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Abstract

Neuro-inflammation signaling has been identified as an important hallmark of Alzheimer’s disease
(AD) in addition to amyloid B plaques (AB) and neurofibrillary tangles (NFTs). However, our
knowledge of neuro-inflammation is very limited; and the core signaling pathways associated with
neuro-inflammation are missing. From a novel perspective, i.e., investigating weakly activated
molecular signals (rather than the strongly activated molecular signals), in this study, we
uncovered the core neuro-inflammation signaling pathways in AD. Our novel hypothesis is that
weakly activated neuro-inflammation signaling pathways can cause neuro-degeneration in a
chronic process; whereas, strongly activated neuro-inflammation often cause acute disease
progression like in COVID-19. Using the two large-scale genomics datasets, i.e., Mayo Clinic (77
control and 81 AD samples) and RosMap (97 control and 260 AD samples), our analysis identified
7 categories of signaling pathways implicated on AD and related to virus infection: immune
response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and
mineral absorption signaling pathways. More interestingly, most of genes in the virus infection,
immune response and x-core signaling pathways, are associated with inflammation molecular
functions. Specifically, the x-core signaling pathways were defined as a group of 9 signaling
proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF, which
indicated the core neuro-inflammation signaling pathways responding to the low-level and weakly
activated inflammation and hypoxia, and leading to the chronic neuro-degeneration. The core
neuro-inflammation signaling pathways can be used as novel therapeutic targets for effective AD

treatment and prevention.
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Introduction

A major challenge limiting effective treatments for Alzheimer’s disease (AD) is the complexity of
AD. More than 42 genes/loci have been associated with AD!2. Unfortunately, only few of these
genes, like CD33%, TREM2*, MS4A°, are being evaluated as therapeutic targets for AD
management!. Over 240 drugs have been tested in AD clinical trials, but no new drugs have been
approved for AD since 2003%7. One major challenge is that the complicated pathogenesis and
core signaling pathways of AD remains unclear. Therefore, it is significant to uncover the core
signaling pathways implicated on AD pathogenesis and novel therapeutic targets of AD for
identifying effective drugs and synergistic drug combinations (targeting multiple essential targets

on the cores signaling network) for AD prevention or treatment.

Our knowledge of the molecular mechanisms and signaling pathways that ultimately lead to the
chronic neurodegeneration in AD is limited. For example, there are only a few strong genetic
biomarkers for AD that have been identified, including the APOE, APP, PSEN1/2 genes.
However, the signaling consequence of these biomarkers as they relate to the accumulation of
dysfunctional A-beta and p-Tau proteins, as well as neuron death and immune response remain
unclear. Over the last 10 years, neuro-inflammation and immune signaling have been being
identified as the third core feature or a central pathogenesis mechanism of AD**'*!112"in addition
to amyloid B plaques (AB) and neurofibrillary tangles (NFTs) pathologies. However, our
knowledge of neuro-inflammation and immune signaling and their roles in neuro-degeneration is
limited, though a set of inflammation and immune genes, like TNF, IL-1beta, IL-6, NFKB have
been reported. No computational network analysis has been specifically designed and conducted
to uncover and understand the neuro-inflammation and immune signaling pathways
systematically. Therefore, it is important to continue to pursue systematic investigations, including
the use of network analysis techniques, in order to uncover and understand the details of core
signaling pathways, and the core neuroinflammation and immune signaling pathways that are

associated the neurodegeneration of AD.

In response to the preceding gap in knowledge, we have systematically sought to identify the
potential core signaling pathways causing neuron death and/or degeneration in AD by analyzing
the RNA-seq data of human AD samples!®!'4. Instead of identifying the strongly activated
molecular signals in the computational network analysis15, our unique contribution via this study

is to identify the ‘weakly’ activated signaling pathways that may lead to neuron death in a chronic
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manner. The rationale of focusing on the weakly activated signaling pathways is that the only
weakly activated signaling can cause the neuron death/degeneration in a chronic process.
Whereas, strongly activated signaling pathways often cause acute disease progression, such as
what is observed in a variety of cancers16:17 and COVID-1918:19. Specifically, we employed the
RNA-seq data of neuropathology-free controls and AD samples from two datasets: ROSMAP!3:14
and Mayo Clinic20. Leveraging this data, we then identified all of the weakly activated and
inhibited genes with very low fold change thresholds. Subsequently, we conducted network
enrichment analyses to identify relevant core signaling pathways. Further, a network inference
analysis was conducted to uncover the potential signaling cascades causing neuron death from

the activated signaling pathways.

Results

Normal and AD tissue samples are barely separable in the gene expression data space.
There were 77 normal control subjects and 81 AD cases in Mayo dataset; and 260 normal control
samples and 97 AD cases in ROSMAP dataset. The transcripts per million (TPM) values of 16,132
protein coding genes were obtained by applying the Salmon quantification tool?! in alignment-
based mode using the STAR aligned RNA-seq data. A multidimensional scaling (MDS) model
was used to generate the 2D clustering plots of normal control and AD samples in the Mayo and
ROSMAP datasets respectively (see Fig. 1). As is seen in these visualizations, the normal and
AD samples are barely separable, especially in the ROSMAP dataset, which of note, has more

normal samples than Mayo dataset.

Table 1: Epidemiology information of Mayo and RosMap datasets.

Mayo Control AD RosMap Control AD
In Total 77 81 In Total 97 260
Male 40 33 Male 44 82
Female 37 48 Female 53 178
Age 82.65 (8.70) | 82.57 (7.62) Age 84.24 (6.82) 90.34 (5.75)
Mean (SD) Mean (SD)

APOE_22 0 0 APOE_22 2 0
APOE_23 12 4 APOE_23 13 22
APOE_33 56 34 APOE_33 | 72 141
APOE_24 1 0 APOE_24 1 10
APOE_34 36 APOE_34 |8 83
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Figure 1: AD and normal control tissue samples are not well separable using an MDS plot on
the RNA-seq protein-coding genes in Mayo (top-panel) and ROSMAP (bottom-panel)
datasets.
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We further conducted a widely used differential expression analysis method to identify
differentially expressed genes (DEGs) between the AD and normal control samples. To identify
the common set of DEGs between the two datasets, we applied a number of fold-change and p-
value thresholds. As seen in Table 1 and expected from Fig. 1, only a few common up- and down-
regulated DEGs were identified with fold change thresholds >= 1.5 and p-value <= 0.05. Even
with the fold change threshold >= 1.25, only about 230 up- and about 60 down-regulated genes
were identified (out of the 16,132 protein coding genes, ~1.85%), in both studies. When relaxing
both thresholds to fold change >= 1.1 and p-value <= 0.1, 1,120 up-regulated genes and 689
down-regulated genes were identified (~11.2% of the 161,32 protein-coding genes). Based upon
these observations, we hypothesized that the AD-associated signaling pathways are weakly

activated or inhibited.

Table 1: Differentially expressed genes (DEGs) out of 16,132 common protein coding genes

between AD and control samples in Mayo and ROSMAP datasets.

