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Abstract 

Neuro-inflammation signaling has been identified as an important hallmark of Alzheimer’s disease 

(AD) in addition to amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs). However, our 

knowledge of neuro-inflammation is very limited; and the core signaling pathways associated with 

neuro-inflammation are missing. From a novel perspective, i.e., investigating weakly activated 

molecular signals (rather than the strongly activated molecular signals), in this study, we 

uncovered the core neuro-inflammation signaling pathways in AD. Our novel hypothesis is that 

weakly activated neuro-inflammation signaling pathways can cause neuro-degeneration in a 

chronic process; whereas, strongly activated neuro-inflammation often cause acute disease 

progression like in COVID-19. Using the two large-scale genomics datasets, i.e., Mayo Clinic (77 

control and 81 AD samples) and RosMap (97 control and 260 AD samples), our analysis identified 

7 categories of signaling pathways implicated on AD and related to virus infection: immune 

response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and 

mineral absorption signaling pathways. More interestingly, most of genes in the virus infection, 

immune response and x-core signaling pathways, are associated with inflammation molecular 

functions. Specifically, the x-core signaling pathways were defined as a group of 9 signaling 

proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF, which 

indicated the core neuro-inflammation signaling pathways responding to the low-level and weakly 

activated inflammation and hypoxia, and leading to the chronic neuro-degeneration. The core 

neuro-inflammation signaling pathways can be used as novel therapeutic targets for effective AD 

treatment and prevention.  
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Introduction 
A major challenge limiting effective treatments for Alzheimer’s disease (AD) is the complexity of 

AD. More than 42 genes/loci have been associated with AD1,2. Unfortunately, only few of these 

genes, like CD333, TREM24, MS4A5, are being evaluated as therapeutic targets for AD 

management1. Over 240 drugs have been tested in AD clinical trials, but no new drugs have been 

approved for AD since 20036,7. One major challenge is that the complicated pathogenesis and 

core signaling pathways of AD remains unclear. Therefore, it is significant to uncover the core 

signaling pathways implicated on AD pathogenesis and novel therapeutic targets of AD for 

identifying effective drugs and synergistic drug combinations (targeting multiple essential targets 

on the cores signaling network) for AD prevention or treatment.  

 

Our knowledge of the molecular mechanisms and signaling pathways that ultimately lead to the 

chronic neurodegeneration in AD is limited. For example, there are only a few strong genetic 

biomarkers for AD that have been identified, including the APOE, APP, PSEN1/2 genes. 

However, the signaling consequence of these biomarkers as they relate to the accumulation of 

dysfunctional A-beta and p-Tau proteins, as well as neuron death and immune response remain 

unclear. Over the last 10 years, neuro-inflammation and immune signaling have been being 

identified as the third core feature or a central pathogenesis mechanism of AD8,9,10,11,12, in addition 

to amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs) pathologies. However, our 

knowledge of neuro-inflammation and immune signaling and their roles in neuro-degeneration is 

limited, though a set of inflammation and immune genes, like TNF, IL-1beta, IL-6, NFkB have 

been reported. No computational network analysis has been specifically designed and conducted 

to uncover and understand the neuro-inflammation and immune signaling pathways 

systematically. Therefore, it is important to continue to pursue systematic investigations, including 

the use of network analysis techniques, in order to uncover and understand the details of core 

signaling pathways, and the core neuroinflammation and immune signaling pathways that are 

associated the neurodegeneration of AD.  

 

In response to the preceding gap in knowledge, we have systematically sought to identify the 

potential core signaling pathways causing neuron death and/or degeneration in AD by analyzing 

the RNA-seq data of human AD samples13,14. Instead of identifying the strongly activated 

molecular signals in the computational network analysis15, our unique contribution via this study 

is to identify the ‘weakly’ activated signaling pathways that may lead to neuron death in a chronic 
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manner. The rationale of focusing on the weakly activated signaling pathways is that the only 

weakly activated signaling can cause the neuron death/degeneration in a chronic process. 

Whereas, strongly activated signaling pathways often cause acute disease progression, such as 

what is observed in a variety of cancers16,17 and COVID-1918,19. Specifically, we employed the 

RNA-seq data of neuropathology-free controls and AD samples from two datasets: ROSMAP13,14 

and Mayo Clinic20. Leveraging this data, we then identified all of the weakly activated and 

inhibited genes with very low fold change thresholds. Subsequently, we conducted network 

enrichment analyses to identify relevant core signaling pathways. Further, a network inference 

analysis was conducted to uncover the potential signaling cascades causing neuron death from 

the activated signaling pathways.  

 

 
Results 
Normal and AD tissue samples are barely separable in the gene expression data space. 
There were 77 normal control subjects and 81 AD cases in Mayo dataset; and 260 normal control 

samples and 97 AD cases in ROSMAP dataset. The transcripts per million (TPM) values of 16,132 

protein coding genes were obtained by applying the Salmon quantification tool21 in alignment-

based mode using the STAR aligned RNA-seq data. A multidimensional scaling (MDS) model 

was used to generate the 2D clustering plots of normal control and AD samples in the Mayo and 

ROSMAP datasets respectively (see Fig. 1). As is seen in these visualizations, the normal and 

AD samples are barely separable, especially in the ROSMAP dataset, which of note, has more 

normal samples than Mayo dataset.  

 

Table 1: Epidemiology information of Mayo and RosMap datasets. 

Mayo Control AD 
 

RosMap Control AD 
In Total 77 81 

 
In Total 97 260 

Male 40 33 
 

Male 44 82 
Female 37 48 

 
Female 53 178 

Age 
Mean (SD) 

82.65 (8.70) 82.57 (7.62) 
 

Age 
Mean (SD) 

84.24 (6.82) 90.34 (5.75) 

APOE_22 0 0 
 

APOE_22 2 0 
APOE_23 12 4 

 
APOE_23 13 22 

APOE_33 56 34 
 

APOE_33 72 141 
APOE_24 1 0 

 
APOE_24 1 10 

APOE_34 8 36 
 

APOE_34 8 83 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/


APOE_44 0 7 
 

APOE_44 1 3 
 

 

 
Figure 1: AD and normal control tissue samples are not well separable using an MDS plot on 
the RNA-seq protein-coding genes in Mayo (top-panel) and ROSMAP (bottom-panel) 
datasets.  
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We further conducted a widely used differential expression analysis method to identify 

differentially expressed genes (DEGs) between the AD and normal control samples. To identify 

the common set of DEGs between the two datasets, we applied a number of fold-change and p-

value thresholds. As seen in Table 1 and expected from Fig. 1, only a few common up- and down-

regulated DEGs were identified with fold change thresholds >= 1.5 and p-value <= 0.05. Even 

with the fold change threshold >= 1.25, only about 230 up- and about 60 down-regulated genes 

were identified (out of the 16,132 protein coding genes, ~1.85%), in both studies. When relaxing 

both thresholds to fold change >= 1.1 and p-value <= 0.1, 1,120 up-regulated genes and 689 

down-regulated genes were identified (~11.2% of the 161,32 protein-coding genes). Based upon 

these observations, we hypothesized that the AD-associated signaling pathways are weakly 

activated or inhibited.  

