian Hormone
AMH was analyzed at the Department of Clinical Chemistry at Karolinska University 

Hospital, Stockholm, Sweden. AMH in serum was determined by ELISA using a commercial 
kit (Ansh Labs Ultrasensitive AMH/MIS ELISA) with a detection limit of 0.023 µg/L and 
within- and between-assay coefficients of variation (CVs) of 4 and 5%, respectively. The assay 
had a mean linearity of 98% over the dilution range of 1: 2–1: 16.

Table 2. Results of analyses

Controls CKD 1–2 CKD 3–4 p value

miR-155, AU 1.09 (0.44) 4.51 (3.80) 2.75 (1.77) 0.01 a; 0.006 a
Sperm concentration, 106/mL 88 (42) 54 (39) 42 (29) 0.008
Total sperm count, 106 266 (109) 189 (183) 111 (88) 0.016
Semen volume, mL 3.3 (1.3) 3.0 (1.5) 2.4 (0.8) 0.25
Percentage motile sperm, % 65 (16) 55 (23) 47 (23) 0.068
DFI, % 10.6 (4.9) 15.9 (15.7) 15.0 (9.7) 0.37
AMH, µg/L 9.5 (3.6) 8.3 (4.8) 7.5 (4.4) 0.49

Values are expressed as means (standard deviation). miR, microRNA; AU, arbitrary units; DFI, DNA 
fragmentation index; AMH, anti-müllerian hormone. a Kruskal-Wallis test compares controls with chronic 
kidney disease (CKD) 1–2 and CKD 3–4. Other variables tested by ANOVA.
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Measured Glomerular Filtration Rate
Glomerular filtration rate (GFR) was determined by measuring the plasma clearance of 

iohexol according to a one-compartment model. Samples were taken after the distribution 
phase in the assumed monoexponential part of the plasma decay curve. Iohexol was analyzed 
using high-performance liquid chromatography [20, 21]. The reference range was 80–125 
mL/min/1.73 m2 for this age of patients.

C-Reactive Protein
Samples were sent to the laboratory at the Department of Clinical Chemistry at the Skåne 

University Hospital, Malmö, Sweden, where it was immediately analyzed according to 
standard procedures. Plasma C-reactive protein (CRP) was measured by rate turbidimetry. 
The detection limit was 0.2 mg/L, and the interassay CVs were 6% at 15 mg/L and 5% at 
85 mg/L.

Semen Analyses
In the collecting and analyzing of the semen samples, the investigators followed 

the World Health Organization’s guidelines [22], which was the latest version of the 
manual at the time sample collection was initiated. The laboratory at the Skåne Univer- 
sity Hospital is one of the reference laboratories in the European Society of Human Re- 
production and Embryology/Nordic Association for Andrology external quality control 
program [23]. 

Semen volume, sperm concentration, total number of sperm per ejaculate, and sperm 
motility were determined. Sperm DNA fragmentation index (DFI) was evaluated using the 
sperm chromatin structure assay (SCSA) [24]. 

The participants were asked to keep an abstinence period of 2–7 days. Semen samples 
were obtained at the RMC or at home. In the latter case, specimens were brought to the labo-
ratory within 60 min from the time of ejaculation. Most of the men with CKD delivered 2 
samples. The first sample, on which SCSA was performed, was taken into consideration in the 
statistical analysis performed in this paper. Only 1 ejaculate was obtained from the fertile 
men. We analyzed semen volume, sperm concentration, and motility. Following liquefaction, 
200 μL of the ejaculate were stored at –80  ° C for subsequent SCSA analysis. 

Sperm Chromatin Structure Assay
The details of these methods have previously been described [24, 25]. Shortly, the SCSA 

is based on the phenomenon that chromatin with DNA strand breaks has a tendency to 
denature when exposed to an acid detergent, whereas normal chromatin remains stable. The 
SCSA measures the denaturation of sperm DNA using the dye acridine orange. Acridine orange 
is a metachromatic dye, which differentially stains double- and single-stranded nucleic acids. 
After blue-light excitation, the intact (double-stranded) DNA emits green fluorescence, 
whereas denatured (single-stranded) DNA emits red fluorescence. 

Five thousand cells were analyzed by FACSort (Becton Dickinson, San Jose, CA, USA).
Off-line analysis of the flow cytometric data was carried out by using dedicated 

software (SCSASoft; SCSA Diagnostics, Brookings, SD, USA). The percentage of sperm with 
detectable DFI (%DFI) was calculated from the DFI frequency histogram obtained from the 
ratio between the red and total (red plus green) fluorescence intensity. DFI is the proportion 
of cells containing denatured DNA [25]. The intralaboratory CV was found to be 4.5% for 
DFI. 

http://dx.doi.org/10.1159%2F000458711
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Results

The patient characteristics are shown in Table 1. The mean ages of the study groups were 
similar and plasma cystatin C levels increased at each CKD stage, as expected. The miR-155 
level was significantly higher in men with CKD 1–2 (4.51 ± 3.81; p = 0.01) and CKD 3–4 (2.75 
± 1.77; p = 0.006) than in controls (1.09 ± 0.44) (Table 2). There was no significant difference 
in the miR-155 levels of CKD 1–2 and CKD 3–4 patients (p = 0.30).