Fold |, # of DEGs # of DEGs # °f_°‘|’wmm°“ DdEGs
- . . in Mayo an
change in Mayo in ROSMAP ROSMAP
>=2.0 <=0.05 22 (up), 5 (down) 0 (up), 0 (down) 0 (up), 0 (down)
>=2.0 <=0.1 22 (up), 5 (down) 0 (up), 0 (down) 0 (up), 0 (down)
>=1.5 <=0.05 210 (up), 84 (down) 30 (up), 5 (down) 15 (up), 4 (down)
>=1.5 <=0.1 210 (up), 86 (down) 30 (up), 5 (down) 15 (up), 4 (down)
_ _ 958 (up), 873 487 (up), 123
>=1.25 <=0.05 (down) (down) 227 (up), 56 (down)
_ _ 962 (up), 883 488 (up), 126
>=1.25 <=0.1 (down) (down) 230 (up), 64 (down)
_ _ 2457 (up), 3687 2610 (up), 1752
>=1.1 <=0.05 (down) (down) 1009 (up), 604 (down)
_ _ 2609 (up), 3952 2700 (up), 1783
>=1.1 <=0.1 (down) (down) 1120 (up), 689 (down)

Weak inflammation and hypoxia are the potential major factors in the AD brain

microenvironment causing neuron cell death.
As was noted previously, we believe it is important to identify AD-associated weakly activated
signaling pathways, and understand their roles in AD disease progression, as well as their

potential roles as targeted for AD therapeutics. Among the 1,120 common up-regulated genes
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(identified from Mayo and ROSMAP datasets), 417 genes were included in the 311 KEGG
signaling pathways. To this end, we first conducted an enrichment analysis of KEGG signaling
pathways using Fisher's exact test applied to the 417 up-regulated genes. Table 2 showed the
enriched signaling pathways with p-value <= 0.15. We then clustered these activated signaling
pathway empirically into 7 categories (see Fig. 2). Using these 417 up-regulated genes, the first
principal component values in the MDS analysis of the AD and control samples were used to
compared the difference in AD and control samples. The OR, absolute beta values and p-values
of logistic regression analysis (see Table 2) indicated that these selected genes (p-
value=1.22x10"® (Mayo) and p-value=4.2x10° (ROSMAP)) can separate the AD and control
samples much better than using all protein genes (p-value=0.036(Mayo) and p-value=0.027
(ROSMAP)) in the two datasets respectively. The bar-plots were also provided in Fig. 2, which

indicated that the control and AD samples are more separable using the selected genes.

Table 2: Odds ratio (OR), beta and p-values of logistic regression using all gene and 417 up-

regulated genes.

All genes 417 genes
OR abs(beta) p-value OR abs(beta) p-value
Mayo 1.42 0.35 0.037 5.9 1.78 9.5x10°°
RosMap 1.31 0.27 0.027 1.9 0.63 9.7*10°



https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458295; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

N ! —_—T )
: ~ : !
o - 1
| o
& : - } :
' | 0 o 1 |
D o
8 ? °
T T I 1
Control AD Control AD
Mayo (all protein genes) RosMap (all protein genes)
O © o]
p—
o | -
) |
| o]
1 (o}
- —i —_— : o] 4_
1 o~ o] !
) 8 l
o - : l
s - :
Rl I [ 1
Control AD Control AD
Mayo (417 genes) RosMap (417 genes)
Figure 2: Box-plots of the first principal component of MDS analysis in control and AD cases. Left
and right columns are Mayo and RosMap samples respectively. Upper and lower panels
represent the MDS analysis using all genes and 417 up-regulated genes respectively.
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As seen in our results (see Fig.3 and Table 3), a set of signaling pathways were activated, such
as those involved in virus infection signaling (including: Epstein-Barr virus, Human T-cell leukemia
virus 1 infection, Legionellosis, Pathogenic Escherichia coli infection, Staphylococcus aureus
infection, Yersinia infection, Human cytomegalovirus infection, Human papillomavirus infection,
Malaria, Human immunodeficiency virus 1 infection, Rheumatoid arthritis, and Inflammatory
bowel disease [IBD]). There are 111 genes (out of the 417 up-regulated genes) in common across
these pathways highlighting a set of core genes implicated on these processes. These results
indicated that weakly activated inflammation related signaling pathways, like inflammation,
cytokine, and immune response, may be represent activated signaling pathways in the AD brain

microenvironment.

In addition, a group of activated signaling pathways or factors that are not clustering to a specific
biological function or disease (referred to as the x-signaling pathway: the Hippo, PI3K-Akt, AGE-
RAGE, MAPK, Adipocytokine, NF-kappa B, IL-17, TGF-beta, NOD-like receptor, TNF, Apoptosis,
HIF-1 and Wnt signaling pathways, as well as apoptosis signaling) were identified. Fig. 4 shows
the associations between these up-regulated genes and activated signaling pathways. As seen
in Fig. 4, a set of genes in the center areas of the network are associated with a set of signaling
pathways, which could represent therapeutic signaling targets that could be used to inhibit or
otherwise perturb these activated signaling pathways. In addition, there are a number of
metabolisms signaling pathways, like Sulfur metabolism, Galactose metabolism, Starch and
sucrose metabolism, Steroid hormone biosynthesis, Glycosaminoglycan degradation, implicated
in this model. Moreover, Th1/2/17 (T helper, CD4+ cells) cell differentiation signaling was
activated. Similarly, the natural killer cell mediated cytotoxicity signaling pathways were also
activated. Table S1 lists these associated up-regulated genes and the involved signaling
pathways. All the observations suggest a potential novel hypothesis that the external inflammation,
immune signaling and hypoxia signaling in AD microenvironment activated the MAPK, PI3K-Akt
and mTOR signaling pathways, and then activated the HIF-1 signaling pathway. However, the
activation of HIF-1 may fail to bring enough oxygen to protect against hypoxic injury to the involved

neurons. The dysfunction of blood vessel functions, leading to hypoxia, might be partially
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indicated by the recent study showing that blood and cerebrospinal fluid flow cleaning the brain

during sleeping??.
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Figure 3: Seven categories of weakly activated signaling pathways in AD.

Table 3: The seven categories of enriched KEGG signaling pathways.

