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Abstract: Ionizing radiation present in extraterrestrial environment is an important factor that
affects plants grown in spaceflight. Pearson correlation-based gene regulatory network inferencing
from transcriptional responses of the plant Arabidopsis thaliana L. grown in real and simulated
spaceflight conditions acquired by GeneLab, followed by topological and spectral analysis of the
networks is performed. Gene regulatory subnetworks are extracted for DNA damage response
processes. Analysis of radiation-induced ATR/ATM protein–protein interactions in Arabidopsis
reveals interaction profile similarities under low radiation doses suggesting novel mechanisms of
DNA damage response involving non-radiation-induced genes regulating other stress responses in
spaceflight. The Jaccard similarity index shows that the genes AT2G31320, AT4G21070, AT2G46610,
and AT3G27060 perform similar functions under low doses of radiation. The incremental association
Markov blanket method reveals non-radiation-induced genes linking DNA damage response to root
growth and plant development. Eighteen radiation-induced genes and sixteen non-radiation-induced
gene players have been identified from the ATR/ATM protein interaction complexes involved in
heat, salt, water, osmotic stress responses, and plant organogenesis. Network analysis and logistic
regression ranking detected AT3G27060, AT1G07500, AT5G66140, and AT3G21280 as key gene
players involved in DNA repair processes. High atomic weight, high energy, and gamma photon
radiation result in higher intensity of DNA damage response in the plant resulting in elevated values
for several network measures such as spectral gap and girth. Nineteen flavonoid and carotenoid
pigment activations involved in pigment biosynthesis processes are identified in low radiation dose
total light spaceflight environment but are not found to have significant regulations under very high
radiation dose environment.

Keywords: ionizing radiation; topological and algebraic spectral network analysis; Pearson corre-
lation; non-radiation-induced genes; Markov blanket; causal relation; logistic regression; Jaccard
similarity index; flavonoids and carotenoids

1. Introduction

Space is an environment that may have harmful effects on living organisms due to
its hostile characteristics such as low oxygen, microgravity, lower pressure, and radiation.
Radiation is the emission of energy as electromagnetic waves or as moving subatomic
particles, especially high-energy particles. Radiation is of two types: non-ionizing and
Ionizing Radiation (IR). The radiation experienced in low Earth orbit is primarily low
Linear Energy Transfer (LET) present in the International Space Station (ISS). Organisms in
space are exposed to radiation, which affects the health of humans and the anatomy and
growth of plants and animals [1]. Space missions have to deal with IR in current spacecraft
and future long-term deep-space missions [2]. Plants are affected by radiation resulting in
damage to cellular components and damage to Deoxyribonucleic Acid (DNA) [3]. Exposure
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to radiation causes DNA lesions in plant cells such as single-stranded breaks, Double Strand
Breaks (DSB), mismatches, and modified bases. This leads to DNA Damage Response
(DDR) that includes signal transduction, triggering either DNA repair, cell survival, or cell
death [4].

The plant Arabidopsis thaliana (Arabidopsis) is a member of the mustard family widely
used as a model organism in plant biology for studies of the cellular and molecular biology
of flowering plants. It has a rapid life cycle of about six weeks from germination to mature
plants. It can be easily cultivated in restricted space, has a small genome, a large number of
mutant lines, extensive genetic maps, and genomic resources. Hence, it has been chosen
as a model organism for spaceflight studies by research communities [5,6]. Similar to
observations made on terrestrial plant stressors, spaceflight missions have made extensive
observations and collected transcriptional gene regulatory datasets of Arabidopsis [7]. Plants
have evolved genes that participate in DNA repair pathways that help the plant to survive
the effects of radiation. Exposure to IR in Arabidopsis has shown a decrease in DNA
methylation with no effect on morphology or root growth or seed germination [8]. Ataxia-
telangiectasia and Rad3-related protein (ATR) and Ataxia-Telangiectasia Mutate (ATM)
are Arabidopsis homologs of the human ATR and ATM genes, which are activated by DNA
single and double-stranded breaks in eukaryotes [9]. ATM-dependent transcriptional
changes in Arabidopsis due to IR and its influence on root growth are discussed in [10].
Two mutants of Arabidopsis defective in the ATR and ATM protein kinases have shown
hypersensitivity to radiation resulting in the upregulation of hundreds of genes, while
both ATR and ATM mutants responded with transcriptional changes to DNA damage due
to radiation [11]. The effect of acute radiation on Arabidopsis growth and its impact on
protein-coding genes is presented in [12].

Apart from DDR, plants adopt pigment biosynthesis processes to protect them against
Ultraviolet (UV) radiation. These pigments are flavonoids, betalains, and carotenoids.
Flavonoids provide a range of color from pale-yellow to blue and belong to the class
of phenylpropanoids [13]. Carotenoids contain up to 15 conjugated double bonds [14].
It has been shown that light induces expression of carotenoid genes during leaf, flower
development, and fruit ripening in Arabidopsis [15]. Carotenoids protect the plant against
excessive light and add color to the flowers, fruits, and seeds [16].

163 ATR/ATM genes in Arabidopsis have been shown experimentally as responding
to ionizing radiation in [11]. We call these ATR/ATM genes radiation-induced genes and
other downstream genes of stress signaling non-radiation-induced genes [17]. There is no
putative radiation subnetwork analysis for detecting radiation and non-radiation induced
genes that are involved in biological processes related to radiation response in the plant. In
this paper, we are analyzing the effects of low LET radiation on Arabidopsis found in low
Earth orbit experienced by current spaceflight missions STS-129 and SpaceX. As long term
spaceflight missions beyond the shielding effects of Earth’s atmosphere and magnetic field
are contemplated, we also analyze the effects of two different types of IR on Arabidopsis:
gamma photons, which have low rates of linear energy transfer (LET), and relativistic Fe
nuclei (here termed HZE), a high LET form of IR [18]. The regulation of the Carotenoid
Biosynthesis Process (CBP) at the transcriptional level is important for the production of
plant hormones, photosynthesis, and dispensing of seeds. In this paper, we investigate
CBP regulation in the spaceflight environment, as well.