 

Table 1: Differentially expressed genes (DEGs) out of 16,132 common protein coding genes 

between AD and control samples in Mayo and ROSMAP datasets.  

Fold 
change P-value 

# of DEGs 
in Mayo 

# of DEGs 
in ROSMAP 

# of Common DEGs 
in Mayo and 

ROSMAP 
>=2.0 <=0.05 22 (up), 5 (down) 0 (up), 0 (down) 0 (up), 0 (down) 

>=2.0 <=0.1 22 (up), 5 (down) 0 (up), 0 (down) 0 (up), 0 (down) 

>=1.5 <=0.05 210 (up), 84 (down) 30 (up), 5 (down) 15 (up), 4 (down) 

>=1.5 <=0.1 210 (up), 86 (down) 30 (up), 5 (down) 15 (up), 4 (down) 

>=1.25 <=0.05 958 (up), 873 
(down) 

487 (up), 123 
(down) 227 (up), 56 (down) 

>=1.25 <=0.1 962 (up), 883 
(down) 

488 (up), 126 
(down) 230 (up), 64 (down) 

>=1.1 <=0.05 2457 (up), 3687 
(down) 

2610 (up), 1752 
(down) 1009 (up), 604 (down) 

>=1.1 <=0.1 2609 (up), 3952 
(down) 

2700 (up), 1783 
(down) 1120 (up), 689 (down) 

 
 
Weak inflammation and hypoxia are the potential major factors in the AD brain 
microenvironment causing neuron cell death. 
As was noted previously, we believe it is important to identify AD-associated weakly activated 

signaling pathways, and understand their roles in AD disease progression, as well as their 

potential roles as targeted for AD therapeutics. Among the 1,120 common up-regulated genes 
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(identified from Mayo and ROSMAP datasets), 417 genes were included in the 311 KEGG 

signaling pathways. To this end, we first conducted an enrichment analysis of KEGG signaling 

pathways using Fisher’s exact test applied to the 417 up-regulated genes. Table 2 showed the 

enriched signaling pathways with p-value <= 0.15. We then clustered these activated signaling 

pathway empirically into 7 categories (see Fig. 2). Using these 417 up-regulated genes, the first 

principal component values in the MDS analysis of the AD and control samples were used to 

compared the difference in AD and control samples. The OR, absolute beta values and p-values 

of logistic regression analysis (see Table 2) indicated that these selected genes (p-

value=1.22x10-13 (Mayo) and p-value=4.2x10-6 (ROSMAP)) can separate the AD and control 

samples much better than using all protein genes (p-value=0.036(Mayo) and p-value=0.027 

(ROSMAP)) in the two datasets respectively. The bar-plots were also provided in Fig. 2, which 

indicated that the control and AD samples are more separable using the selected genes.  

 

Table 2: Odds ratio (OR), beta and p-values of logistic regression using all gene and 417 up-

regulated genes.  

 All genes 417 genes 

 OR abs(beta) p-value OR abs(beta) p-value 

Mayo 1.42 0.35 0.037 5.9 1.78 9.5x10-9 

RosMap 1.31 0.27 0.027 1.9 0.63 9.7*10-5 
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    Control                      AD                                Control                       AD 

          Mayo (all protein genes)                            RosMap (all protein genes) 
 

 
     Control                      AD                                Control                       AD 

Mayo (417 genes)                            RosMap (417 genes) 
 
 
Figure 2: Box-plots of the first principal component of MDS analysis in control and AD cases. Left 
and right columns are Mayo and RosMap samples respectively. Upper and lower panels 
represent the MDS analysis using all genes and 417 up-regulated genes respectively. 
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As seen in our results (see Fig.3 and Table 3), a set of signaling pathways were activated, such 

as those involved in virus infection signaling (including: Epstein-Barr virus, Human T-cell leukemia 

virus 1 infection, Legionellosis, Pathogenic Escherichia coli infection, Staphylococcus aureus 

infection, Yersinia infection, Human cytomegalovirus infection, Human papillomavirus infection, 

Malaria, Human immunodeficiency virus 1 infection, Rheumatoid arthritis, and Inflammatory 

bowel disease [IBD]). There are 111 genes (out of the 417 up-regulated genes) in common across 

these pathways highlighting a set of core genes implicated on these processes. These results 

indicated that weakly activated inflammation related signaling pathways, like inflammation, 

cytokine, and immune response, may be represent activated signaling pathways in the AD brain 

microenvironment.  

 

In addition, a group of activated signaling pathways or factors that are not clustering to a specific 

biological function or disease (referred to as the x-signaling pathway: the Hippo, PI3K-Akt, AGE-

RAGE, MAPK, Adipocytokine, NF-kappa B, IL-17, TGF-beta, NOD-like receptor, TNF, Apoptosis, 

HIF-1 and Wnt signaling pathways, as well as apoptosis signaling) were identified. Fig. 4 shows 

the associations between these up-regulated genes and activated signaling pathways. As seen 

in Fig. 4, a set of genes in the center areas of the network are associated with a set of signaling 

pathways, which could represent therapeutic signaling targets that could be used to inhibit or 

otherwise perturb these activated signaling pathways. In addition, there are a number of 

metabolisms signaling pathways, like Sulfur metabolism, Galactose metabolism, Starch and 

sucrose metabolism, Steroid hormone biosynthesis, Glycosaminoglycan degradation, implicated 

in this model. Moreover, Th1/2/17 (T helper, CD4+ cells) cell differentiation signaling was 

activated. Similarly, the natural killer cell mediated cytotoxicity signaling pathways were also 

activated. Table S1 lists these associated up-regulated genes and the involved signaling 

pathways. All the observations suggest a potential novel hypothesis that the external inflammation, 

immune signaling and hypoxia signaling in AD microenvironment activated the MAPK, PI3K-Akt 

and mTOR signaling pathways, and then activated the HIF-1 signaling pathway. However, the 

activation of HIF-1 may fail to bring enough oxygen to protect against hypoxic injury to the involved 

neurons. The dysfunction of blood vessel functions, leading to hypoxia, might be partially 
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indicated by the recent study showing that blood and cerebrospinal fluid flow cleaning the brain 

during sleeping22. 