Name p-value Name p-value
Virus related signaling pathways X-core signaling pathways

Viral protein interaction with cytokine and 0.0019 PI3K-Akt signaling pathway 0.0011
cytokine receptor

Epstein-Barr virus infection 0.0056 MAPK signaling pathway 0.0059
Human T-cell leukemia virus 1 infection 0.0188 NF-kappa B signaling pathway 0.0085
Staphylococcus aureus infection 0.0249 Hippo signaling pathway 0.0132
Human papillomavirus infection 0.0299 TGF-beta signaling pathway 0.0137
Pertussis 0.0375 TNF signaling pathway 0.0434
Yersinia infection 0.0397 Rap1 signaling pathway 0.0571
Pathogenic Escherichia coli infection 0.0430 HIF-1 signaling pathway 0.1009
Human cytomegalovirus infection 0.0603 Wnt signaling pathway 0.1043
Malaria 0.0758 Apoptosis 0.0658
Legionellosis 0.0906

Human immunodeficiency virus 1 infection 0.1075

Rheumatoid arthritis 0.1192 Mineral absorption 2.56E-05
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Inflammatory bowel disease (IBD) 0.1321

Immune signaling pathways Diabetic/Lipid signaling pathways

IL-17 signaling pathway 0.0104 ﬁ‘fj{;ﬁéﬁ;?gna"”g pathway in diabetic 0.0021
Complement and coagulation cascades 0.0214 Adipocytokine signaling pathway 0.0060
NOD-like receptor signaling pathway 0.0401 Insulin resistance 0.0283
Th17 cell differentiation 0.1275 Glucagon signaling pathway 0.1179
Th1 and Th2 cell differentiation 0.1368 Cushing syndrome 0.1356
Natural killer cell mediated cytotoxicity 0.1410

Biosynthesis/Metabolism signaling pathways Adhesion signaling pathways

Sulfur metabolism 0.0758 Focal adhesion 1.39E-05
Galactose metabolism 0.0812 ECM-receptor interaction 0.0002
Glycosaminoglycan degradation 0.0905 Adherens junction 0.0669
Steroid hormone biosynthesis 0.1084

Starch and sucrose metabolism 0.1084

Primary bile acid biosynthesis 0.1437

Weak inflammation and hypoxia are the major factors in the AD brain microenvironment

causing neuron cell death
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As was introduced above, many genes that are activated as a function of virus infection, immune
response and the x-core signaling pathways are inflammation related genes. It is well known that
virus infection and immune response signaling pathways respond to inflammation. Our analyses
identified 1043 inflammation response genes in the gene ontology (GO) database (GO:0006954),
that includes 492 genes in the KEGG signaling pathways. Interestingly, among the 417 up-
regulated genes, 66 genes were inflammation related. The p-value of observing the 66 up-

regulated inflammation signaling targets from 417 up-regulated genes identified in the AD vs
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Figure 4: The up-regulated gene-pathway interaction network, including 1021 interactions
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Figure 5: Signaling cascades linking the up-regulated signaling genes in the virus infection
pathways (cyan) (top) and x-core signaling pathways (bottom) to the up-regulated apoptosis
signaling genes (red) via the linking genes (pink).
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= 1.77, which indicate that the activation of inflammation signaling is concomitant with AD
progression. Furthermore, there are 66 overlapping up-regulated genes spanning the virus
infection (from 111 up-regulated genes) and x-core signaling pathways (from 136 up-regulated
genes), which indicate that the x-core signaling pathways are the likely pathways being activated
in response to this inflammation. In addition, the activation of HIF-1 signaling pathway indicates

the presence of hypoxia in the AD brain environment.

To further investigate the network signaling cascades involving inflammation and apoptosis genes,
we conducted the network analysis incorporating the activated signaling pathways and apoptosis
signaling genes. As seen in Fig. 5, the potential signaling cascades linking the up-regulated
inflammation related genes in virus infection and X-core signaling pathways to the activated
apoptosis signaling targets. Among the 338 signaling network genes in Fig. 5, there are 18
reported GWAS genes (with p-value <= 1.0x107°): PIK3CB, AKT3, RAF1, MAPK10, PPP2R2B,
ERBB4, MECOM, IL1R1, MYD88, CAMK2D, GNB4, VAV3, PRKD3, PRKCE, THRB, FN1, LTBP1
WWTR1, which were reported in the GWAS analysis %°. Further, we also compared the distance

distribution among the inflammation related up-regulated genes and apoptosis genes as shown

All Kegg Genes
Virus Infection Genes
o
= —— X-signaling genes
Intersect of Virus infection and X-signaling genes
© _|
o
© _|
o
<
o
N
o
o |
o

T T T T T T
1 2 3 4 5 6

Figure 6: The up-regulated genes in the inflammation related signaling pathways, including
virus infection, immune response and x-core signaling pathways. As seen, the inflammation
signaling genes are much closer (see green, blue and red) to the apoptosis genes compared
with other signaling genes (see gray lines).
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in Fig. 6. As can be seen, the inflammation signaling genes are much closer, based on the
shortest path metric calculated using the Dijkstra's algorithm, on the signaling network, (see green,
blue and red nodes) to the apoptosis genes compared with other signaling genes (see gray lines).
These results indicate a potential signaling interactions between the inflammation signaling genes
and apoptosis signaling. In other words, the results suggest a potential association that the weak
inflammation and hypoxia signaling in the AD brain environment led to chronic neurodegeneration
process via the activation of the x-core signaling pathways. Therefore, drugs and drug
combinations that can perturb the X-core signaling pathways have the potential to be effective for

AD prevention and treatment.

Activated TNF signaling might lead the programmed apoptosis of neurons

Of note, our results show that among the X-

core signaling pathways, the TNF signaling TNFRSF10A
pathways are also activated. Particularly, TN b
the TNF (Tumor Necrosis Factor) receptors ‘@ pd ®
TNERSF1A FAS B
(TNFRSF1A TNFRSF10A, and . ¢ MAPK14
TNFRSF10B) were up-regulated (see ® - w3
Table 4). We reconstructed these signaling ci@sc 2P
pathway linking the TNF receptors to the @ .
®s P
up-regulated genes in TNF and apoptosis @ cisro RN
B, MDM2 TP1
signaling pathways (see in Fig. 7). As seen, ® COOO:‘;RPZ ® e '@ i@
the activation of these TNF signaling fos @ @
pathway might be one possible molecular | Figure 7: Signaling cascades, causing neuron
mechanism causing the activation of death, from the 3 TNF regeptors (cyan) to the'
o up-regulated genes (red) in TNF and apoptosis
apoptosis signaling via the CASP6, CASP7 | signaling pathways via the linking genes (pink).
cascades.

Table 4: up-regulated genes in TNF and apoptosis signaling pathways.

BCL2, RELA, BIRC3, FADD, GADD45G, TNFRSF1A, NFKBIA, TNFRSF10B,

Apoptosis
CAPN2, TUBA1C, IL3RA, CTSH, FOS, CASP6, CASP7, TNFRSF10A, PARP4

TNF signaling | RELA, BIRC3, FADD, MAP2K3, TNFRSF1A, NFKBIA, CREB3L2, FOS, CASP7,
pathway MLKL, IRF1, CEBPB
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Circadian entrainment, addiction, Neuroactive Neuroactive ligand-receptor, Synaptic
vesicle cycle, Fat acid biosynthesis, mTOR and oxidative phosphorylation signaling
pathways were down-regulated inhibited in AD tissues.