As modules are more informative for the regulatory mechanism of a biological pro-
cess [19], we perform module-based analysis and have identified radiation and non-
radiation induced gene/protein interactions in DNA repair processes, as well as flavonoids
and carotenoids that respond to light environment in spaceflight. We call these modules
subnetworks. The hypothesis of this research is: if subnetworks of radiation-induced bi-
ological processes are extracted, then hub genes and target (authority) genes including
non-radiation induced genes can be identified, because network analysis detects and
ranks hub genes and authority genes. Furthermore, topological and algebraic spectral net-
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work analysis enables the comparison of the subnetworks for different doses of radiation,
revealing similarities and differences in the regulation of these processes.

2. Materials and Methods

Datasets from the GeneLab repository [20] are mined for studying the effects of low
radiation doses in low Earth orbit, and very high doses of high LET and gamma photos
found beyond Earth’s atmosphere on Arabidopsis. All the omics datasets in GeneLab are
preprocessed and normalized before being published. The radiation metadata for GLDS-7,
120, 37, 38, and 46 are given in Supplementary Table S1.

2.1. GeneLab Datasets

GLDS-7: the dataset contains microarray gene expression data from the tissues (roots,
leaves, and hypocotyls) of the plant Arabidopsis Wassilewskija (WS) and Columbia (Col-0)
ecotypes grown in spaceflight and ground control [21]. Ground control experiments were
conducted using identical ABRS hardware and an environmental chamber programmed to
International Space Station (ISS) environmental conditions. The data contains 20,000 genes
with five expression values per component.

GLDS-120 dataset contains the transcriptomics data of the Arabidopsis WS and Col-
0 ecotypes, and the gene Phytochrome D (phyD) mutant of ecotype Col-0. The different
stressors imposed on the plants are light and dark in spaceflight, and light and dark on the
ground. Gene expression data are available for pairs of combinations of genotypes and
ecotypes [22,23].

The GLDS-7 and GLS-120 datasets were collected under a low dose of radiation, with
an average absorbance of 1.25 milliGray (mGY) and an average absorbance of 1.655 mGY
for low-LET (SAA), and an average cumulative absorbed dose of 1.86 mGY.

GLDS-37 dataset contains the transcriptomic data of four different ecotypes of Ara-
bidopsis in spaceflight microgravity and on the ground: Col-0, LER-2, WS-2, and Cvi-0. The
seeds of the mentioned ecotypes are germinated in orbit and grown for eight days [24].
Ground control data is collected under the same environmental stressors. RNAseq is
performed to analyze the transcriptomic changes of the ecotypes.

GLDS-38 dataset contains proteomics and transcriptomics data of the Arabidopsis
seedlings. The seeds were flown in the International Space Station (ISS) and allowed
to germinate and grow for three days in microgravity [25]. Arabidopsis Wild Type Col-0
seeds were plated onto twenty-two 60 mm Petri plates, loaded into PDFUs, and inserted
4 Biological Research in Canisters (BRICs).

The GLDS 37 dataset was collected under a low radiation dose with a cumulative
absorbed dose of 1.06 mGY. The GLDS-38 data was collected under a low radiation dose
with a cumulative absorbed dose of 0.38 mGY. The above four datasets correspond to
radiation exposure in low Earth orbit spaceflights.

GLDS-46 dataset was collected under HZE (1 Giga electron Volt (GeV) Fe26+ high
mass, high charge, and high energy relativistic particles) and photons (γR) which have
low rates of Linear Energy Transfer (LET) on Arabidopsis seedlings. Both types of radiation
showed DSB damage response. This dataset was collected under a very high dose of 100 Gy
at a dose rate of 1.8 Gy/min. A 100 Gy radiation dose in Arabidopsis would generate the
same number of DSBs as a 4Gy dose in humans. We are interested in this dataset because
of foreseen long-term manned missions beyond the Earth’s atmosphere and magnetic field
to the moon and Mars [18].

2.2. Gene Regulatory Network Inferencing Using Pearson Correlation

We define a graph-based representation for the gene expressions. Formally, a graph is
a pair of sets G:= (V,E) where |V| is the set of vertices (molecules, genes, proteins, nodes,
points) and |E| is the set of edges, which is an ordered pair of V. The graph (V, E, o, t)
is called directed, if directed edges are allowed, i.e., not all edges have reverse edges as
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members of E. In a directed graph G = (V,E,o,t), the edges e = (u,v), the origin of e is denoted
by o and the terminal v is denoted by t(v).

The Pearson’s correlation coefficient between two variables (genes, nodes) is defined
as the covariance of the two variables (x and y) divided by the product of their standard
deviations. Gene expression values ranging from three to eight for each gene are used to
compute Pearson correlation. The expression values are linearly related, hence Pearson
correlation is used [26]. We have applied Pearson correlation network analysis to identify
key gene players for cell wall biosynthesis, and root growth in Arabidopsis in spaceflight
using the gene expression values from GLDS-7 and GLDS-120 datasets [27]. The Pearson
correlation coefficient is used as the measure of correlation (between −1 to 1) and gene pairs
are considered co-expressed if their p-value is less than or equal to the corrected threshold
p-value. The t-test is used to establish if the correlation coefficient is significantly different
from zero, and, hence there is evidence of an association between the two variables. The
genes are treated as nodes and the relation between them is an edge. Therefore, the genes
with the highest degree are related to a higher number of target or authority genes. Those
genes that have the highest degree or intramodule (within graph) connectivity are treated
as hub genes to construct the gene regulatory networks (GRNs). Vertices (u,v) are the
edges (arcs), respectively [28]. A graph is weighted if each edge e is assigned a real-valued
weight w. In our approach, the weights of the edges between two nodes (genes) are the
correlation values.

2.3. Causal Relations Discovery Using Incremental Association Markov Blanket (IAMB) Method

Causal relations are difficult to infer and require careful application of experimental
interventions. However, causal relations can be discovered by statistical analysis of purely
observational data, which is known as causal structure learning [29]. Using Markov
properties, a gene is conditionally independent of all other genes except its parents, children,
and children’s parent variables (genes). Causal relationships are useful for combining
omics data with Genome Wide Association Studies (GWAS), for inferring relationships
between genotype and phenotype [30].