 

 
 
Table 3: The seven categories of enriched KEGG signaling pathways. 

Name p-value Name p-value 

Virus related signaling pathways  X-core signaling pathways  

Viral protein interaction with cytokine and 
cytokine receptor 0.0019 PI3K-Akt signaling pathway 0.0011 

Epstein-Barr virus infection 0.0056 MAPK signaling pathway 0.0059 

Human T-cell leukemia virus 1 infection 0.0188 NF-kappa B signaling pathway 0.0085 

Staphylococcus aureus infection 0.0249 Hippo signaling pathway 0.0132 

Human papillomavirus infection 0.0299 TGF-beta signaling pathway 0.0137 

Pertussis 0.0375 TNF signaling pathway 0.0434 

Yersinia infection 0.0397 Rap1 signaling pathway 0.0571 

Pathogenic Escherichia coli infection 0.0430 HIF-1 signaling pathway 0.1009 

Human cytomegalovirus infection 0.0603 Wnt signaling pathway 0.1043 

Malaria 0.0758 Apoptosis 0.0658 

Legionellosis 0.0906   

Human immunodeficiency virus 1 infection 0.1075   

Rheumatoid arthritis 0.1192 Mineral absorption 2.56E-05 

 
 
Figure 3: Seven categories of weakly activated signaling pathways in AD.  
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Inflammatory bowel disease (IBD) 0.1321   

    

Immune signaling pathways  Diabetic/Lipid signaling pathways  

IL-17 signaling pathway 0.0104 AGE-RAGE signaling pathway in diabetic 
complications 0.0021 

Complement and coagulation cascades 0.0214 Adipocytokine signaling pathway 0.0060 

NOD-like receptor signaling pathway 0.0401 Insulin resistance 0.0283 

Th17 cell differentiation 0.1275 Glucagon signaling pathway 0.1179 

Th1 and Th2 cell differentiation 0.1368 Cushing syndrome 0.1356 

Natural killer cell mediated cytotoxicity 0.1410   

    

Biosynthesis/Metabolism signaling pathways  Adhesion signaling pathways  

Sulfur metabolism 0.0758 Focal adhesion 1.39E-05 

Galactose metabolism 0.0812 ECM-receptor interaction 0.0002 

Glycosaminoglycan degradation 0.0905 Adherens junction 0.0669 

Steroid hormone biosynthesis 0.1084   

Starch and sucrose metabolism 0.1084   

Primary bile acid biosynthesis 0.1437   

    

 
Weak inflammation and hypoxia are the major factors in the AD brain microenvironment 
causing neuron cell death 
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As was introduced above, many genes that are activated as a function of virus infection, immune 

response and the x-core signaling pathways are inflammation related genes. It is well known that 

virus infection and immune response signaling pathways respond to inflammation. Our analyses 

identified 1043 inflammation response genes in the gene ontology (GO) database (GO:0006954), 

that includes 492 genes in the KEGG signaling pathways. Interestingly, among the 417 up-

regulated genes, 66 genes were inflammation related. The p-value of observing the 66 up-

regulated inflammation signaling targets from 417 up-regulated genes identified in the AD vs 

 
 
Figure 4: The up-regulated gene-pathway interaction network, including 1021 interactions 
between 291 up-regulated genes and 61 enriched pathways. 
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control samples was 8.34E-05 (calculated using the fishers’ exact test), and the odds ratio (OR) 

 
Figure 5: Signaling cascades linking the up-regulated signaling genes in the virus infection 
pathways (cyan) (top) and x-core signaling pathways (bottom) to the up-regulated apoptosis 
signaling genes (red) via the linking genes (pink). 
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= 1.77, which indicate that the activation of inflammation signaling is concomitant with AD 

progression. Furthermore, there are 66 overlapping up-regulated genes spanning the virus 

infection (from 111 up-regulated genes) and x-core signaling pathways (from 136 up-regulated 

genes), which indicate that the x-core signaling pathways are the likely pathways being activated 

in response to this inflammation. In addition, the activation of HIF-1 signaling pathway indicates 

the presence of hypoxia in the AD brain environment.  

 

To further investigate the network signaling cascades involving inflammation and apoptosis genes, 

we conducted the network analysis incorporating the activated signaling pathways and apoptosis 

signaling genes. As seen in Fig. 5, the potential signaling cascades linking the up-regulated 

inflammation related genes in virus infection and X-core signaling pathways to the activated 

apoptosis signaling targets. Among the 338 signaling network genes in Fig. 5, there are 18 

reported GWAS genes (with p-value <= 1.0x10-5): PIK3CB, AKT3, RAF1, MAPK10, PPP2R2B, 

ERBB4, MECOM, IL1R1, MYD88, CAMK2D, GNB4, VAV3, PRKD3, PRKCE, THRB, FN1, LTBP1   

WWTR1, which were reported in the GWAS analysis 26. Further, we also compared the distance 

distribution among the inflammation related up-regulated genes and apoptosis genes as shown 

 
Figure 6: The up-regulated genes in the inflammation related signaling pathways, including 
virus infection, immune response and x-core signaling pathways. As seen, the inflammation 
signaling genes are much closer (see green, blue and red) to the apoptosis genes compared 
with other signaling genes (see gray lines).  
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in Fig. 6. As can be seen, the inflammation signaling genes are much closer, based on the 

shortest path metric calculated using the Dijkstra's algorithm, on the signaling network, (see green, 

blue and red nodes) to the apoptosis genes compared with other signaling genes (see gray lines). 

These results indicate a potential signaling interactions between the inflammation signaling genes 

and apoptosis signaling. In other words, the results suggest a potential association that the weak 

inflammation and hypoxia signaling in the AD brain environment led to chronic neurodegeneration 

process via the activation of the x-core signaling pathways. Therefore, drugs and drug 

combinations that can perturb the X-core signaling pathways have the potential to be effective for 

AD prevention and treatment. 