We also conducted pathway enrichment analyses using 143 down-regulated genes in KEGG
signaling pathways. There are far fewer down-regulated genes and lower inhibition down-
regulated of KEGG signaling pathways, compared with up-regulated genes (see Table 5). As
shown in Fig. 8, the circadian entrainment, addition, Neuroactive neuroactive ligand-receptor,
Synaptic vesicle cycle, Fat acid biosynthesis and oxidative phosphorylation genes pathways were

inhibited in AD, which is associated with the down-regulated Ras and cAMP signaling pathways.
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Figure 8: The down-regulated gene-pathway interaction network, including 183 interactions
between 73 up-regulated genes and 30 enriched pathways.
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The dysfunctional circadian entrainment signaling pathway were reported to be associated with
AD, and might be associated with the rhythmic spinal fluid washing over brain during deep sleep.
In addition, the mTOR signaling and oxidative phosphorylation signaling pathways were down-

regulated. Moreover, fat acid biosynthesis and elongation were also inhibited.

Table 5: The 30 down-regulated KEGG signaling pathways.

Pathway Names p-value

Neuron related signaling pathways

Neuroactive ligand-receptor interaction 4.35E-06
Circadian entrainment 0.003
Glutamatergic synapse 0.009
Synaptic vesicle cycle 0.017
SNARE interactions in vesicular transport 0.036
Dopaminergic synapse 0.040
GABAergic synapse 0.148

Addiction signaling pathways

Nicotine addiction 0.003
Alcoholism 0.006
Morphine addiction 0.075

Fatty acid signaling pathways

Fatty acid elongation 0.062

Fatty acid biosynthesis 0.132

Signaling transduction pathways

cAMP signaling pathway 0.023
mTOR signaling pathway 0.023
Ras signaling pathway 0.083

Infection signaling pathways

Oxidative phosphorylation 4.05E-05
Vibrio cholerae infection 0.0002
Amphetamine addiction 0.0009
Epithelial cell signaling in Helicobacter pylori infection 0.0009

Metabolism signaling pathways

Taurine and hypotaurine metabolism 0.038
Butanoate metabolism 0.046
Cysteine and methionine metabolism 0.060
Retinol metabolism 0.088

Other signaling pathways

Valine, leucine and isoleucine biosynthesis 0.007
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Phagosome 0.018

Retrograde endocannabinoid signaling 0.056

Long-term potentiation 0.071

Salivary secretion 0.078

Gastric acid secretion 0.083

Phototransduction 0.086
Methods

Gene expression data analysis of Apoe4/4 genotype AD samples

In this study, 77 normal tissue samples and 81 AD tissue samples in Mayo dataset; and 97 normal
samples and 260 AD samples in ROSMAP dataset were used. Both datasets were processed
and aligned separately using reference genome GRCh38 and GENCODE 33 annotation including
the ERCC spike-in annotations. We excluded ALT, HLA, and Decoy contigs from the reference
genome due to the lack of RNA-Seq tools that allow to handle these regions properly. To obtain
gene expression data, all read sequences from both datasets were first mapped to the reference
genome using STAR (v.2.7.1a)?. Transcripts per million (TPM) values of 16,132 common protein
coding genes were then obtained in the two datasets by applying the Salmon quantification tool?!

in alignment-based mode using the aligned RNA-seq data.

Differentially expressed genes
To identify the up- and down-regulated genes in AD samples vs normal control samples, the

edgeR?* tool, using the negative binomial (NB) statistical model, was applied to the TPM values.

Inflammation genes
A set of inflammation genes were obtained by extracting genes from the inflammatory response
category as defined in the Gene Ontology (GO:0006954)*. Subsequently, 485 inflammation

genes were obtained from the 5,191 KEGG signaling genes.

AD GWAS data
The GWAS data of AD was obtained from niagads database®® (https://www.niagads.org/igap-rv-

summary-stats-kunkle-p-value-data). The Stage 1 P-Value Data (updated by February 26, 2019)
and Stage 2 P-Value Data (updated by February 27, 2019) were downloaded. The 553 candidate
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GWAS genes and also available in the KEGG signaling pathways were obtained by a filter with

p-value <= 1.0x10°°.

KEGG signaling pathway enrichment analysis

The KEGG signaling pathways consist of 311 signaling pathways27:28. There are 59,242
signaling interaction among 5,191 genes in these pathways, which were used for network
enrichment analysis and network inference analysis in this study. For the network enrichment

analysis, a Fisher’'s exact test29:30 was used based upon the up-regulated genes.

KEGG signaling network inference analysis

To infer the signaling cascades among a set of genes of interest, we developed a network
inference approach. First, we divided the genes into two groups: signaling sources (like the
inflammation signaling genes), and signaling targets (like the apoptosis signaling genes). Second,
a signaling network was constructed by linking the signaling source genes to the signaling target
genes iteratively. Specifically, the signaling source genes was used as the initial signaling source
nodes set: V0. The signaling target genes were used as the target nodes set: V1. In the iterative
process, the shortest signaling cascades/paths between the nodes in VO and V1 were calculated
and identified: P; = <gj, g«1, gke, ..., 9, Where gi belongs to VO, and g; belongs to V1. Third, all of
the genes on the signaling path P; and belong to V1 were selected and added to VO, and removed

from V1. This process was repeated until all the genes were added to VO.

Discussion and conclusion

Neuro-inflammation and immune signaling have been being identified as an important
pathogenesis mechanism of AD, in addition to amyloid B plaques (AB) and neurofibrillary tangles
(NFTs) pathologies. However, our knowledge of neuro-inflammation and immune signaling and
their roles in neuro-degeneration is limited, though a set of inflammation and immune genes, like
TNF, IL-1beta, IL-6, NFKB have been reported. Recently, the network analysis models were
proposed to identify the potential dysfunctional signaling pathways and biomarkers using the
related RNA-seq datasets. For example, the molecular signatures and networks under different
brain regions were reported using integrative co-expression network analysis, and the myelin
signaling dysregulation was identified in AD*'2, In addition, the co-splicing network using the
WGCNA (co-expression network analysis model) was conducted to identified the altered splicing

in AD, which indicated that the altered splicing is the mechanism for the effects of the AD related
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CLU, PTK2b and PICALM alleles33. Moreover, the molecular subtypes and potential driver
genes, like CABRB2, LRP10, ATP6V1A, of AD were identified by combing key driver analysis
(KDA) and multiscale embedded gene expression network analysis (MEGENA)34:35,36.
However, neuro-inflammation and immune signaling pathways have not been systematically
uncovered and analyzed in these reported computational models. Compared with these reported
studies, our unique contribution is the novel discovery of essential neuro-inflammation and
immune signaling genes and signaling interactions using systematic network analysis models,
which indicates potentially novel targets and mechanisms of neuro-inflammation and immune

signaling in neuro-degeneration.

Specifically, we propose a novel hypothesis that weakly activated neuro-inflammation signaling
pathways can cause neuro-degeneration in a chronic process; whereas, strongly activated neuro-
inflammation often cause acute disease progression like in COVID-19. Consequently, from a
novel perspective, i.e., investigating the weakly activated molecular signals (rather than the
strongly activated molecular signals), in this study, we uncovered the core neuro-inflammation
signaling pathways in AD. To the best of our knowledge, it is the first time to systematically
uncover the core neuro-inflammation signaling pathways based on the transcriptomic data of AD.
The neuro-inflammation signaling pathways, including the virus infection, immune response, x-
core signaling pathways, apoptosis signaling pathways. indicated that such weak inflammation
may lead to the activation of x-core signaling pathways and the ultimate apoptosis of neurons. As
a result, we hypothesize that drugs and drug combination inhibiting the neuro-inflammation
signaling pathways could be potentially effective for AD prevention and treatment. Moreover, it is
interesting to investigate the detailed signaling cascades of the x-core signaling pathways,
including the MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo and TNF
signaling pathways. And it is important to study their roles in AR plaques and tau tangles as well

as neuro-degeneration.