The method used for causal relation inferencing here is the Markov Blankets (MB)
method and Bayesian Network (BN) learning [31–34]. Joint conditional probabilities are
represented by a graph in a Bayesian network, the nodes (genes) are connected by the
Markov property which states that a node is conditionally independent of its nondescen-
dants, given its parents. Applying the faithfulness condition, the IAMB of any node (gene)
in a BN is the set of parents, children, and spouses (the other parents of their common chil-
dren) of the gene [32]. We determine the direct causes of a gene’s upregulation, the effects
on a gene or a protein due to the upregulation of the gene, as well as the upregulation of
the causes of the activation of the gene. In our case, each gene is a variable with a series of
expression values. The Markov blanket of a gene X is the smallest set MB(X) containing
all genes carrying information about X that cannot be obtained from any other gene. The
MB(X) of a node (gene) X includes its parents, children, and spouses which are the strongly
relevant genes to gene X; that is, of genes that support and are associated with the target
gene (X). Association measures and conditional independent tests are applied to identify
the strongly relevant genes [35,36]. Hence, MB(T) is a causal structure learning algorithm
useful for the discovery of regulatory interactions among genes from gene expression data.

2.4. Computation of Network Measures

The network measures include spectral gap, girth or diameter, density, connected
components, and Jaccard similarity [28,37,38]. These are used to compare the subnetworks
for each of the processes.

Spectral gap: For a graph G, the Laplacian eigenvalues can be ordered as 1 = |λ1|
≥ |λ2|≥ · · · ≥|λn| (G may be directed or undirected, weighted or unweighted, simple
or not). The Spectral gap is defined as: δλ = |λ1| − |λ2|. By normalizing the Laplacian
matrix of G, the eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn > 0, and the Laplacian spectral gap
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will be: δλ = 1 − |λ2|. The spectral gap is also known as a random walk, in terms of this
concept λ2 is the most important eigenvalue. Note that if the spectral gap is 0, which means
λ2 = 1 (Γ is not (strongly) connected or if Γ is bipartite), this means a typical random walk
will not converge to a unique distribution or dominant eigenvector. As long as the spectral
gap is greater than 0, which means |λ2| < 1, then the random walk converges to a unique
dominant eigenvector, and the spectral gap measures the rate of convergence, the larger the
spectral gap (the smaller|λ2|), the better the network flow (large h(G), diffusion, mixing,
random walk, expansion, sparsity, and other highly desirable properties of the network G).

Girth of a graph is the smallest positive integer r such that Trace(Ar) > 0. Let d = d(G)
be the smallest integer (if it exists) so that for every pair of vertices (u,v) there is a walk of
length at most d from u to v. Then d(G) is called the diameter or maximum eccentricity of
the graph G.

Density of a graph is the ratio between the number of edges and the number of
possible edges. Density is a measure of the compactness of a module (subnetwork) and
measures the connectivity strength of pairs of genes in the module [19].

Connected component in a directed graph is a subgraph in which any two vertices are
connected by paths, and which is connected to no additional vertices in the super graph.

Jaccard similarity index is used to quantify the neighborhood similarity between two
vertices (genes), it is also called topological similarity [39]. The Jaccard index calculates
the proportion of v-type genes between two u-type genes, relative to the total number
of v-type genes connected to either u-type genes [40]. An index of 1 indicates the exact
similarity between u and v, while 0 indicates no similarity between the two sets. The above
measures are computed for the subnetworks. If the Jaccard similarity is 0.5, it indicates that
half of the genes in one subnetwork are also found in the other subnetwork. Furthermore,
hub genes of subnetworks are compared using the degree distribution and subgraph
centrality measures.

Degree distribution is the number of neighbors connected to a node; in other words, it
is the number of edges incident on a node. The degree distribution can give information
about the structure of a network. The networks can be directed or undirected. In the
undirected case, the degree of node i is the number of connections it has, and it can be
represented as an adjacency matrix, with the sum over all nodes. For directed graphs,
there are two types of degree distributions: in-degree, which is the number of connections
entering the node, and out-degree, which is the number of outgoing connections. The
degree distribution for a directed graph is the fraction of vertices of degree kin and kout. In
this case, the degree distribution is computed for the hub genes in the four low radiation
dose subnetworks.

Subgraph Centrality of a node is a weighted sum of closed walks of different lengths in
the network starting and ending at a node. Centrality measures are used widely in biologi-
cal networks to infer protein-protein interactions and identify essential proteins [41–43].

2.5. Logistic Regression-Based Gene Ranking

Logistic regression, also called a logit model, is a statistical method for analyzing a
dataset in which there is any number of variables that determine an outcome. The goal
of this method is to find the best fitting model to describe the relationship between a
dichotomous characteristic of interest (dependent variable; response or outcome variable)
and the explanatory variable. It is used to model the log-odds of a gene belonging to a
specific category as a linear function of the statistical significance. Most likely enriched
gene sets will be identified based on the p-value or based on the odds ratio if a ranking
independent of category size is desired [44]. The logistic regression method is an extension
of the χ2-test and has higher statistical power than other methods because the important
values do not depend on a threshold.

Figure 1 shows the steps involved in the extraction of radiation subnetworks. Pearson
correlation and IAMB methods outlined in Section 2B and 2C are applied to the GLDS-
7, 120, 37, 38, and 46 expression values of Arabidopsis Col-0 ecotype in spaceflight to



Genes 2021, 12, 938 6 of 20

construct the GRNs. Weak correlations are eliminated by thresholding p-values which
correspond to the largest t-test statistics in the Pearson correlation GRNs. GSEA is used to
extract subnetworks of significant DDR processes with a majority of higher activations of
radiation-induced ATR/ATM genes. Radiation-induced ATR/ATM hub genes are identi-
fied in the subnetworks. In these subnetworks, genes that have strong correlations with
radiation-induced ATR/ATM genes are detected. The genes significantly altered due to
other spaceflight parameters that are not correlated with ATR/ATM genes are not detected.
Network measurements listed in Section 2D are computed and used to analyze the subnet-
works. Certain non-radiation-induced genes that interact with the radiation-induced hub
genes are detected in the DDR processes subnetworks. The associated processes and molec-
ular functions of the key non-radiation induced genes that interact with the ATR/ATM
radiation-induced hub genes are identified. Flavonoid and carotenoid biosynthesis pro-
cesses are identified from the Pearson GRNs and MB causal relational networks and their
corresponding subnetworks are extracted. The carotenoid and flavonoid hub genes are
detected in the subnetworks. The logistic regression method explained in Section 2E takes
the network measurements for the radiation-induced hub genes in the subnetworks as
input and ranks them from the most to the least significant.

