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Abstract: To judge the information of experimental settings in relation to the human situation, it is crucial to be aware of 

morphological differences and peculiarities in the species studied. Related to glaucoma, the most important structures of 

the posterior eye segment are the optic nerve head including the lamina cribrosa, and the inner retinal layers. The review 

highlights the differences of the lamina cribrosa and its vascular supply, the prelaminar optic nerve head, and the retinal 

ganglion cell layer in the most widely used animal models for glaucoma research, including mouse, rat, rabbit, pig, dog, 

cat, chicken, and quail. Although all species show some differences to the human situation, the rabbit seems to be the 

most problematic animal for glaucoma research. 
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 Glaucoma is a chronic disease appearing in a number of 
different conditions that are merged pathologically by the 
degeneration of retinal ganglion cells and their processes 
within the optic nerve and clinically by specific changes in 
the optic nerve head region and loss of vision. 

 Since one major risk factor is the occurrence of an ele-
vated intraocular pressure (IOP), and since IOP is substan-
tially regulated by the aqueous outflow pathway tissue, a 
general classification of different types of glaucoma relates 
to clinical and morphological findings in the anterior cham-
ber angle region. In human eyes, the most common form is 
the primary open angle glaucoma (POAG) of the aged adult. 
Other primary forms include closed angle glaucoma and 
congenital forms of glaucoma, although this concept is sof-
tened with the recognition of a multitude of so called ‘secon-
dary’ glaucomas due to various definable initial events. 

I. ANIMAL MODELS USED IN GLAUCOMA RE-
SEARCH 

 The same classification that is used in human eyes has 
been introduced for animal models of glaucoma and ocular 
hypertension. In a review on anterior segment differences by 
Chew [1], glaucoma was subdivided into inherited, which is 
rare in all animals except the anterior chamber dysgenic 
syndromes, congenital, and induced glaucoma, the latter 
mentioned being the most frequently used group in animal 
glaucoma research. Induced glaucoma considers the fact that 
substantial elevated IOP leads to glaucomatous changes in 
the posterior eye segment. The animals used in these studies 
are mostly mammals, including mouse, rat, rabbit, pig, dog, 
cat, and monkey, or birds, including chicken and quail. Al-
though most animals show changes that were considered to 
be comparable to a glaucomatous situation, it is difficult to 
correlate these findings with the human situation. One issue  
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in this respect is the different anatomy and morphology not 
only in the anterior eye segment but also in the lamina cri-
brosa region and in the inner layer of the retina. To help 
judging the research findings in these models the present 
paper reviews the different anatomical situations in the 
above mentioned animals presently being used in glaucoma 
research. 

II. COMPARATIVE ANATOMY OF THE LAMINA 
CRIBROSA (LC) 

 Although numerous species develop a LC (Table 1), one 
of the most widely used animal model, the mouse, does not 
develop connective tissue bundles through the optic nerve 
head at the level of the sclera [2-5]. This finding is inde-
pendent of the different mouse strains analyzed. In the rat 
with an optic nerve head diameter at the level of the sclera 
only slightly larger than that of the mouse, single collagen 
bundles are present forming a lamina-cribrosa like structure. 
The quantity of the LC at the level of the sclera seems de-
pendent on the different strains: a substantial LC was re-
ported in the Brown Norway rat [6] and in the Long Evans 
rat [7], whereas the PVG Hooded rat [8] and Wistar rat [9] 
seem to contain only sparse LC bundles. 

 The lack of the LC in the mouse cannot be explained 
solely by size-dependent mechanical properties since species 
with much larger optic nerve head diameters, but myelinated 
axons reaching into the nerve fiber layer of the retina, also 
show only a sparse LC. This group of animals includes the 
rabbit [4,10], quail, and chicken [4]. In these species, the 
optic nerve head contains neuronal tissue and astrocytes in 
addition to oligodendroglia cells [11-13]. 

 A multi-layered LC with close three-dimensional simi-
larities to the primate LC is described in the pig [14], cat 
[4,15,16], and dog eye [17]. The size of the LC diameter 
(Table 1) and the variability of the single pores within the  
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LC are comparable in all three species and, again, match the 
situation in the primate. 

III. COMPARATIVE COMPOSITION OF THE LAM-
INA CRIBROSA 

 As only qualitative studies are present to date, the com-
parison of various lamina cribrosa components between spe-
cies is suggestive. 

 Immunohistochemical analysis of the extracellular matrix 
composition of the laminar beams within the LC shows the 
presence of collagen types I, III, VI, and elastin in the beams, 
and laminin and collagen type IV (basal membranes) at the 
border to the astrocytes and around the vessels. This compo-
sition is so far only studied in the rat [6,9], monkey [18-22] 
and human [23-28]. In addition to these electron-
microscopically viewable components, chondroitin and der-
matan sulfate proteoglycans were localized in the rat [6], 
monkey [29] and human LC [30,31]. 