Acknowledgement

This work is partially supported by National Institute of Ageing (NIA) R56AG065352 to Dr. Li. We
thank all the participants and their families, as well as the many involved institutions and their
staff. Funding: This work was supported by grants from the National Institutes of Health
(RO1AG044546 (CC), PO1AG003991(CC, JCM), RF1AG053303 (CC), RF1AG058501 (CC), and


https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458295; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

UO01AG058922 (CC), and chuck zuckerberg initiative (CZI). This work was supported by access

to equipment made possible by the Hope Center for Neurological Disorders, and the Departments

of Neurology and Psychiatry at Washington University School of Medicine. CC receives research

support from: Biogen, EISAI, Alector and Parabon. CC is a member of the advisory board of Vivid

Genomics, Halia Therapeutics and ADx Healthcare. The remaining authors declare no competing

interests.

References

1. Verheijen, J. & Sleegers, K. Understanding Alzheimer Disease at the Interface between
Genetics and Transcriptomics. Trends in Genetics vol. 34 (2018).

2. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-
mediated innate immunity in Alzheimer&#39;s disease. Nature Genetics 49, 1373 (2017).

3. Zhao, L. CD33 in Alzheimer’s Disease — Biology, Pathogenesis, and Therapeutics: A
Mini-Review. Gerontology 65, 323-331 (2019).

4. Gratuze, M., Leyns, C. E. G. & Holtzman, D. M. New insights into the role of TREM2 in
Alzheimer’s disease. Molecular Neurodegeneration 13, 66 (2018).

5. Deming, Y. et al. The &lt;em&gt;MS4A&lt;/em&gt; gene cluster is a key modulator of
soluble TREM?2 and Alzheimer’s disease risk. Science Translational Medicine 11,
eaau2291 (2019).

6. 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 14, 367-429 (2018).

7. Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development
pipeline: 2018. Alzheimer’s and Dementia: Translational Research and Clinical
Interventions 4, 195-214 (2018).

8. Kinney, J. W. ef al. Inflammation as a central mechanism in Alzheimer’s disease.
Alzheimer’s & dementia (New York, N. Y.) 4, 575-590 (2018).

9. Newcombe, E. A. et al. Inflammation: the link between comorbidities, genetics, and
Alzheimer’s disease. Journal of Neuroinflammation 15, 276 (2018).

10.  Akiyama, H. et al. Inflammation and Alzheimer’s disease. Neurobiology of aging 21,
383421 (2000).

11.  Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B. & Landreth, G. E.
Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated
proinflammatory responses and neurotoxicity by PPARgamma agonists. The Journal of
neuroscience : the official journal of the Society for Neuroscience 20, 558-567 (2000).

12.  Knezevic, D. & Mizrahi, R. Molecular imaging of neuroinflammation in Alzheimer’s
disease and mild cognitive impairment. Progress in neuro-psychopharmacology &
biological psychiatry 80, 123—131 (2018).

13.  De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and
Alzheimer’s disease research. Scientific data 5, 180142 (2018).

14.  Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project.

Journal of Alzheimer’s disease : JAD 64, S161-S189 (2018).


https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458295; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15. Neff, R. A. et al. Molecular subtyping of Alzheimer {\textquoteright}s disease using RNA
sequencing data reveals novel mechanisms and targets. Science Advances 7, (2021).

16.  Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell
173, 321-337.e10 (2018).

17.  Feng, J., Zhang, H. & Li, F. Investigating the relevance of major signaling pathways in
cancer survival using a biologically meaningful deep learning model. BMC Bioinformatics
22, (2021).

18.  Gordon, D. E. et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals
Drug Targets and Potential Drug-Repurposing. bioRxiv (2020)
do0i:10.1101/2020.03.22.002386.

19.  Fuhai Li, Andrew P. Michelson, Randi Foraker, Ming Zhan, P. R. O. P. Repurposing
drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2.
https://arxiv.org/abs/2006.01226 (2020).

20.  Allen, M. ef al. Human whole genome genotype and transcriptome data for Alzheimer’s
and other neurodegenerative diseases. Scientific data 3, 160089 (2016).

21.  Patro, R, Duggal, G., Love, M. L, Irizarry, R. A. & Kingsford, C. Salmon provides fast
and bias-aware quantification of transcript expression. Nature methods 14, 417419
(2017).

22.  Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid
oscillations in human sleep. Science 366, 628 LP — 631 (2019).

23.  Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford,
England) 29, 15-21 (2013).

24.  Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics (Oxford,
England) 26, 139—-140 (2010).

25.  Gene Ontology Consortium, T. et al. Gene Ontology: tool for the unification of biology
NIH Public Access Author Manuscript. Nat Genet 25, 25-29 (2000).

26. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies
new risk loci and implicates A, tau, immunity and lipid processing. Nature Genetics 51,
414-430 (2019).

27.  Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Research 28 (1999) doi:10.1093/nar/27.1.29.

28. Kanehisa, M. G. S. & Goto, S. KEGG: kyoto Encyclopedia of Genes and Genomes.
Nucleic acids research 28, 27-30 (2000).

29.  Fisher, R. A. Statistical methods for research workers,. (Oliver and Boyd, 1932).

30. Kim, H.-Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact
test. Restorative dentistry & endodontics 42, 152—155 (2017).

31.  Wang, M. et al. Integrative network analysis of nineteen brain regions identifies molecular
signatures and networks underlying selective regional vulnerability to Alzheimer’s
disease. Genome Medicine 8, 104 (2016).

32. Wan, Y.-W. ef al. Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome
and Functional Dissection in Mouse Models. Cell Reports 32, 107908 (2020).

33. Raj, T. et al. Integrative transcriptome analyses of the aging brain implicate altered
splicing in Alzheimer’s disease susceptibility. Nature Genetics 50, 1584—1592 (2018).


https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

34.  McKenzie, A. T. et al. Multiscale network modeling of oligodendrocytes reveals
molecular components of myelin dysregulation in Alzheimer’s disease. Molecular
Neurodegeneration 12, 82 (2017).

35. Neff, R. & Vatansever, S. Transformative Network Modeling of Multi-omics Data
Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer’s
Disease. Neuron 109, (2020).

36.  Neff, R. A. et al. Molecular subtyping of Alzheimer’s disease using RNA sequencing data
reveals novel mechanisms and targets. Science advances 7, eabb5398 (2021).

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458295; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Supplementary Tables
Table ST1: Enriched Kegg signaling pathways using up-regulated genes.