 
Activated TNF signaling might lead the programmed apoptosis of neurons 
Of note, our results show that among the X-

core signaling pathways, the TNF signaling 

pathways are also activated. Particularly, 

the TNF (Tumor Necrosis Factor) receptors 

(TNFRSF1A TNFRSF10A, and 

TNFRSF10B) were up-regulated (see 

Table 4). We reconstructed these signaling 

pathway linking the TNF receptors to the 

up-regulated genes in TNF and apoptosis 

signaling pathways (see in Fig. 7). As seen, 

the activation of these TNF signaling 

pathway might be one possible molecular 

mechanism causing the activation of 

apoptosis signaling via the CASP6, CASP7 

cascades.  
 

  
Table 4: up-regulated genes in TNF and apoptosis signaling pathways. 

Apoptosis 
BCL2, RELA, BIRC3, FADD, GADD45G, TNFRSF1A, NFKBIA, TNFRSF10B, 
CAPN2, TUBA1C, IL3RA, CTSH, FOS, CASP6, CASP7, TNFRSF10A, PARP4 

TNF signaling 

pathway 

RELA, BIRC3, FADD, MAP2K3, TNFRSF1A, NFKBIA, CREB3L2, FOS, CASP7, 

MLKL, IRF1, CEBPB 

 
Figure 7: Signaling cascades, causing neuron 
death, from the 3 TNF receptors (cyan) to the 
up-regulated genes (red) in TNF and apoptosis 
signaling pathways via the linking genes (pink).  
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Circadian entrainment, addiction, Neuroactive Neuroactive ligand-receptor, Synaptic 
vesicle cycle, Fat acid biosynthesis, mTOR and oxidative phosphorylation signaling 
pathways were down-regulated inhibited in AD tissues. 
We also conducted pathway enrichment analyses using 143 down-regulated genes in KEGG 

signaling pathways. There are far fewer down-regulated genes and lower inhibition down-

regulated of KEGG signaling pathways, compared with up-regulated genes (see Table 5). As 

shown in Fig. 8, the circadian entrainment, addition, Neuroactive neuroactive ligand-receptor, 

Synaptic vesicle cycle, Fat acid biosynthesis and oxidative phosphorylation genes pathways were 

inhibited in AD, which is associated with the down-regulated Ras and cAMP signaling pathways. 

 
 
Figure 8: The down-regulated gene-pathway interaction network, including 183 interactions 
between 73 up-regulated genes and 30 enriched pathways. 
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The dysfunctional circadian entrainment signaling pathway were reported to be associated with 

AD, and might be associated with the rhythmic spinal fluid washing over brain during deep sleep. 

In addition, the mTOR signaling and oxidative phosphorylation signaling pathways were down-

regulated.  Moreover, fat acid biosynthesis and elongation were also inhibited.  

 
Table 5: The 30 down-regulated KEGG signaling pathways. 

Pathway Names p-value 

Neuron related signaling pathways  

Neuroactive ligand-receptor interaction 4.35E-06 

Circadian entrainment 0.003 

Glutamatergic synapse 0.009 

Synaptic vesicle cycle 0.017 

SNARE interactions in vesicular transport 0.036 

Dopaminergic synapse 0.040 

GABAergic synapse 0.148 

Addiction signaling pathways  

Nicotine addiction 0.003 

Alcoholism 0.006 

Morphine addiction 0.075 

Fatty acid signaling pathways  

Fatty acid elongation 0.062 

Fatty acid biosynthesis 0.132 

Signaling transduction pathways  

cAMP signaling pathway 0.023 

mTOR signaling pathway 0.023 

Ras signaling pathway 0.083 

Infection signaling pathways  

Oxidative phosphorylation 4.05E-05 

Vibrio cholerae infection 0.0002 

Amphetamine addiction 0.0009 

Epithelial cell signaling in Helicobacter pylori infection 0.0009 

Metabolism signaling pathways  

Taurine and hypotaurine metabolism 0.038 

Butanoate metabolism 0.046 

Cysteine and methionine metabolism 0.060 

Retinol metabolism 0.088 

Other signaling pathways  

Valine, leucine and isoleucine biosynthesis 0.007 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/


Phagosome 0.018 

Retrograde endocannabinoid signaling 0.056 

Long-term potentiation 0.071 

Salivary secretion 0.078 

Gastric acid secretion 0.083 

Phototransduction 0.086 

 
 
 
Methods 
Gene expression data analysis of Apoe4/4 genotype AD samples 
In this study, 77 normal tissue samples and 81 AD tissue samples in Mayo dataset; and 97 normal 

samples and 260 AD samples in ROSMAP dataset were used. Both datasets were processed 

and aligned separately using reference genome GRCh38 and GENCODE 33 annotation including 

the ERCC spike-in annotations. We excluded ALT, HLA, and Decoy contigs from the reference 

genome due to the lack of RNA-Seq tools that allow to handle these regions properly. To obtain 

gene expression data, all read sequences from both datasets were first mapped to the reference 

genome using STAR (v.2.7.1a)23.Transcripts per million (TPM) values of 16,132 common protein 

coding genes were then obtained in the two datasets by applying the Salmon quantification tool21 

in alignment-based mode using the aligned RNA-seq data.  

 

Differentially expressed genes 
To identify the up- and down-regulated genes in AD samples vs normal control samples, the 

edgeR24 tool, using the negative binomial (NB) statistical model, was applied to the TPM values.  

 
Inflammation genes 
A set of inflammation genes were obtained by extracting genes from the inflammatory response 

category as defined in the Gene Ontology (GO:0006954)25. Subsequently, 485 inflammation 

genes were obtained from the 5,191 KEGG signaling genes. 

 
AD GWAS data 
The GWAS data of AD was obtained from niagads database26 (https://www.niagads.org/igap-rv-

summary-stats-kunkle-p-value-data). The Stage 1 P-Value Data (updated by February 26, 2019) 

and Stage 2 P-Value Data (updated by February 27, 2019) were downloaded. The 553 candidate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS genes and also available in the KEGG signaling pathways were obtained by a filter with 

p-value <= 1.0x10-5. 