Figure 1. Flow diagram showing the sequence of steps followed for extraction of radiation response
subnetworks from the gene expression values in the GLDS datasets and network analysis.

The Pearson correlation GRN construction is implemented in Python, and the causal
relational analysis using the IAMB method is implemented in R. The computational al-
gorithms for the network measures, and logistic regression ranking of hub genes are
implemented in Python. The github link for the scripts is provided in the Supplemen-
tary Material.
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3. Results

The gene expression values (three in GLDS-120, three in GLDS-38, five in GLDS -7, six
in GLDS-37, and eight in GLDS-46) are used to construct Pearson correlation GRNs. The
datasets are analyzed separately. Weak correlations with p-values greater than 0.0005 are
removed. A Gene Set Enrichment Analysis (GSEA) [45] of the Pearson correlation GRNs
for low radiation dose datasets reveals four main processes with higher activation of the
ATR and ATM genes. They are cellular response to stimulus, cellular response to stress,
cellular response to DNA damage stimulus, and DNA metabolic processes. The radiation
protection pigment biosynthesis processes identified are the flavonoid biosynthesis process
and carotene catabolic process. The subnetworks for these processes are extracted from the
GRNs for each dataset. The hub genes are detected by thresholding the degree distribution
of the subnetworks. A threshold between 5 and 34 for the degree distribution is used to
select the hub genes for the Low Radiation Dose (LRD - LRD1 refers to GLDS-37, LRD2
refers to GLDS-38, LRD3 refers to GLDS-7 and LRD4 refers to GLDS-120) subnetworks.
A threshold of 19 to 47 is used to select the hub genes for the very high radiation dose
subnetworks (HZE and γR radiation GLDS-46 dataset). The protein-protein interactions in
the subnetworks are discussed below. The hub genes for each process are given by their
Arabidopsis Gene Identifier and their gene names inside the parenthesis. The gene names
are also listed in the Supplementary Tables S2 and S3. The gene ontologies of the ATG
genes are obtained from [17,46].

3.1. Cellular Response to Stimulus

Cellular response to stimulus process is the mechanism by which a cell detects and
responds to external or internal signaling stimuli causing the cell to change in state or
activity in terms of movement, secretion, enzyme production, and gene expression [47].
Tables 1 and 2 show the degree distribution and subgraph centrality measure for the hub
genes in the subnetworks for the cellular response to stimulus process in Arabidopsis grown
in low radiation dose datasets LRD1 and LRD2, and datasets LRD3 and LRD4, respectively.
The higher centrality values in LRD4 subnetwork show the greater occurrence of the
three genes AT3G27060 (TSO2), AT3G51920 (CML9), and AT1G70940 (PIN3) (Table 2) in
the pathways of other genes and play an active role in the cellular response to stimulus
process. A higher value of degree distribution for the hub-gene indicates that it is the
most influential gene in the biological pathway. The low radiation dose subnetworks
for LRD1 and LRD2 datasets have more hub genes for this process (Table 1). The genes
AT3G13380 (BRL3), AT3G61630 (CRF6), and AT5G61600 (ERF104) have higher values
than other hub genes in the low radiation dose subnetworks. They are brassinosteroid
receptor proteins and ethylene-responsive transcription factors involved in protein and
DNA-binding molecular functions.

Table 1. Network measures for hub genes in the subnetworks for the cellular response to stimulus
process under low radiation dose.

Arabidopsis Gene Identifier
for Hub Genes

Degree Distribution Subgraph Centrality

LRD1 LRD2 LRD1 LRD2

AT1G08260 1 1 1.5431 1.5431
AT1G29440 1 1 1.5431 1.5431
AT2G30360 1 4 1.5431 1.5431
AT3G13380 12 7 15.9895 7.0825
AT3G51920 6 1 5.8344 1.5431
AT3G61630 2 13 2.1782 18.4146
AT4G28950 1 3 1.5431 2.9146
AT5G07100 1 9 1.5431 10.0677
AT5G40840 4 4 3.7622 3.7622
AT5G48720 1 20 1.5431 3.7622
AT5G61600 1 15 2.1782 18.4146
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Table 2. Network measures for hub genes in the subnetworks for the cellular response to stimulus
process under low radiation dose.

Arabidopsis Gene Identifier for
Hub Genes

Degree Distribution Subgraph Centrality

LRD3 LRD4 LRD3 LRD4

AT3G27060 2 22 2.3811 6253.2089
AT3G51920 4 40 4.9976 11,529.486
AT1G70940 1 22 1.5907 12,412.744

3.2. Cellular Response to Stress

Environmental stressors such as extreme temperature, exposure to toxins, radiation,
and mechanical damage result in molecular changes that cells undergo in response to these
stressors [48]. Table 3 shows the degree distribution and subgraph centrality measure
for the hub genes in the subnetworks for the cellular response to stress process for low
radiation dose (datasets LRD1 and LRD2).

Table 3. Network measures for hub genes in the subnetworks for the cellular response to stress
process under low radiation dose.

Arabidopsis Gene Identifier for
Hub Genes

Degree Distribution Subgraph Centrality

LRD1 LRD2 LRD1 LRD2

AT1G08260 1 1 1.5431 1.5431
AT5G40840 4 4 3.7622 3.7622
AT5G07100 1 9 1.5431 10.0677
AT5G48720 1 20 1.5431 43.7775

The AT5G48720 (XRI1) has a higher degree distribution and subgraph centrality
measures in the low radiation dose (LRD2) subnetwork (Table 3). While there are four
hub genes involved in cellular response to stress in the low radiation dose LRD1 and
LRD2 subnetworks, there is only one hub gene in the low radiation dose LRD3 and LRD4
subnetworks (Table 4).