Name Genes pValue
EGFR, ERBB2, HGF, PDGFRB, BCL2, BIRC3, ELK1, PGF, RAP1A, VEGFC, FLT1, FLT4, VAV3,

Focal adhesion TLN1, VASP, PXN, FYN, CAPN2, COL1A2, COL6A1, COL6A2, FN1, TNC, ITGAS5, ITGB1, ITGB5, | 1.39E-05
ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, MYL9, MYL12A, DOCK1, PARVA, CAV1, ITGA8

Mineral absorption HEPH, MT1A, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A 2.56E-05

ECM-receptor COL1A2, COL6AT, COL6A2, FN1, TNC, ITGA5, ITGB1, ITGB5, [TGB8, LAMA4, SPP1, THBS2, 0.00017828

interaction THBS4, ITGA10, CD44, NPNT, ITGA8, SDC4 :
HPSE2, PLCE1, EGFR, ERBB2, HGF, CDKN1A, ELK1, MRAS, IGF2, RRAS, TGFB1, VAV3,

Proteoglycans in cancer | ITPR3, PXN, STAT3, WNT6, FZD7, FZD8, FZD9, COL1A2, FN1, ITGAS5, ITGB1, ITGB5, SMO, 0.00035749
DCN, CAV1, CD44, IQGAP1, MSN, EZR, SDC2, SDC4, TIMP3

Cytokine-cytokine CSF1, IL1R1, TGFB1, TGFBR2, TNFRSF1A, NGFR, CXCR4, GDF11, CTF1, CXCL1, IL2RG,

rovsptor interaction IL4R, CXCL8, INHBB, CXCL10, IL20RA, CCL2, BMP6, BMP7, GDF15, LTBR, TNFRSF10B, 0.00053537
IL3RA, TNFRSF10A, TNFRSF11B, IL13RA1, IL15RA, OSMR, IL1R2, IL18R1

[":ﬁfj’ft’i ;‘gr;f)“enc?e‘s’athway YAP1, WTIP, WWC1, WWTR1, LATS2, TEAD1, TEAD4, TEAD3, TEAD2 0.00055489
PLCB3, EGFR, ERBB2, HGF, PDGFRB, BCL2, CDKN1A, DLL4, RELA, BIRC3, FADD, RXRA,
HES1, GADD45G, ELK1, MECOM, FLT3LG, IGF2, PGF, TGFB1, TGFBR2, VEGFC, FLT4,

Pathways in cancer LPAR4, CXCR4, GLI3, NFKBIA, IL2RG, IL4R, CXCL8, NFKB2, EGLN3, STAT3, CDK2, FOXO1, | o 00opos
AGT, CDKN2B, SP1, NFE2L2, LRP5, WNT6, FZD7, FZD8, FZD9, FN1, IL3RA, ITGB1, LAMA4,
FOS, CASP7, LEF1, TCF7L1, NOTCH2, NOTCH3, GLI1, SMO, IL13RA1, IL15RA, PIM1, EPAS1,
KIF7, PML, HEYL
PCK1, NOS3, EGFR, ERBB2, HGF, PDGFRB, BCL2, CDKN1A, RELA, RXRA, CSF1, FLT3LG,

PI3K-Akt signaling ANGPT2, IGF2, PGF, GNG12, VEGFC, EPHA2, FLT1, FLT4, GNG5, NGFR, LPAR4, CREB3L2, | ( 1010985

pathway IL2RG, IL4R, CDK2, SGK1, DDIT4, COL1A2, COL6A1, COL6A2, PHLPP1, FN1, TNC, IL3RA, :
ITGAS5, ITGB1, ITGB5, ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, OSMR, ITGAS

\\I/V'i;ﬁ'cf’yrt‘(’)tlfi'r:‘e'gféac“on CSF1, TNFRSF1A, CXCR4, CXCL1, IL2RG, CXCL8, CXCL10, IL20RA, CCL2, LTBR, 0.00185617

. TNFRSF10B, TNFRSF10A, IL18R1 :

cytokine receptor

AGE-RAGE signaling | g3 p| D3, PLCE1, PLCB3, PLCDA1, BCL2, RELA, TGFB1, TGFBR2, VEGFC, CXCL8, CCL2

pathway in diabetic ! y ’ ’ ’ ’ ’ ’ ’ ’ ’ * | 0.00213956

ay I STAT3, FOXO1, AGT, COL1A2, ICAM1, PIM1

complications

Epstein-Barr virus BCL2, CDKN1A, RELA, FADD, HES1, GADD45G, TAB2, IRAK1, MYD88, MAP2K3, NFKBIA,

-pste CXCL10, NFKB2, STAT3, CDK2, TNFAIP3, HLA-C, HLA-E, CD44, ICAM1, CD58, TAP1, B2M, 0.00560455

infection SAP30
EGFR, ERBB2, HGF, PDGFRB, RELA, GADD45G, CSF1, DUSP1, ELK1, MECOM, MRAS, TAB2,

MAPK signaling FLT3LG, GNA12, ANGPT2, MKNK2, HSPA2, IGF2, IL1R1, IRAK1, MYD88, PGF, GNG12, 0.00589871

pathway MAP2K3, RAP1A, RRAS, TGFB1, TGFBR2, TNFRSF1A, VEGFC, MAPKAPK3, DUSP16, :
MAPKAPK2, EPHA2, FLT1, FLT4, NGFR, NFATC3, NFKB2, FOS, HSPB1

Adipocytokine signaling | PCK1, ACSBG1, ACACB, ACSL5, RELA, PPARA, RXRA, TNFRSF1A, NFKBIA, STATS3, 0.00604817

pathway ADIPOR2, SOCS3, SLC2A4 :

Basal cell carcinoma CDKN1A, GADD45G, GLI3, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1, GLI1, SMO, KIF7 0.0076605
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NF-kappa B signaling

BCL2, RELA, BIRC3, TAB2, IL1R1, IRAK1, MYD88, TNFRSF1A, NFKBIA, CXCL1, CXCLS, LTBR,

pathway NFKB2, TNFAIP3, ICAM1 0.00850971

Regulation of actin EGFR, PDGFRB, MRAS, GNA12, GNG12, RRAS, VAV3, LPAR4, CXCR4, GNA13, PXN, FNT,

oytaskeloton ITGAS, ITGB1, ITGB5, ITGBS, ITGA10, MYL9, LIMK2, MYL12A, DOCK1, WASF2, IQGAP1, MSN, | 0.00867475
EZR, SPATA13, GIT1, DIAPH3, ITGA8, ARHGEF6

IL-17 signaling pathway | RELA, TAB2, NFKBIA, FOS, FOSL1 0.01044254

Hippo signaling pathway | 1O B1. TGFBR2, PARD3, BMP6, BMP7, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1, YAPT, 0.01316293
WTIP, AMOT, WWC1, WWTR1, LATS2, TEAD1, TEAD4, TEAD3, TP53BP2, TEAD2, SOX2

TGF-beta signaling TGFB1, TGFBR2, INHBB, BMP6, BMP7, CDKN2B, SP1, BAMBI, DCN, LTBP1, SMADG, NEO1, 0.01370407

pathway RGMA, TGIF2, TGIF1 :