ANOVA showed significant differences in sperm concentration and total sperm count 
(Table 2). The sperm concentration in CKD 1–2 patients was (54 ± 39) ×106/mL, which was 
lower than that in controls (88 ± 42) ×106/mL, but the difference was not significant (Tukey 
post hoc, p = 0.07). The sperm concentration in CKD 3–4 patients (41 ± 29) ×106/mL was 
significantly lower than that in controls (Tukey post hoc, p = 0.01). The total sperm count 
was also significantly lower in CKD 3–4 patients than in controls (Tukey post hoc, p = 0.01). 
The mean DFIs and semen volumes of the study groups were not significantly different. 
There was a tendency towards a lower percentage of motile sperm in CKD 3–4 patients than 
in controls, but it did not reach statistical significance (Tukey post hoc, p = 0.06). Regression 
analysis revealed that miR-155 was negatively associated with sperm concentration (β = 
−0.017, p = 0.02) and total sperm count (β = −0.006; p = 0.005). AMH was positively asso-
ciated with the percentage of motile sperm cells (β = 0.063; p = 0.02). We did not find a 
significant association between miR-155 and AMH, miR-155 and CRP, or CRP and AMH. We 
also did not find significant associations between DFI and CRP, DFI and miR-155, or DFI and 
AMH.

Discussion

We found a significantly lower sperm concentration and total sperm count in men with 
CKD 3–4 than in healthy fertile controls. There was a tendency towards a lower sperm concen-
tration in men at earlier stages (CKD 1–2), but the difference was not statistically significant. 
These novel data show that a moderate reduction in kidney function can influence male 
sperm parameters. We also showed that men with CKD demonstrated increased serum 
miR-155.

miR-155 was recently shown to be a potential marker for subfertility in patients without 
CKD. miR-155 is a miRNA associated with inflammation [12, 13], which is prominent in CKD 
patients. Nevertheless, Tsatsanis et al. [17] reported that elevated miR-155 levels were asso-
ciated with male subfertility independent of inflammation and testosterone levels. We found 
that miR-155 was significantly higher in men with CKD 1–2 and CKD 3–4 than in controls, and 
that high miR-155 levels were negatively associated with sperm concentration and total 
sperm count. We found no association between miR-155 and CRP in this CKD population, 
indicating that the elevated miR-155 levels were a response to a mechanism other than 
inflammation associated with CRP as a cause of impaired semen quality. We have recently 
reported major decreases in plasma levels of AMH, a marker of Sertoli cell function, in men 
with CKD [6, 7]. To evaluate this in relation to fertility, we included assay of AMH levels in this 
study, and found an association between low AMH levels and a low percentage of motile 
sperm cells in the entire study population. We hypothesize that Sertoli cell function was 
impaired by CKD. Because Sertoli cells support and nourish spermatogenesis, it is plausible 
that a disturbance in Sertoli cell function could influence sperm motility. The finding of an 
association between AMH level and sperm motility suggests that AMH might be a subfertility 
marker in men with CKD. Goulis et al. [8] have previously reported low AMH levels in other 
groups of subfertile men. To date, the role of AMH in adult men is unknown. Previous studies, 
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including ours, have only focused on associations and not identified any causative relations 
between male fertility and AMH.

We did not find an association between AMH and miR-155, suggesting that these are 
independent markers of subfertility. MiR-155 was associated with the concentration of 
spermatozoa, and AMH was associated with sperm motility. Low AMH and elevated 
miR-155 levels in CKD patients may reflect different disturbances affecting the sperm; 
both may be found useful in the future to identify subfertile patients with early-stage CKD. 
Altered Sertoli cell function is probably not the only reason for subfertility in men with 
CKD. 

High oxidative stress is an essential mechanism underlying male infertility [26]. Oxidative 
stress reflects an imbalance between the antioxidant activity and the generation of oxidants 
in favor of the later [27]. Oxidative stress damages sperm DNA, resulting in a high DFI. In 
patients with CKD, disturbance in the balance between pro- and antioxidant capacities results 
in increased oxidative stress [28]. However, in this study DFI was not significantly higher in 
men with CKD than in controls (Table 2). Nevertheless, we cannot exclude the possibility that 
oxidative stress might contribute to male subfertility in CKD by mechanisms other than those 
related to sperm DNA integrity. Larger studies are necessary to evaluate possible correlations 
between DFI, oxidative stress, and subfertility in men with CKD.

Taken together, the study findings provide new insight and knowledge of parameters 
indicating subfertility in male CKD patients and suggest a multifactorial origin. Previous 
explanations include disturbances in the hypothalamic-pituitary-gonadal axis resulting in 
altered levels of luteinizing hormone, follicle-stimulating hormone, and testosterone. Our 
findings in this and previous studies [6, 7] show that the absolute change in plasma AMH and 
miR-155 levels were greater than those of testosterone. Successful renal transplantation has 
been shown to normalize testosterone deficiency in uremic men [29]. However even though 
renal transplantation seems to improve male fertility and semen parameters, there are 
reports of renal transplanted men with remaining severe deficiency of sperm motility [30]. 
This is consistent with our finding that a moderate reduction in kidney function influences 
the Sertoli cell function and sperm motility. 

Our study has both limitations and strengths. The small study population limited the 
power of the statistical analyses, and the cross-sectional study design makes it possible 
to show associations, but not causal relationships, between parameters. However, the 
substantial, significant increase of miR-155 minimizes the disadvantage of studying a small 
number of patients. This study also excluded recently and previously transplanted patients 
as well as patients receiving immunosuppressive drugs, both of which could affect the reli-
ability of the results.

In conclusion, this study shows for the first time that male fertility might be disturbed 
during the early stages of CKD and that sperm concentration and total sperm count were 
already affected in patients with moderate renal failure (CKD 3–4). We also showed that 
miR-155 was upregulated in men with CKD and that it may reflect subfertility in those patients. 
Furthermore, AMH, previously shown to be decreased in men with CKD, was positively asso-
ciated with the percentage of motile sperm cells. This association might indicate that low 
AMH levels could reflect disturbed Sertoli cell function and that AMH could be a marker of 
subfertility in men with CKD. These findings warrant further exploration in a larger popu-
lation to confirm our initial findings.
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