Table 4. Network measures for hub gene AT3G27060 in the subnetwork for the cellular response
to stress process (row 1), cellular response to DNA damage stimulus (row 2) and DNA metabolic
process (row 3) under low radiation doses.

DDR Processes
Degree Distribution Subgraph Centrality

LRD3 LRD4 LRD3 LRD4

Cellular response to stress 3 22 54.4538 2.9737
Cellular response to DNA damage stimulus 2 33 2.1782 156.2451

DNA metabolic process 2 22 2.3811 57.2840

3.3. Cellular Response to DNA Damage Stimulus

DNA damage due to environmental stress such as radiation or errors in metabolism
causes the cell to change in state or activity in terms of movement, secretion, enzyme
production, and gene expression. There are no common hub genes for this process in
the LRD1 and LRD2 subnetworks. However, the same gene AT3G27060 that responds to
stress also shows higher activity in response to DNA damage stimuli in LRD3 and LRD4
subnetworks. The network measures for this process are given in the second row in Table 4.

3.4. DNA Metabolic Process

DNA metabolism includes both DNA synthesis and degradation reactions involved
in DNA replication and repair [49]. Through this process, the cellular DNA levels are
maintained. The LRD1 and LRD2 subnetworks do not have any common hub genes
for this process, but the AT3G27060 is involved in this process in the LRD3 and LRD4
subnetworks. It also has high subgraph centrality values in both the cellular response to
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DNA damage and DNA metabolic processes (second and third rows of Table 4) showing
that it is involved in several pathways for both the cellular response to DNA damage and
DNA metabolic processes.

Figure 2 shows the subnetwork for cellular response to stress process under low
radiation dose (LRD3 dataset), and Figure 3 shows the subnetwork for the DNA metabolic
process under low radiation dose (LRD4 dataset), respectively. The degree distribution
and subgraph centrality have the highest values for the hub genes in the total light low
radiation dose subnetwork from the LRD4 dataset as can be seen in Figure 3. All the genes
except the hub genes (red circles) are non-radiation-induced in this subnetwork. These
genes are involved in responses to osmotic and water stress, and response to cadmium
ions, metal ions, inorganic substances, and water deprivation.

Figure 2. Subnetwork for cellular response to stress process in Arabidopsis under low radiation dose
(LRD3) dataset. Red circles are hub genes. There are 7 significant hub genes in this subnetwork.
Larger the circles, higher the value of in-degree distribution.

Figure 3. Subnetwork for DNA metabolic process under low radiation dose (LRD4) dataset. Red
circles are hub genes. The hub genes AT3G27060 (TS02) and AT2G21790 (RNR1) are being activated
by the genes at the non-arrow end of the edge. Both of these genes have a high in-degree distribution.
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3.5. Flavonoid Biosynthesis and Carotenoid Catabolic Processes

The subnetworks for flavonoid biosynthesis and carotenoid catabolic processes with
higher activations of genes that encode and regulate flavonoids and carotenoids are
extracted from GRNs of Arabidopsis grown in total light environment (LRD4) dataset.
Figure 4A,B show the interaction profiles of these genes with green circles for flavonoid
encoding genes, and yellow circles for carotenoid encoding genes, respectively. These
pigments are involved in UV radiation protection. They have been reported to have higher
regulations in several ground-based studies on UV response of Arabidopsis [50]. There are
higher regulations of flavonoids and carotenoids, which also include negative regulations
as indicated by the weights on the edges of Figure 4A,B. From the low radiation dose
dataset LRD4, we also find causal relations of five flavonoid genes and nine carotenoid
genes, as shown in Figure 4C.

Figure 4. (A) Subnetwork for flavonoids biosynthesis process under light environment in space Figure 4. (GLDS-120)
dataset. (B) Subnetwork showing carotenoid AT3G14440 interactions. This is a key enzyme in the biosynthesis of abscisic
acid. It is regulated in response to drought and salinity and expressed in roots, flowers and seeds. (C) Markov blanket
subnetwork showing causal relations of flavonoids (green) and carotenoids (yellow).
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3.6. Subnetwork Measurments for the Low, and Very High Radiation Dose DDR Processes

We compare the subnetworks for low radiation doses using topological and algebraic
network measures. Table 5 summarizes these measures. We constructed GRNs and
applied GSEA to extract the subnetworks for DDR processes with a larger regulation of
the ATR/ATM genes for the very high radiation dose of HZE and γR radiation dataset
(GLDS-46). We analyzed the subnetwork measurements for this dataset to understand
the effects of very high doses of radiation on plants grown for life support in long-term
deep-space missions beyond the Earth’s atmosphere to the Moon and Mars [18]. The two
main processes identified from the GRNs of the very high radiation dose datasets are DNA
metabolic process and nucleic acid response process. Figure 5 shows the subnetwork for
the DNA metabolic process in Arabidopsis under a very high HZE radiation dose. Figure 6
shows the subnetwork for the nucleic acid response process under a very high γR radiation
dose. The network measures for these two processes are summarized in Table 6.

Figure 5. Subnetwork for DNA metabolic process in Arabidopsis under very high HZE radiation dose.
Hub genes are indicated by red circles. There are seven significant hub genes in this subnetwork.
Larger the circles, higher the activation of the hub genes.

Figure 6. Subnetwork for the nucleic acid response process in Arabidopsis under very high γR
radiation. Red circles are hub genes. There are nine significant hub genes in this subnetwork. Larger
the circles, higher the activation of the hub genes.
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Table 5. Network measures for the subnetworks for low radiation dose DDR processes.