Human T-cell leukeria | COKNTA, CDKN2C, RELA, ELKT, IL1R1, TGFB1, TGFBR2, TNFRSF1A, NFATC2, NFATCS,

Ve g o NFKBIA, CREB3L2, IL2RG, LTBR, NFKB2, CDK2, CDKN2B, CHEK2, FOS, HLA-C, HLA-E, 0.01881732
FOSL1, ICAM1, IL15RA, IL1R2, B2M

Complement and PLAT, SERPINAS5, SERPINA1, CFB, TFPI, SERPING1, C1R, C4A, C4B 0.02140549

coagulation cascades

Staphylococcus aureus | |cAM1, CFB, C1R, C4A, C4B, CFH, CFI 0.02493939
RRAS, EPHA2, PARD3, CXCR4, NFATC2, NFATC3, BMP7, FYN, ITGB1, MYL9, SMO, NEO1,

Axon guidance RGMA, EFNB1, EPHB4, UNC5B, FES, RHOD, LIMK2, SRGAP1, RGS3, SEMA3F, BOC, NTN1, | 0.02664014
MYL12A

Insulin resistance PCK1, ACACB, NOS3, PYGL, PYGM, RELA, PPARA, TNFRSF1A, NFKBIA, CREB3L2, STATS3, 0.02834387
FOXO01, SOCS3, PPP1R3C, PPP1R3D
ATPBVOE1, EGFR, PDGFRB, CDKN1A, RELA, FADD, HES1, TNFRSF1A, PARD3, CREB3L2,

Human papillomavirus | PXN, CDK2, FOXO1, WNT6, FZD7, FZD8, FZD9, COL1A2, COL6A1, COLBA2, FN1, TNC, ITGAS, | ( (ooas o

infection ITGB1, ITGB5, ITGB8, LAMA4, SPP1, THBS2, THBS4, ITGA10, TCF7L1, NOTCH2, NOTCH3, :
MAML2, IRF1, ITGAS, HEYL

Broast cancer EGFR, ERBB2, CDKN1A, DLL4, HES1, GADD45G, FLT4, NFKB2, SP1, LRP5, WNT6, FZD7, 0.03748158
FZD8, FZD9, FOS, LEF1, TCF7L1, NOTCH2, NOTCH3, HEYL

Pertussis RELA, IRAK1, MYD88, FOS, SERPINGT, C1R, IRF1, C4A, C4B 0.03748822

Versinia infection RELA, TAB2, IRAK1, MYD88, MAP2K3, VAV3, NFATC2, NFATC3, NFKBIA, CXCL8, CCL2, PXN, | 4 13974146
FN1, ITGAS5, ITGB1, FOS, DOCK1, WASF2

NOD-like receptor PLCB3, BCL2, RELA, BIRC3, FADD, TAB2, MYD88, [TPR3, P2RX7, NFKBIA, CXCL1, CXCLS, 0.04009447

signaling pathway CCL2, TNFAIP3, IFI16, ERBIN, TRIP6, GSDMD, CASP4 :

Maturity onset diabetes GCK. HES1 PAX6 0.0412998

of the young ’ ’ )

Pathogenic Escherichia | RELA- FADD, TAB2, GNA2, IL1RT, IRAKT, MYD88, TNFRSF1A, LPAR4, GNAT3, NFKBIA,

tnogen CXCL8, TNFRSF10B, TUBA1C, FOS, CASP7, TNFRSF10A, WASF2, EZR, CASP4, MYO1C, 0.04297897

coli infection MYO10

TNF signaling pathway (F:jEEé,BBIRC& FADD, MAP2K3, TNFRSF1A, NFKBIA, CREB3L2, FOS, CASP7, MLKL, IRF1, 0.04341918

':‘ngcpif:'s - multiple BCL2, BIRC3, FADD, TNFRSF1A, NGFR, CASP7 0.05318839
PLCE1, PLCB3, EGFR, HGF, PDGFRB, CSF1, MRAS, ANGPT2, PGF, MAP2K3, RAP1A, RRAS,

Rap1 signaling pathway | VEGFC, EPHA2, FLT1, FLT4, NGFR, VAV3, ADORA2A, ADORA2B, PRKD3, LPAR4, PRKD1, 0.0571398
PARD3, TLN1, VASP, ITGB1

Human cytomegalovirus | PLCB3: EGFR, CDKN1A, RELA, FADD, ELKT, GNA12, ILTR1, GNG12, TNFRSF1A, GNGS,

sl ITPR3, CXCR4, GNA13, NFATC2, NFATC3, NFKBIA, CREB3L2, CXCL8, CCL2, PXN, STAT3, 0.06026243
SP1, HLA-C, HLA-E, TAP1, B2M

Apoptosis BCL2, RELA, BIRC3, FADD, GADD45G, TNFRSF1A, NFKBIA, TNFRSF10B, CAPN2, TUBATC, | o oecooneg
IL3RA, CTSH, FOS, CASP6, CASP7, TNFRSF10A, PARP4 :

Adherens junction EGFR, ERBB2, TGFBR2, PARD3, FYN, LEF1, TCF7L1, NECTIN2, WASF2, YEST, IQGAP1 0.06689148

Collular senescence CDKN1A, RELA, GADDA45G, MRAS, MAP2K3, RRAS, TGFB1, TGFBR2, MAPKAPK2, NFATC2, | (oo oo
NFATC3, CDK2, FOXO1, CDKN2B, CHEK2, CAPN2, TRAF3IP2, HLA-C, HLA-E :

Sulfur metabolism PAPSS2, SQOR, SELENBP1 0.07578511

Malaria HGF, MYD88, ICAM1 0.07578511

Galactose metabolism | GALM, GCK, PFKP, PGM1, BAGALT1 0.08119728

S'Vcosa”?'”og'yca” HYAL1, NAGLU, HPSE2, HYAL2 0.09045551

egradation

Legionellosis RELA, HSPA2, MYD88, NFKBIA, CXCL1, CXCL8, CASP7 0.09062831

Leukocyte

transendothelial RAP1A, VAV3, CXCR4, PXN, ITGB1, MYL9, MYL12A, ICAM1, MSN, EZR, CDH5, PECAM1 0.09482316

migration

Gastric cancer EGFR, ERBB2, HGF, BCL2, CDKN1A, RXRA, GADD45G, TGFB1, TGFBR2, CDK2, CDKN2B, 0.09507402
LRP5, WNT6, FZD7, FZD8, FZD9, LEF1, TCF7L1

HIF-1 signaling pathway Eéﬁfgﬁf\?i NOS3, EGFR, ERBB2, BCL2, CDKNTA, RELA, ANGPT2, MKNK2, FLTT, LTBR, | 4 10088945

Wnt signaling pathway | PLCB3. NFATC2, NFATC3, LRPS, WNT6, FZD7, FZD8, FZD9, BAMBI, PRICKLE3, LEFT, SFRP1, | 10,0759

SFRP2, SOX17, TBL1X, TCF7L1, ZNRF3, RSPO3, FOSL1



https://doi.org/10.1101/2021.08.30.458295
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458295; this version posted September 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