 
KEGG signaling pathway enrichment analysis  

The KEGG signaling pathways consist of 311 signaling pathways27,28. There are 59,242 

signaling interaction among 5,191 genes in these pathways, which were used for network 

enrichment analysis and network inference analysis in this study. For the network enrichment 

analysis, a Fisher’s exact test29,30 was used based upon the up-regulated genes.  

 

KEGG signaling network inference analysis  
To infer the signaling cascades among a set of genes of interest, we developed a network 

inference approach. First, we divided the genes into two groups: signaling sources (like the 

inflammation signaling genes), and signaling targets (like the apoptosis signaling genes). Second, 

a signaling network was constructed by linking the signaling source genes to the signaling target 

genes iteratively. Specifically, the signaling source genes was used as the initial signaling source 

nodes set: V0. The signaling target genes were used as the target nodes set: V1. In the iterative 

process, the shortest signaling cascades/paths between the nodes in V0 and V1 were calculated 

and identified: Pij = <gi, gk1, gk2, …, gj>, where gi belongs to V0, and gj belongs to V1. Third, all of 

the genes on the signaling path Pij and belong to V1 were selected and added to V0, and removed 

from V1. This process was repeated until all the genes were added to V0. 

 

Discussion and conclusion 

Neuro-inflammation and immune signaling have been being identified as an important 

pathogenesis mechanism of AD, in addition to amyloid β plaques (Aβ) and neurofibrillary tangles 

(NFTs) pathologies. However, our knowledge of neuro-inflammation and immune signaling and 

their roles in neuro-degeneration is limited, though a set of inflammation and immune genes, like 

TNF, IL-1beta, IL-6, NFkB have been reported. Recently, the network analysis models were 

proposed to identify the potential dysfunctional signaling pathways and biomarkers using the 

related RNA-seq datasets. For example, the molecular signatures and networks under different 

brain regions were reported using integrative co-expression network analysis, and the myelin 

signaling dysregulation was identified in AD31,32. In addition, the co-splicing network using the 

WGCNA (co-expression network analysis model) was conducted to identified the altered splicing 

in AD, which indicated that the altered splicing is the mechanism for the effects of the AD related 
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CLU, PTK2b and PICALM alleles33. Moreover, the molecular subtypes and potential driver 

genes, like CABRB2, LRP10, ATP6V1A, of AD were identified by combing key driver analysis 

(KDA) and multiscale embedded gene expression network analysis (MEGENA)34,35,36.  

However, neuro-inflammation and immune signaling pathways have not been systematically 

uncovered and analyzed in these reported computational models. Compared with these reported 

studies, our unique contribution is the novel discovery of essential neuro-inflammation and 

immune signaling genes and signaling interactions using systematic network analysis models, 

which indicates potentially novel targets and mechanisms of neuro-inflammation and immune 

signaling in neuro-degeneration.  

 

Specifically, we propose a novel hypothesis that weakly activated neuro-inflammation signaling 

pathways can cause neuro-degeneration in a chronic process; whereas, strongly activated neuro-

inflammation often cause acute disease progression like in COVID-19. Consequently, from a 

novel perspective, i.e., investigating the weakly activated molecular signals (rather than the 

strongly activated molecular signals), in this study, we uncovered the core neuro-inflammation 

signaling pathways in AD. To the best of our knowledge, it is the first time to systematically 

uncover the core neuro-inflammation signaling pathways based on the transcriptomic data of AD. 

The neuro-inflammation signaling pathways, including the virus infection, immune response, x-

core signaling pathways, apoptosis signaling pathways. indicated that such weak inflammation 

may lead to the activation of x-core signaling pathways and the ultimate apoptosis of neurons. As 

a result, we hypothesize that drugs and drug combination inhibiting the neuro-inflammation 

signaling pathways could be potentially effective for AD prevention and treatment. Moreover, it is 

interesting to investigate the detailed signaling cascades of the x-core signaling pathways, 

including the MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF 

signaling pathways. And it is important to study their roles in Aβ plaques and tau tangles as well 

as neuro-degeneration.  
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Supplementary Tables 
Table ST1: Enriched Kegg signaling pathways using up-regulated genes.  

Name Genes pValue 

Focal adhesion 
EGFR, ERBB2, HGF, PDGFRB, BCL2, BIRC3, ELK1, PGF, RAP1A, VEGFC, FLT1, FLT4, VAV3, 
TLN1, VASP, PXN, FYN, CAPN2, COL1A2, COL6A1, COL6A2, FN1, TNC, ITGA5, ITGB1, ITGB5, 
ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, MYL9, MYL12A, DOCK1, PARVA, CAV1, ITGA8 

1.39E-05 

Mineral absorption HEPH, MT1A, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A 2.56E-05 
ECM-receptor 
interaction 

COL1A2, COL6A1, COL6A2, FN1, TNC, ITGA5, ITGB1, ITGB5, ITGB8, LAMA4, SPP1, THBS2, 
THBS4, ITGA10, CD44, NPNT, ITGA8, SDC4 0.00017828 

Proteoglycans in cancer 
HPSE2, PLCE1, EGFR, ERBB2, HGF, CDKN1A, ELK1, MRAS, IGF2, RRAS, TGFB1, VAV3, 
ITPR3, PXN, STAT3, WNT6, FZD7, FZD8, FZD9, COL1A2, FN1, ITGA5, ITGB1, ITGB5, SMO, 
DCN, CAV1, CD44, IQGAP1, MSN, EZR, SDC2, SDC4, TIMP3 

0.00035749 

Cytokine-cytokine 
receptor interaction 

CSF1, IL1R1, TGFB1, TGFBR2, TNFRSF1A, NGFR, CXCR4, GDF11, CTF1, CXCL1, IL2RG, 
IL4R, CXCL8, INHBB, CXCL10, IL20RA, CCL2, BMP6, BMP7, GDF15, LTBR, TNFRSF10B, 
IL3RA, TNFRSF10A, TNFRSF11B, IL13RA1, IL15RA, OSMR, IL1R2, IL18R1 

0.00053537 

Hippo signaling pathway 
- multiple species YAP1, WTIP, WWC1, WWTR1, LATS2, TEAD1, TEAD4, TEAD3, TEAD2 0.00055489 