Cellular Response to Stimulus

Network Measurements LRD3 LRD4 LRD1 LRD2

Spectral gap 0.3347 6.172 2.013 0.099
Density 0.0489 0.0711 0.022 0.0037

Diameter 1 1 1 1
Conn. Comps. 3 2 3 28

Cellular Response to Stress

Spectral gap 0.7923 4.69 0.99 0.099
Density 0.027 0.087 0.102 0.0104

Diameter 2 1 1 1
Conn. Comps. 9 1 5 17

DNA Metabolic Process

Spectral gap 0.858 1.202 0.99 0.4112
Density 0.5714 0.038 0.166 0.0059

Diameter 1 1 1 2
Conn. Comps 6 2 3 69

Cellular Response to DNA Damage Stimulus

Spectral gap 0.068 5.74 0.99 0.1399
Density 0.055 0.058 0.166 0.0074

Diameter 1 1 1 2
Conn. Comps. 7 1 3 55

Table 6. Network measures for the subnetworks for very high HZE and γR radiation dose DDR processes.

Network Measurements
DNA Metabolic Process Nucleic Acid Response Process

HZE γR HZE γR

Density 0.1782 0.2040 0.2465 0.2211
Spectral gap 7.5153 8.9726 12.2554 10.4919

Diameter 2 4 2 5

The HZE and γR dataset corresponds to a very high radiation dose of 100 Gy at a
dose rate of 1.8 Gy/min., and 30 Gy at a dose rate of 2.5 Gy/min., respectively. Hence,
the spectral gap measures are much higher for these subnetworks ranging from 7.5153 to
12.2554 as seen in Table 6, whereas the spectral gaps for the low radiation dose subnetworks
in Table 5 have lesser values ranging from 0.068 to 0.858. The larger the spectral gap (the
smaller |λ2|), the higher the network flow with sparseness, expansion, diffusion, and
random walk. Hence, these networks have a higher measure of random walks, implying
that the nodes that lie closer to each other in the network perform similar functions [51].
This also indicates that the plant has higher transcriptional costs in adapting to the very
high levels of radiation in the environment. The low radiation dose subnetworks (LRD3 and
LRD4) have a large number of connected components ranging from 3 to 9, while the HZE
and γR subnetworks have only one connected component. Also, the low radiation dose
subnetworks have an average shortest path of 1.5 and a diameter of 1 or 2. The processes
for the very high dose of HZE and γR radiation subnetworks have an average shortest
path of 3.25 and a diameter between 2 and 5. Also, there are no non-radiation-induced
genes identified in the very high radiation dose subnetworks.

3.7. Jaccard Similarity Between Subnetworks

The Jaccard similarity indices in Table 7 show the neighborhood similarity of radiation-
induced ATR/ATM hub-genes for the DDR processes influenced by very high doses of
HZE and γR radiation. It also shows the similarity of the neighborhood for the hub gene
in the two subnetworks for the low radiation dose DDR processes. The values closer to
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one indicate that the genes AT2G31320 (PARP1), AT4G21070 (BRCA1), and AT2G46610
(RS31A), and AT3G27060 (TSO2) have similar interactions in the subnetworks for the two
processes. The closer the values are to zero, the genes have minimal interaction similarity
in the neighborhood for the two processes.

Table 7. Jaccard similarity index between subnetworks for different levels of radiation doses.

Subnetwork with
Hub-Gene

Jaccard Similarity Index between HZE and γR Subnetworks

DNA Metabolic Process Nucleic Acid Response Process

AT1G09815 0.5789 0.5789
AT2G31320 0.6176 0.6176
AT4G21070 0.7619 -
AT1G13330 0.4814 0.4285
AT4G29170 0.4444 0.4444
AT2G46610 - 0.6250

Subnetwork with
hub-gene

Jaccard similarity index between LRD3 and LRD4 subnetworks

DNA metabolic process and
Response to DNA damage

to stimulus

DNA metabolic process &
Response to DNA damage

to stimulus

AT3G27060 1.0 0.1224

3.8. Logistic Regression Ranking of Hub Genes

The subgraph centrality, closeness centrality, degree distribution, page rank, and
eigenvalue centrality network measures are used by the logistic regression method to
rank the top correlated genes from the Pearson GRNs. Apart from the hub genes for the
subnetworks, the other top-ranked radiation-induced genes from the low radiation dose
subnetworks are AT3G21280 (UBP7), AT1G07500 (SMR5), and AT5G66140 (PAD2). Logistic
regression of the top correlated genes in the HZE and γR subnetworks resulted in all of the
high ranked genes being radiation-induced ATR/ATM genes. No non-radiation-induced
genes are among the top 50 ranked genes for the very high radiation dose subnetworks.

3.9. Causal Relational Network Analysis

Figure 7 shows a part of the causal relational subnetwork for the LRD1 dataset. There
are two key radiation-induced genes AT1G27940 (Q9C7F8) and AT3G60420 (Q9M217)
related to eight non-radiation-induced genes. In a causal graph, for any node (gene) X,
its parents and children are the immediate nodes (genes) that are strongly relevant in its
activation [36]. The higher activation of a parent gene will lead to the activation of the child
gene, as well. The activation of the parent gene is the cause, and the activation of the child
gene is the effect. The MB(AT1G27940) has six children genes, and the MB(AT3G60420) has
two parent genes, which indicates that this gene has a causal relationship with these two
other genes. In addition, there are 82, 72, 69, and 69 one-to-one causal relations between
radiation-induced genes and non-radiation genes in each of the LRD1, LRD2, LRD3, and
LRD4 subnetworks, respectively. The parent gene carries information most relevant to the
child gene, that cannot be obtained from another gene. The key radiation-induced genes for
low radiation dose are shown in Figure 8 in red color. The MB(AT4G28950) has one child
AT1G10800, MB(AT1G23000) has one parent AT5G40380, and MB(AT1G15580) has one
child AT1G06360. The genes that are related to AT3G60420 are involved in plant growth
and developmental processes. The genes AT1G10800, AT1G06350 (ADS4), and AT5G40380
(CRK42) (Figure 8) encode proteins and are involved in other biological processes such as
ATP binding, protein phosphorylation, fatty acid biosynthesis, and metabolic processes.
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Figure 7. Markov blanket subnetworks for low radiation dose dataset (LRD1).