I';'\;ﬂf‘:o deficiency virus | BCL2, RELA, FADD, TAB2, IRAK1, MYD88, GNG12, MAP2K3, TNFRSF1A, GNG5, ITPR3, 0.1074797
APl Y CXCR4, NFATC2, NFATC3, PXN, WEE1, FOS, HLA-C, HLA-E, LIMK2, TAP1, B2M :
Steroid hormone HSD17B7, AKR1C2, HSD11B1, HSD11B2, AKR1C3 0.10838427
biosynthesis
Starch and sucrose GCK, PGM1, PYGL, PYGM, GYG2 0.10838427
metabolism
S;‘:ﬁig;’/” signaling PCK1, PFKP, ACACB, PYGL, PYGM, PLCB3, PPARA, ITPR3, PHKA1, CREB3L2, FOXO1, SIK1B | 0.11785197
Rheumatoid arthritis FLT1, FOS, ICAM1 0.11921547
Fluid shear stress and NOS3, BCL2, RELA, DUSP1, IL1R1, TNFRSF1A, CCL2, NFE2L2, FOS, PLAT, CAV1, ICAMT, 012180353
atherosclerosis CDH5, PECAM1, IL1R2, SDC2, SDC4 )
Th17 cell differentiation | RXRA, IL1R1, TGFB1, TGFBR2, NFATC2, NFATC3, NFKBIA, IL2RG, IL4R, STAT3, FOS 0.12754476
Inflammatory bowel RELA, TGFB1, IL2RG, IL4R, STAT3, IL18R1 0.13209705
disease (IBD)
Prostate cancer ESFF;{I_,1ERBBZ, PDGFRB, BCL2, CDKN1A, RELA, NFKBIA, CREB3L2, CDK2, FOXO1, LEF1, 013483793
Cushing svndrome PLCB3, EGFR, CDKN1A, CDKN2C, RAP1A, ITPR3, CREB3L2, CDK2, AGT, CDKN2B, SP1, 013563822
98y WNTS, FZD7, FZD8, FZD9, LEF1, TCF7L1 :
g;rl}fe”n‘:i;:fnce" DLL4, RELA, NFATC2, NFATC3, NFKBIA, IL2RG, IL4R, FOS, NOTCH2, NOTCH3, MAML2 0.1367585
Natural killer cell VAV3, NFATC2, FYN, TNFRSF 108, TNFRSF10A, HLA-C, HLA-E, ICAM1, ICAM2, MICA, KLRC3, | (/110107
mediated cytotoxicity SH3BP2, CD48 )
Primary bile acid CYP39A1, HSD3B7, ACOX2 0.14366887
biosynthesis
Small cell lung cancer EAC\'\I;I)ZA@CDKMA, RELA, BIRC3, RXRA, GADD45G, NFKBIA, CDK2, CDKN2B, FN1, ITGBH, 014380894
Parathyroid hormone
synthesis, secretion and | PLCB3, EGFR, BCL2, CDKN1A, GNA12, ITPR3, GNA13, CREB3L2, SP1, LRP5, FOS, MMP14 0.15309099
action
Ether lipid metabolism CHPT1, PLPP1, PLPP3, PAFAH1B3, ENPP2, UGTS 0.16139156
Arginine biosynthesis NAGS, GLUL, NOS3, GPT2 0.16498016
g y
Notch signaling pathway | DLL4, HES1, NOTCH2, NOTCH3, MAML2, KAT2B, HEYL 0.17719556
. . EGFR, ERBB2, PDGFRB, BCL2, CDKN1A, STAT3, DDIT4, TNC, ITGA5, NOTCH2, NOTCH3,
MicroRNAs in cancer CD44, EZR, PIM1, TIMP3 0.18532428
Fat digestion and PLPP1, PLPP3 0.19672574
absorption
Systemic lupus CAR, C4A, C4B 0.19672735
erythematosus
T . BCL2, RELA, BIRC3, TAB2, HSPA2, IRAK1, MYD88, MAP2K3, TNFRSF1A, NFKBIA, STAT3,
oxoplasmosis ITGB1. LAMA4 0.1974987
BCL2, RELA, FADD, TAB2, IRAK1, MYD88, NFKBIA, IL2RG, STAT3, CDK2, FOS, TNFAIP3,
Measles 0.1974987

MSN

ST2: The 61 enriched KEGG signaling pathways.

Name p-value Name p-value
Focal adhesion 1.39E-05 TNF signaling pathway 0.0434
Mineral absorption 2.56E-05 Apoptosis - multiple species 0.0532
ECM-receptor interaction 0.0002 Rap1 signaling pathway 0.0571
Proteoglycans in cancer 0.0004 Human cytomegalovirus infection 0.0603
Cytokine-cytokine receptor interaction 0.0005 Apoptosis 0.0658
Hippo signaling pathway - multiple species 0.0006 Adherens junction 0.0669
Pathways in cancer 0.0008 Cellular senescence 0.0692
PI3K-Akt signaling pathway 0.0011 Sulfur metabolism 0.0758
Z;;?)L?;Ztir;;;ttzrraction with cytokine and 0.0019 Malaria 0.0758
ﬁ‘fj{;ﬁéﬁ;iigna””g pathway in diabetic 0.0021 Galactose metabolism 0.0812
Epstein-Barr virus infection 0.0056 Glycosaminoglycan degradation 0.0905
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MAPK signaling pathway 0.0059 Legionellosis 0.0906
Adipocytokine signaling pathway 0.0060 Leukocyte transendothelial migration 0.0948
Basal cell carcinoma 0.0077 Gastric cancer 0.0951
NF-kappa B signaling pathway 0.0085 HIF-1 signaling pathway 0.1009
Regulation of actin cytoskeleton 0.0087 Wnt signaling pathway 0.1043
IL-17 signaling pathway 0.0104 Human immunodeficiency virus 1 0.1075
Hippo signaling pathway 0.0132 Steroid hormone biosynthesis 0.1084
TGF-beta signaling pathway 0.0137 Starch and sucrose metabolism 0.1084
Human T-cell leukemia virus 1 infection 0.0188 Glucagon signaling pathway 0.1179
Complement and coagulation cascades 0.0214 Rheumatoid arthritis 0.1192
Staphylococcus aureus infection 0.0249 Fluid shear stress and atherosclerosis | 0.1218
Axon guidance 0.0266 Th17 cell differentiation 0.1275
Insulin resistance 0.0283 Inflammatory bowel disease (IBD) 0.1321
Human papillomavirus infection 0.0299 Prostate cancer 0.1348
Breast cancer 0.0375 Cushing syndrome 0.1356
Pertussis 0.0375 Th1 and Th2 cell differentiation 0.1368
Yersinia infection 0.0397 Natural killer cell mediated cytotoxicity | 0.1410
NOD-like receptor signaling pathway 0.0401 Primary bile acid biosynthesis 0.1437
Maturity onset diabetes of the young 0.0413 Small cell lung cancer 0.1438
Pathogenic Escherichia coli infection 0.0430
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