Pathways in cancer 

PLCB3, EGFR, ERBB2, HGF, PDGFRB, BCL2, CDKN1A, DLL4, RELA, BIRC3, FADD, RXRA, 
HES1, GADD45G, ELK1, MECOM, FLT3LG, IGF2, PGF, TGFB1, TGFBR2, VEGFC, FLT4, 
LPAR4, CXCR4, GLI3, NFKBIA, IL2RG, IL4R, CXCL8, NFKB2, EGLN3, STAT3, CDK2, FOXO1, 
AGT, CDKN2B, SP1, NFE2L2, LRP5, WNT6, FZD7, FZD8, FZD9, FN1, IL3RA, ITGB1, LAMA4, 
FOS, CASP7, LEF1, TCF7L1, NOTCH2, NOTCH3, GLI1, SMO, IL13RA1, IL15RA, PIM1, EPAS1, 
KIF7, PML, HEYL 

0.0007582 

PI3K-Akt signaling 
pathway 

PCK1, NOS3, EGFR, ERBB2, HGF, PDGFRB, BCL2, CDKN1A, RELA, RXRA, CSF1, FLT3LG, 
ANGPT2, IGF2, PGF, GNG12, VEGFC, EPHA2, FLT1, FLT4, GNG5, NGFR, LPAR4, CREB3L2, 
IL2RG, IL4R, CDK2, SGK1, DDIT4, COL1A2, COL6A1, COL6A2, PHLPP1, FN1, TNC, IL3RA, 
ITGA5, ITGB1, ITGB5, ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, OSMR, ITGA8 

0.0010985 

Viral protein interaction 
with cytokine and 
cytokine receptor 

CSF1, TNFRSF1A, CXCR4, CXCL1, IL2RG, CXCL8, CXCL10, IL20RA, CCL2, LTBR, 
TNFRSF10B, TNFRSF10A, IL18R1 0.00185617 

AGE-RAGE signaling 
pathway in diabetic 
complications 

NOS3, PLCD3, PLCE1, PLCB3, PLCD1, BCL2, RELA, TGFB1, TGFBR2, VEGFC, CXCL8, CCL2, 
STAT3, FOXO1, AGT, COL1A2, ICAM1, PIM1 0.00213956 

Epstein-Barr virus 
infection 

BCL2, CDKN1A, RELA, FADD, HES1, GADD45G, TAB2, IRAK1, MYD88, MAP2K3, NFKBIA, 
CXCL10, NFKB2, STAT3, CDK2, TNFAIP3, HLA-C, HLA-E, CD44, ICAM1, CD58, TAP1, B2M, 
SAP30 

0.00560455 

MAPK signaling 
pathway 

EGFR, ERBB2, HGF, PDGFRB, RELA, GADD45G, CSF1, DUSP1, ELK1, MECOM, MRAS, TAB2, 
FLT3LG, GNA12, ANGPT2, MKNK2, HSPA2, IGF2, IL1R1, IRAK1, MYD88, PGF, GNG12, 
MAP2K3, RAP1A, RRAS, TGFB1, TGFBR2, TNFRSF1A, VEGFC, MAPKAPK3, DUSP16, 
MAPKAPK2, EPHA2, FLT1, FLT4, NGFR, NFATC3, NFKB2, FOS, HSPB1 

0.00589871 

Adipocytokine signaling 
pathway 

PCK1, ACSBG1, ACACB, ACSL5, RELA, PPARA, RXRA, TNFRSF1A, NFKBIA, STAT3, 
ADIPOR2, SOCS3, SLC2A4 0.00604817 

Basal cell carcinoma CDKN1A, GADD45G, GLI3, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1, GLI1, SMO, KIF7 0.0076605 
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NF-kappa B signaling 
pathway 

BCL2, RELA, BIRC3, TAB2, IL1R1, IRAK1, MYD88, TNFRSF1A, NFKBIA, CXCL1, CXCL8, LTBR, 
NFKB2, TNFAIP3, ICAM1 0.00850971 

Regulation of actin 
cytoskeleton 

EGFR, PDGFRB, MRAS, GNA12, GNG12, RRAS, VAV3, LPAR4, CXCR4, GNA13, PXN, FN1, 
ITGA5, ITGB1, ITGB5, ITGB8, ITGA10, MYL9, LIMK2, MYL12A, DOCK1, WASF2, IQGAP1, MSN, 
EZR, SPATA13, GIT1, DIAPH3, ITGA8, ARHGEF6 

0.00867475 

IL-17 signaling pathway RELA, TAB2, NFKBIA, FOS, FOSL1 0.01044254 

Hippo signaling pathway TGFB1, TGFBR2, PARD3, BMP6, BMP7, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1, YAP1, 
WTIP, AMOT, WWC1, WWTR1, LATS2, TEAD1, TEAD4, TEAD3, TP53BP2, TEAD2, SOX2 0.01316293 

TGF-beta signaling 
pathway 

TGFB1, TGFBR2, INHBB, BMP6, BMP7, CDKN2B, SP1, BAMBI, DCN, LTBP1, SMAD6, NEO1, 
RGMA, TGIF2, TGIF1 0.01370407 

Human T-cell leukemia 
virus 1 infection 

CDKN1A, CDKN2C, RELA, ELK1, IL1R1, TGFB1, TGFBR2, TNFRSF1A, NFATC2, NFATC3, 
NFKBIA, CREB3L2, IL2RG, LTBR, NFKB2, CDK2, CDKN2B, CHEK2, FOS, HLA-C, HLA-E, 
FOSL1, ICAM1, IL15RA, IL1R2, B2M 

0.01881732 

Complement and 
coagulation cascades PLAT, SERPINA5, SERPINA1, CFB, TFPI, SERPING1, C1R, C4A, C4B 0.02140549 

Staphylococcus aureus 
infection ICAM1, CFB, C1R, C4A, C4B, CFH, CFI 0.02493939 

Axon guidance 
RRAS, EPHA2, PARD3, CXCR4, NFATC2, NFATC3, BMP7, FYN, ITGB1, MYL9, SMO, NEO1, 
RGMA, EFNB1, EPHB4, UNC5B, FES, RHOD, LIMK2, SRGAP1, RGS3, SEMA3F, BOC, NTN1, 
MYL12A 

0.02664014 

Insulin resistance PCK1, ACACB, NOS3, PYGL, PYGM, RELA, PPARA, TNFRSF1A, NFKBIA, CREB3L2, STAT3, 
FOXO1, SOCS3, PPP1R3C, PPP1R3D 0.02834387 