 Although the observations warrant further studies utiliz-
ing more quantitative techniques, the description in the 
amount of collagen type VI varies in different species stud-
ied: whereas only weak collagen type V and VI is described 
in the normal human LC [27], intense staining for collagen  
 

type VI is documented for the normal rat [6,9] and dog LC 
[32]. 

 Unfortunately there is a complete lack of data on the 
composition of the LC in the other animals used for glau-
coma research including rabbit, pig, cat, quail, and chicken. 

IV. COMPARATIVE ANATOMY OF THE CENTRAL 
RETINAL VESSELS (TABLE 2) 

 In rodents (mouse, rat), the central retinal artery (CRA) is 
derived from a branch of the ophthalmic artery prior to its 
ramification into the posterior ciliary arteries. A v-shaped 
intra-arterial cushion is regularly present in the ophthalmic 
artery just before the branching of the CRA that might influ-
ence the vascular flow in this specific region [5,33,34]. The 
CRA runs towards the sclera and enters the optic nerve 
obliquely at the level of the sclera and choroid towards the 
center of the ONH where it branches further forming the 
retinal arteries. The central retinal vein (CRV) runs closer to 
the optic nerve than the artery and is connected with the pial 
venous system [5,35,36]. 

 A special situation is present in the rabbit eye that shows 
an incompletely vascularized retina restricted to the myeli-
nated portion of the nerve fiber layer [37]. Posterior to the  
 

Table 1. Occurrence and Distribution Differences in the Lamina Cribrosa (LC) of Animals Used in Glaucoma Research 

 

 Presence of LC Diameter of Optic Nerve at the Level of the Sclera/LC Differences in Composition to the Human [27] 

Mouse [2-5] Ø 193 ±8 m  

Rat [6-9] (+)  more collagen type VI 

Rabbit [4,10] (+)   

Quail, Chicken [4] (+)   

Pig [14] + 1624 ±15 m  

Cat [4,15,16] + 1187 m  

Dog [17,32] + 1592 m more collagen type VI 

Monkey [18-22] + 1717 ±21 m  

Ø = not present; (+) = faintly present; + = well developed. 

Table 2. Variation of the Central Retinal Vessels – Number and Location at the Optic Disc 

 

 Main Retinal Artery Main Retinal Vein  

Mouse [5] 1 central 1 central enters the ON at the level of the sclera 

Rat [33-36] 1 central 1 central enters the ON at the level of the sclera 

Rabbit [37,38] 1 central 4 peripheral  

Quail, chicken [44-47] avascular retina  vessels to the pecten 

Pig [39] 6 lateral 1 central  

Cat [41-43] 4-5 lateral 4-5 lateral  

Dog [40] 4-5 lateral 1 central  

Monkey [48] 1 central 1 central enters the ON retrolaminar 

Human [50,51] 1 central 1 central enters the ON retrolaminar 
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sclera, two to three posterior ciliary arteries form an incom-
plete arterial circle from which one CRA araises [38]. The 
venous drainage, in contrast, does not form one main vessel 
but several branches leaving the retina at the periphery of the 
ONH. Two prominent veins leave the retina at the nasal and 
temporal side of the ONH, whereas the superior and inferior 
branches are much smaller [38]. 

 An almost complementary arrangement of the large reti-
nal vessels described in the rabbit is seen in the pig and dog, 
where both animals possess a holangiotic retina. In these 
species, a circulus arteriosus is present around the optic 
nerve forming several choroidoretinal arteries. From these 
vessels, up to 6 branches enter the optic nerve head at the 
level of the sclera and run lateral in the ONH towards the 
retina [39]. There is no formation of a single CRA. The reti-
nal veins, however, drain the deoxygenated blood towards 
the center of the ONH forming one CRV that leaves the eye 
through the LC region [39,40]. 

 In the cat eye, the arterial supply of the retina is similar to 
that described for the pig and the dog [41-43]: several 
cilioretinal arteries send branches to the retina in the lateral 
portion of the ONH. In contrast to the pig and dog, the main 
retinal veins in the cat eye do not unite in the center of the 
ONH but leave the eye parallel to the arteries as separate 
vessels at the lateral portion of the ONH. 

 Birds (chicken, quail) have an avascular retina which 
receives its oxygen by a unique vitreal blood vessel aggrega-
tion called a pecten. The vessels within the pecten show 
typical characteristics seen also in retinal and brain vessels 
by forming a tight-junction barrier [44, 45]. The vessels 
supplying the pecten run lateral of the ONH and consist of 
several arterial and venous branches [46, 47]. 