Figure 8. Markov blanket subnetworks for low radiation dose dataset (LRD3—left and LRD4—right).

4. Discussion
4.1. Computational Strategy

Radiation data for GLDS studies in the ISS are provided in [52]. Previous studies of
Arabidopsis in spaceflight missions have focused on non-radiation stress responses that
are due to microgravity, although radiation is an important stressor in spaceflight [47].
The effect of ionizing radiation has been presented using traditional fold change analysis
methods in [11,18]. The novelty of our approach is the performance of computational
modular subnetwork analysis of biological processes involving a majority of radiation-
induced genes. Our modular analysis approach provides a better insight into the complex
gene interaction profiles between radiation-induced and non-radiation-induced genes in
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DDR processes. We have also determined gene associations using the Bayesian Markov
blanket method which identifies key genes based on the relevance of gene associations.
This method is attractive because of its ability to describe complex stochastic processes
with noisy observations. We have used IAMB innovatively in identifying causal relations
between ATR/ATM radiation-induced genes and non-radiation-induced genes. We have
innovatively used the Jaccard similarity index to show the similarity of neighborhood
interactions of ATR/ATM genes in the subnetworks for DDR processes. This index is not
biased by low-level, noise-derived, variability in expression [53]. We have also shown
how topological network measures of degree distribution are useful for the extraction
of subnetwork modules from larger GRNs. The subnetworks sampled from the original
GRNs also have a scale-free topology with a degree distribution that follows an exponential
power law [54]. Centrality measures are useful for distinguishing protein complexes [55].
It has been shown that the subgraph centrality has better discriminatory power than other
centrality measures such as Eigenvector, closeness, and betweenness centrality [56]. Sub-
graph centrality has been used here to distinguish the hub genes involved in the DDR
processes. The network measures of diameter, connected components, and density have
important biological implications as they can predict gene regulatory interaction landscape
intrinsic to the organism [57]. The density is the lowest for the LRD2 dataset indicating
the sparseness of the subnetworks [58]. The network measures for the subnetworks reveal
quantitatively different emerging properties for Arabidopsis grown in different radiation
dose environments. The number of connected components and diameter of the subnet-
works for the DDR processes show large variability for low and very high radiation doses.
The spectral gap has large values in the very high radiation dose subnetworks than in low
radiation dose subnetworks indicating sparseness and high connectivity of the networks.
Many biological systems are modular which results from the sparseness in the GRNs [59].
The novel algebraic analysis using spectral gap computations informs us about the dif-
fusion, mixing, and expansion properties of important genes in different radiation dose
environments. Through spectral analysis, we have shown that very high doses of radiation,
results in large complex biomolecular networks with higher values of the spectral gap.
Several machine learning methods such as logistic regression, support vector machine,
random forest regression, naïve Bayes classifier, stochastic gradient boosting, and artificial
neural networks have been applied to gene expression data to identify differentially ex-
pressed genes [60]. The advantage of logistic regression is that it allows the evaluation of
multiple explanatory variables. It is easy to implement, interpret, and train. It is better than
linear regression which produces continuous output, while logistic regression produces
discrete output. This method has ranked the ATR/ATM hub genes of low radiation dose
subnetworks, and 50 ATR/ATM genes as the top gene players responding to DNA damage
and/or ionizing radiation in spaceflight.

4.2. ATR/ATM Gene Interactions

The ATR/ATM radiation-induced genes involved in DNA repair response in Arabidop-
sis are shown as hub-genes (red color) in the subnetwork modules in Figures 2, 3, 5 and 6.
We have identified other non-radiation-induced gene players from the DDR processes.
These genes encode proteins that are involved in DNA repair as well as other responses to
Reactive Oxygen Species (ROS) and oxidative stress, osmotic stress, salt stress, light stress,
cell growth, and metabolic processes. The pigment biosynthesis process subnetworks
shown in Figure 4 (LRD4—GLDS 120 dataset) reveal significant genetic interactions with
non-pigment genes, as well. This dataset was collected from Arabidopsis grown for 11 days
in the ambient light of ISS [22]. None of the flavonoids and carotenoids show significant
regulations in the other low radiation dose datasets, and very high doses of HZE and γR
radiation datasets, and the reason for this could be the absence of light stimulation.

In Figures 2, 3, 5 and 6 the AT2G30250 (WRKY) transcription factors and other Arabidop-
sis ATR and ATM orthologues identified as hub genes are activated by several downstream
target genes of stress signaling. The role of the ATR and ATM as the initiators of com-
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prehensive signal transductions in response to DNA damage and/or ionizing radiation
is probably achieved at the post-translational level [9,61]. Figure 4B represents the ABA
biosynthetic activation as part of the stress responses which involves some of the carotenoid
catabolic pathways.

The HZE and γR radiation DDR responses of the plant exhibit complex subnetworks
for the DNA metabolic and the nucleic acid processes in response to very high doses
of radiation. The genes AT3G13380, AT5G61600, AT5G48720, and AT3G27060 in low
radiation dose subnetworks play key roles in the regulation of plant biological processes
enabling the plant to be repair proficient, thereby inhibiting any phenotypic changes
during growth. The causal associations of key ATR/ATM genes with other genes show
the most relevant genes important for the adaptation of the plant to different levels of
radiation. The 18 genes AT3G13380, AT3G61630, AT5G61600, AT3G27060, AT3G51920,
AT1G70940, AT5G48720, AT2G31320, AT4G21070, AT2G46610, AT3G21280, AT1G07500,
AT5G66140, AT1G27940, AT3G60420, AT4G28950, AT1G23000, and AT1G15580 identified
in this research are essential regulators of the processes in response to DNA damage.
Table 8 summarizes the functions of the ATR/ATM genes which shows clearly that these
genes are not only involved in DNA damage response but are also involved in other
biological processes.

Table 8. Key ATR/ATM radiation-induced genes identified from the DDR process subnetworks.