Human papillomavirus 
infection 

ATP6V0E1, EGFR, PDGFRB, CDKN1A, RELA, FADD, HES1, TNFRSF1A, PARD3, CREB3L2, 
PXN, CDK2, FOXO1, WNT6, FZD7, FZD8, FZD9, COL1A2, COL6A1, COL6A2, FN1, TNC, ITGA5, 
ITGB1, ITGB5, ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, TCF7L1, NOTCH2, NOTCH3, 
MAML2, IRF1, ITGA8, HEYL 

0.02986106 

Breast cancer EGFR, ERBB2, CDKN1A, DLL4, HES1, GADD45G, FLT4, NFKB2, SP1, LRP5, WNT6, FZD7, 
FZD8, FZD9, FOS, LEF1, TCF7L1, NOTCH2, NOTCH3, HEYL 0.03748158 

Pertussis RELA, IRAK1, MYD88, FOS, SERPING1, C1R, IRF1, C4A, C4B 0.03748822 

Yersinia infection RELA, TAB2, IRAK1, MYD88, MAP2K3, VAV3, NFATC2, NFATC3, NFKBIA, CXCL8, CCL2, PXN, 
FN1, ITGA5, ITGB1, FOS, DOCK1, WASF2 0.03974146 

NOD-like receptor 
signaling pathway 

PLCB3, BCL2, RELA, BIRC3, FADD, TAB2, MYD88, ITPR3, P2RX7, NFKBIA, CXCL1, CXCL8, 
CCL2, TNFAIP3, IFI16, ERBIN, TRIP6, GSDMD, CASP4 0.04009447 

Maturity onset diabetes 
of the young GCK, HES1, PAX6 0.0412998 

Pathogenic Escherichia 
coli infection 

RELA, FADD, TAB2, GNA12, IL1R1, IRAK1, MYD88, TNFRSF1A, LPAR4, GNA13, NFKBIA, 
CXCL8, TNFRSF10B, TUBA1C, FOS, CASP7, TNFRSF10A, WASF2, EZR, CASP4, MYO1C, 
MYO10 

0.04297897 

TNF signaling pathway RELA, BIRC3, FADD, MAP2K3, TNFRSF1A, NFKBIA, CREB3L2, FOS, CASP7, MLKL, IRF1, 
CEBPB 0.04341918 

Apoptosis - multiple 
species BCL2, BIRC3, FADD, TNFRSF1A, NGFR, CASP7 0.05318839 

Rap1 signaling pathway 
PLCE1, PLCB3, EGFR, HGF, PDGFRB, CSF1, MRAS, ANGPT2, PGF, MAP2K3, RAP1A, RRAS, 
VEGFC, EPHA2, FLT1, FLT4, NGFR, VAV3, ADORA2A, ADORA2B, PRKD3, LPAR4, PRKD1, 
PARD3, TLN1, VASP, ITGB1 

0.0571398 

Human cytomegalovirus 
infection 

PLCB3, EGFR, CDKN1A, RELA, FADD, ELK1, GNA12, IL1R1, GNG12, TNFRSF1A, GNG5, 
ITPR3, CXCR4, GNA13, NFATC2, NFATC3, NFKBIA, CREB3L2, CXCL8, CCL2, PXN, STAT3, 
SP1, HLA-C, HLA-E, TAP1, B2M 

0.06026243 

Apoptosis BCL2, RELA, BIRC3, FADD, GADD45G, TNFRSF1A, NFKBIA, TNFRSF10B, CAPN2, TUBA1C, 
IL3RA, CTSH, FOS, CASP6, CASP7, TNFRSF10A, PARP4 0.06582258 

Adherens junction EGFR, ERBB2, TGFBR2, PARD3, FYN, LEF1, TCF7L1, NECTIN2, WASF2, YES1, IQGAP1 0.06689148 

Cellular senescence CDKN1A, RELA, GADD45G, MRAS, MAP2K3, RRAS, TGFB1, TGFBR2, MAPKAPK2, NFATC2, 
NFATC3, CDK2, FOXO1, CDKN2B, CHEK2, CAPN2, TRAF3IP2, HLA-C, HLA-E 0.06916583 

Sulfur metabolism PAPSS2, SQOR, SELENBP1 0.07578511 
Malaria HGF, MYD88, ICAM1 0.07578511 
Galactose metabolism GALM, GCK, PFKP, PGM1, B4GALT1 0.08119728 
Glycosaminoglycan 
degradation HYAL1, NAGLU, HPSE2, HYAL2 0.09045551 

Legionellosis RELA, HSPA2, MYD88, NFKBIA, CXCL1, CXCL8, CASP7 0.09062831 
Leukocyte 
transendothelial 
migration 

RAP1A, VAV3, CXCR4, PXN, ITGB1, MYL9, MYL12A, ICAM1, MSN, EZR, CDH5, PECAM1 0.09482316 

Gastric cancer EGFR, ERBB2, HGF, BCL2, CDKN1A, RXRA, GADD45G, TGFB1, TGFBR2, CDK2, CDKN2B, 
LRP5, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1 0.09507402 

HIF-1 signaling pathway PFKP, PFKFB3, NOS3, EGFR, ERBB2, BCL2, CDKN1A, RELA, ANGPT2, MKNK2, FLT1, LTBR, 
EGLN3, STAT3 0.10088945 

Wnt signaling pathway PLCB3, NFATC2, NFATC3, LRP5, WNT6, FZD7, FZD8, FZD9, BAMBI, PRICKLE3, LEF1, SFRP1, 
SFRP2, SOX17, TBL1X, TCF7L1, ZNRF3, RSPO3, FOSL1 0.10427239 
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Human 
immunodeficiency virus 
1 infection 

BCL2, RELA, FADD, TAB2, IRAK1, MYD88, GNG12, MAP2K3, TNFRSF1A, GNG5, ITPR3, 
CXCR4, NFATC2, NFATC3, PXN, WEE1, FOS, HLA-C, HLA-E, LIMK2, TAP1, B2M 0.1074797 

Steroid hormone 
biosynthesis HSD17B7, AKR1C2, HSD11B1, HSD11B2, AKR1C3 0.10838427 

Starch and sucrose 
metabolism GCK, PGM1, PYGL, PYGM, GYG2 0.10838427 

Glucagon signaling 
pathway PCK1, PFKP, ACACB, PYGL, PYGM, PLCB3, PPARA, ITPR3, PHKA1, CREB3L2, FOXO1, SIK1B 0.11785197 