 The central retinal vessels of the primate arise from one 
CRA and one CRV. The CRA branches from the ophthalmic 
artery and enters the optic nerve posteriorly to the LC. The 
CRV runs parallel with the artery through the LC. Both ves-
sels branch in the center of the ONH forming the main reti-
nal vessels. 

V. COMPARATIVE ANATOMY OF THE OPTIC 
NERVE HEAD BLOOD SUPPLY 

 Due to the difficulties of physiological measurements in 
this specific region, the data presented is based on corrosion 
cast preparations and serial sections through the optic nerve 
head region. Although the number and size of the vessels 
might indicate the higher or lower importance of the source 
forming the microvasculature in the optic nerve head region, 
the precise physiological and patho-physiological role re-
mains hypothetical. The differences between the species are 
summarized in Table 3. 

 In the mouse, both corrosion cast preparations and serial 
sections revealed that the supply of the optic nerve head is 
exclusively from recurrent branches of the retina [5]. Neither 
the choroid nor the pial vessels contribute to this region. In 
the rat, most of the vessels in the optic nerve head emanate 
from the retina, too, but some infrequent branches were also 
observed deriving from the pial vessels [33,34]. There is 
conflict data regarding vessels in the optic nerve head region  
 

 

Table 3. Blood Supply of the Optic Nerve Head Region 

 

 Central Retinal Artery Choroid Pial Vessels 

Mouse [5] + Ø Ø 

Rat [33,34] + Ø (+) 

Rabbit [38] (+) ++ + 

Quail n.e. n.e. n.e. 

Chicken n.e. n.e. n.e. 

Pig [39] Ø + ++ 

Cat [41,42] Ø + ++ 

Dog [43] Ø + ++ 

Monkey [48-50] + + + 

Human [51-55] + (+) + 

n.e. = not examined; Ø = no, (+) = possible, + = clear, ++ = substantial source of optic 
nerve head capillaries. 

 

deriving from the choroid using corrosion cast preparations: 
some authors observed branches [35] while others denied 
their existence [36]. Semithin serial sections through the 
optic nerve head of Wistar rats did not show vascular 
branches originating from the choroid but some branches 
from the posterior ciliary arteries prior to their branching in 
the choroid (own unpublished data). Further comparative 
studies are needed to clarify if the different observations are 
due to different rat strains investigated or due to different 
methodologies. 

 A completely different supply of the optic nerve head is 
observed in the rabbit: most of the smaller vessels show clear 
arterial and venous connections with the choroid [38]. Next 
to branches from the arterial circle forming the pial vessels, 
single branches derive from the central retinal artery within 
the optic nerve head [38]. 

 Pig, dog and cat show a remarkably similar supply of the 
optic nerve head region: since they do not possess a single 
central retinal artery but rather several branches deriving 
from a plexus of cilioretinal arteries, the main vessels derive 
from the pial vessels which are in direct contact with the 
cilioretinal vascular plexus, and from choroidal vessels of 
the same source [39, 41-43]. The central retinal arteries and 
the retina are not involved in the supply of the optic nerve 
head even in the innermost layer towards the retina (in detail 
only shown for the pig optic nerve head [39]). 

 In birds (chicken, quail), no data exists about the fine 
vascular supply of the optic nerve head region. 

 The vascular supply of the optic nerve head in primates 
was first introduced by Hayreh [48] using corrosion cast 
preparations of cynomolgus and rhesus monkeys. In his 
scheme of arterial blood supply he highlights the influence 
of all three sources, namely retinal, choroidal, and pial arter-
ies [48]. If the choroidal arteries play the same role in the 
human eye is not definitely answered: some literature exists 
on human eyes that questions the involvement of the choroid  
 



Comparison of Glaucoma Animal Models The Open Ophthalmology Journal, 2008, Volume 2    97 

[49]. The retrolaminar optic nerve in non-human primates 
and human is mainly supplied by branches deriving from the 
arterial ‘circle’ of Haller and Zinn formed by anastomoses of 
the short posterior ciliary arteries [50,51]. 

VI. COMPARATIVE ANATOMY OF THE GAN-
GLION CELL LAYER (TABLE 4) 

 Although the gross morphology of the retinal layers is the 
same in all animals used for glaucoma research, clear differ-
ences are present in the inner retina, mainly in the appear-
ance of the ganglion cell layer (GCL). As a general feature in 
all retinae, ‘displaced’ amacrine cells are present in the GCL 
with different relative numbers compared to the ganglion cell 
counts. Their specific role within the GCL has not yet been 
determined but their inter-species existence might point to a 
specific role in the GCL and thus upgrade their role as purely 
‘displaced’. Since accurate determination of the functional 
differences between the different amacrine cell classes is 
difficult, their neurohistochemical profile is required for a 
more comprehensive explanation of their role. 