Arabidopsis Gene Identifier Gene Coding Protein Description

AT3G13380 Protein binding, protein serine kinase activity

AT3G61630 Cotyledon development, embryo development ending in seed dormancy, leaf development,
regulation of transcription, DNA-templated

AT5G61600 Cell division, defense response to fungus, phloem or xylem histogenesis, positive regulation of
transcription, DNA-templated

AT3G27060 Directly involved in synthesis of deoxyribonucleotides, DNA repair, DNA replication,
multicellular organism development, programmed cell death, regulation of cell cycle

AT3G51920 Response to salt stress and water deprivation, calcium ion binding.

AT1G70940 Positive gravitropism, regulation of root meristem growth, response to light stimulus, root
development, root hair elongation, root hair initiation

AT5G48720 DNA repair, female meiotic nuclear division, pollen development, response to X-ray

AT2G31320 DNA ADP-ribosylation, DNA repair, double-strand break repair, protein ADP-ribosylation,
protein poly-ADP-ribosylation, response to abscisic acid, response to oxidative stress

AT4G21070 DNA recombination, DNA repair, cellular response to gamma radiation, double-strand break
repair via homologous recombination, negative regulation of fatty acid biosynthetic process

AT2G46610 mRNA splicing, via spliceosome, RNA binding, protein binding
AT3G21280 Protein deubiquitination, ubiquitin-dependent protein catabolic process

AT1G07500 Cellular response to DNA damage stimulus, negative regulation of mitotic nuclear division,
regulation of DNA endoreduplication

AT5G66140 Proteasomal ubiquitin-independent protein catabolic process
AT1G27940 ATPase-coupled transmembrane transporter activity and nucleotide binding
AT3G60420 Phosphoglycerate mutase family protein
AT4G28950 Meiotic DNA repair, pollen development, and responds to X-ray
AT1G23000 Heavy metal transport/detoxification superfamily protein involved in metal ion transport
AT1G15580 Regulation of transcription, DNA-templated, response to auxin

Table 9 summarizes the functions of the non-radiation-induced key genes encoding
proteins that have significant regulatory activity and are also involved in non-DDR pro-
cesses such as stress responses specifically to salt, water, heat, and light stress and in
regulating plant development and root growth. The top five genes are the non-radiation-
induced gene players identified from the DNA metabolic process subnetwork in Figure 3.
The bottom 11 genes are identified from causal relational subnetworks.
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Table 9. Key non-radiation-induced genes interacting with ATR/ATM radiation induced genes.

Arabidopsis Gene Identifier Gene Coding Protein Description

AT1G01470 Induced in response to wounding and light stress. Might be involved in protection
against desiccation.

AT1G06390
This gene is involved in response to osmotic stress. This protein can interact with the BZR1
protein involved in brassinosteroid-mediated signaling in a Y2H assay and promotes BZR1

phosphorylation in protoplasts.

AT1G05850 Essential for tolerance to heat, salt and drought stresses. Also involved in root hair development,
cell expansion and response to cytokinin.

AT1G05680 This enzyme can also transfer glycosyl groups to several compounds related to the explosive TNT
when this synthetic compound is taken up from the environment.

AT1G05620 Transcript levels for this gene are elevated in older leaves suggesting that it may play a role in
purine catabolism during senescence.

AT3G22370 Plays a role in shoot acclimation to low temperature. Also is capable of ameliorating reactive
oxygen species production when the cytochrome pathway is inhibited.

AT5G43680 The protein is localized to the inner mitochondrial membrane that is nuclear-encoded and is
essential for plant growth and development.

AT2G19620 Plays a role in dehydration stress response.
AT4G34410 Direct participation in auxin biosynthesis leading to the plant’s ability to tolerate salt stress.
AT2G19620 Plays a role in dehydration stress response.

AT4G31480 Required for plant growth, salt tolerance, and maintenance of the structure of the
Golgi apparatus.

AT1G72490 It is expressed in roots and involved in leaf root architecture, specifically the orientation of lateral
root angles

AT5G61020 Involved in cell proliferation during plant organogenesis.
AT5G45420 Plays a role in root hair elongation.

Important role in controlling root skewing and maintaining the microtubule network.
AT4G35100 Salt-stress-inducible Major Intrinsic Protein (MIP)

AT1G13900 Encodes a dual-localized acid phosphatase (mitochondria and chloroplast) that modulates
carbon metabolism.

The ATR/ATM radiation-induced genes respond to DNA damage and/or ionizing
radiation in concert with non-radiation-induced genes that respond to other environmental
stressors such as ROS, salt, light, heat, and water changes in spaceflight. The MB causal
relational subnetworks show the ATR/ATM genes related with genes that regulate root
development, and plant growth, indicating that increased radiation tolerance by genetic
activations may have a side effect on the plant growth. This fact has to be considered
while genetically engineering plants for DNA repair response which may have undesired
side-effects such as reduced yield. Further experiments are necessary to study the effect of
long-term exposure of plants to space radiation and the best mechanisms to overcome the
harmful effects of radiation. The overexpression of several genes and their side effects may
be averted by suitable enclosures that can shield the plant from spaceflight radiation.

5. Conclusions

We have applied advanced network analysis and machine learning approaches to
detect key genes involved in DDR and their links with genes involved in spaceflight
stress responses in Arabidopsis. Our analysis shows that the DDR processes are intermixed
with the regulation of critical functions necessary for the plant to adapt to the spaceflight
environment. There is a significant difference in the regulation of these processes in a low
radiation dose environment where ATR/ATM radiation-induced genes interact with many
downstream genes, whereas in the very high HZE and γR radiation dose environment, the
DDR processes are regulated chiefly by ATR/ATM genes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060938/s1, Supplementary Table S1. Radiation Metadata for GLDS-7, GLDS-37,
GLDS-38, and GLDS-46 datasets. GLDS-120 dataset was acquired under similar conditions of GLDS-7.
Supplementary Table S2. Gene names for the ATG numbers for hub genes and authority genes in

https://www.mdpi.com/article/10.3390/genes12060938/s1
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Figures 2–4. Supplementary Table S3. Gene names for the ATG numbers for hub genes and authority
genes in Figures 5 and 6. The scripts of available at https://github.com/jjorozco777/Radiation-
Network-Analysis, accessed on 10 June 2021.
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