Rheumatoid arthritis FLT1, FOS, ICAM1 0.11921547 
Fluid shear stress and 
atherosclerosis 

NOS3, BCL2, RELA, DUSP1, IL1R1, TNFRSF1A, CCL2, NFE2L2, FOS, PLAT, CAV1, ICAM1, 
CDH5, PECAM1, IL1R2, SDC2, SDC4 0.12180353 

Th17 cell differentiation RXRA, IL1R1, TGFB1, TGFBR2, NFATC2, NFATC3, NFKBIA, IL2RG, IL4R, STAT3, FOS 0.12754476 
Inflammatory bowel 
disease (IBD) RELA, TGFB1, IL2RG, IL4R, STAT3, IL18R1 0.13209705 

Prostate cancer EGFR, ERBB2, PDGFRB, BCL2, CDKN1A, RELA, NFKBIA, CREB3L2, CDK2, FOXO1, LEF1, 
TCF7L1 0.13483793 

Cushing syndrome PLCB3, EGFR, CDKN1A, CDKN2C, RAP1A, ITPR3, CREB3L2, CDK2, AGT, CDKN2B, SP1, 
WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1 0.13563822 

Th1 and Th2 cell 
differentiation DLL4, RELA, NFATC2, NFATC3, NFKBIA, IL2RG, IL4R, FOS, NOTCH2, NOTCH3, MAML2 0.1367585 

Natural killer cell 
mediated cytotoxicity 

VAV3, NFATC2, FYN, TNFRSF10B, TNFRSF10A, HLA-C, HLA-E, ICAM1, ICAM2, MICA, KLRC3, 
SH3BP2, CD48 0.14101973 

Primary bile acid 
biosynthesis CYP39A1, HSD3B7, ACOX2 0.14366887 

Small cell lung cancer BCL2, CDKN1A, RELA, BIRC3, RXRA, GADD45G, NFKBIA, CDK2, CDKN2B, FN1, ITGB1, 
LAMA4 0.14380894 

Parathyroid hormone 
synthesis, secretion and 
action 

PLCB3, EGFR, BCL2, CDKN1A, GNA12, ITPR3, GNA13, CREB3L2, SP1, LRP5, FOS, MMP14 0.15309099 

Ether lipid metabolism CHPT1, PLPP1, PLPP3, PAFAH1B3, ENPP2, UGT8 0.16139156 
Arginine biosynthesis NAGS, GLUL, NOS3, GPT2 0.16498016 
Notch signaling pathway DLL4, HES1, NOTCH2, NOTCH3, MAML2, KAT2B, HEYL 0.17719556 

MicroRNAs in cancer EGFR, ERBB2, PDGFRB, BCL2, CDKN1A, STAT3, DDIT4, TNC, ITGA5, NOTCH2, NOTCH3, 
CD44, EZR, PIM1, TIMP3 0.18532428 

Fat digestion and 
absorption PLPP1, PLPP3 0.19672574 

Systemic lupus 
erythematosus C1R, C4A, C4B 0.19672735 

Toxoplasmosis BCL2, RELA, BIRC3, TAB2, HSPA2, IRAK1, MYD88, MAP2K3, TNFRSF1A, NFKBIA, STAT3, 
ITGB1, LAMA4 0.1974987 

Measles BCL2, RELA, FADD, TAB2, IRAK1, MYD88, NFKBIA, IL2RG, STAT3, CDK2, FOS, TNFAIP3, 
MSN 0.1974987 

 

ST2: The 61 enriched KEGG signaling pathways. 
Name p-value Name p-value 

Focal adhesion 1.39E-05 TNF signaling pathway 0.0434 

Mineral absorption 2.56E-05 Apoptosis - multiple species 0.0532 

ECM-receptor interaction 0.0002 Rap1 signaling pathway 0.0571 

Proteoglycans in cancer 0.0004 Human cytomegalovirus infection 0.0603 

Cytokine-cytokine receptor interaction 0.0005 Apoptosis 0.0658 

Hippo signaling pathway - multiple species 0.0006 Adherens junction 0.0669 

Pathways in cancer 0.0008 Cellular senescence 0.0692 

PI3K-Akt signaling pathway 0.0011 Sulfur metabolism 0.0758 

Viral protein interaction with cytokine and 
cytokine receptor 0.0019 Malaria 0.0758 

AGE-RAGE signaling pathway in diabetic 
complications 0.0021 Galactose metabolism 0.0812 

Epstein-Barr virus infection 0.0056 Glycosaminoglycan degradation 0.0905 
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MAPK signaling pathway 0.0059 Legionellosis 0.0906 

Adipocytokine signaling pathway 0.0060 Leukocyte transendothelial migration 0.0948 

Basal cell carcinoma 0.0077 Gastric cancer 0.0951 

NF-kappa B signaling pathway 0.0085 HIF-1 signaling pathway 0.1009 

Regulation of actin cytoskeleton 0.0087 Wnt signaling pathway 0.1043 

IL-17 signaling pathway 0.0104 Human immunodeficiency virus 1 
infection 0.1075 

Hippo signaling pathway 0.0132 Steroid hormone biosynthesis 0.1084 

TGF-beta signaling pathway 0.0137 Starch and sucrose metabolism 0.1084 

Human T-cell leukemia virus 1 infection 0.0188 Glucagon signaling pathway 0.1179 

Complement and coagulation cascades 0.0214 Rheumatoid arthritis 0.1192 

Staphylococcus aureus infection 0.0249 Fluid shear stress and atherosclerosis 0.1218 

Axon guidance 0.0266 Th17 cell differentiation 0.1275 

Insulin resistance 0.0283 Inflammatory bowel disease (IBD) 0.1321 

Human papillomavirus infection 0.0299 Prostate cancer 0.1348 

Breast cancer 0.0375 Cushing syndrome 0.1356 

Pertussis 0.0375 Th1 and Th2 cell differentiation 0.1368 

Yersinia infection 0.0397 Natural killer cell mediated cytotoxicity 0.1410 

NOD-like receptor signaling pathway 0.0401 Primary bile acid biosynthesis 0.1437 

Maturity onset diabetes of the young 0.0413 Small cell lung cancer 0.1438 

Pathogenic Escherichia coli infection 0.0430   
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