 Most profound variations in the number of ganglion cells 
are present in different mouse strains: they vary between 
32,000 and 87,000 [52]. This strain-variation is less pro-
nounced in the rat, but differences between albino (more 
than 100,000) and pigmented animals (72,000) were also 
reported to be significant [53,54]. However, different studies 
on pigmented animals exist in the literature that might lead 
to the conclusion that the total number of ganglion cells 
among different rat strains is more consistence at around 
90,000-120,000 [55-58]. Both rodents not only contain gan-
glion cells in the GCL but numerous displaced amacrine 
cells, which make up to 59% in the mouse [59] and 50% in 
the rat [60,61]. 

 In the rabbit retina, one profound finding is the restriction 
of the vessels to the vascular streak and an otherwise avascu-
lar retina. This also leads to a restriction of astrocytes in the 
retina: they are only present in the myelinated region of the 
vascular streak [62]. The number of ganglion cells in differ-
ent albino strains varies between 291,000 [63] and 394,000  
 

[64] showing an accumulation in the area centralis [65] and 
is comparable to pigmented animals (250,000 – 270,000 
[66]). The number of displaced amacrine cells in the GCL of 
rabbits is lower than in rodents at around 31,7% [67,68]. 

 More pronounced than in the rabbit, the retina of birds 
(chicken, quail) is completely avascular. A specific glia-cell 
barrier (peripapillary glia) prevents the vessels from entering 
into the retina [69]. Similar to the rabbit, partly myelinated 
axons are localized in the nerve fiber layer in both the quail 
and the chicken retina [70,71]. Subsequently, oligodendro-
cytes are located throughout the avian retina with a distinct 
central-to-peripheral gradient [70,72]. The number of ganglion 
cells in the avian retina is high and is about twice that of pri-
mates (quail: 2,000,000 ganglion cells [73]; chicken: 
2,400,000 ganglion cells [74]). In contrast to mammals, there 
is contrary report about the presence of displaced amacrine 
cells in the GCL of the bird retina. While almost no amacrines 
were reported in the quail [73], up to 35% of all cells in the 
GCL were reported to be amacrine in the chicken [75,76]. 

 The number of retinal ganglion cells in the pig (442,629 
cells [77]) and the number of displaced amacrine cells in the 
GCL (31% [78]) is comparable to that in the rabbit. In con-
trast to the latter, however, the pig has a holangiotic retina 
[39] and no intraretinal myelinization of axons. The distribu-
tion of astrocytes in the porcine inner retina is similar to that 
observed in the human eye [79], the cells firmly ensheathing 
the vessel circumference [80]. 

 In the two carnivores, the number of retinal ganglion 
cells is 148,303 in the dog [81] and 193,000 in the cat [82]. 
In comparison to the eye size, the density of ganglion cells in 
the dog and cat eye is low. However, both species develop 
an area centralis with accumulation of retinal ganglion cells 
(dog [83,84], cat [85,86]). In addition, the cat is the most 
intensively studied animal in regards to retinal ganglion cell 
differentiation [87-97] and their projections [98-101]. In the 
dog, astrocyte density varied according to retinal topography 
with an increased number around retinal blood vessels and in 
the peripapillary retina [102]. In contrast, astrocyte distribu- 
 

Table 4. Comparative Data of the Inner Retina 
 

Animal Ganglion Cell Number (Average) % of Amacrine Cells of the Ganglion Cell Layer Neurons Astrocytes in the Inner Retina 

Mouse 32,000 – 87,000 [56] 59% [59] + 

Rat 72,371 - 113,000 [52-58] 50% [60,61] + 

Rabbit 250,000 - 394,000 [63,64,66] 31,7% [67,68] (+), only in vascular streak region [62] 

Quail 2,000,000 [73] ? [73] Ø [69] 

Chicken 2,400,000 [74] - 35% [75,76] Ø [69] 

Pig 442,629 [77] 31% [78] +, mainly around vessels [79,80] 

Cat 193,000 [82] 80% [107-109] +, mainly around nerve fibers [103-105] 

Dog 148,303 [81]  +, mainly around vessels [102] 

Monkey 900,000 – 1,500,000 [110-113] Fovea 5%, nasal 30%, temporal 50% [115] +, mainly around vessels 

Human 700,000 – 1,500,000 [114] Fovea 3%, peripheral - 80% [114] +, mainly around vessels 

? = No quantified or estimated data available. 
Ø = no, (+) = limited, + = ubiquitous presence of astrocytes. 
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tion in the cat retina seemed to be pronounced around the 
axon bundles of the nerve fiber layer and less intense around 
blood vessels [103-105]. Displaced amacrine cells in the dog 
seem to form a homogenous pattern throughout the retina 
[106]. In the cat, numerous micro-neurons were described in 
the GCL [107] exceeding the number of ganglion cells five-
fold (730,000 - 850,000 displaced amacrine cells [108,109]) 
and thus representing some 80% of all neurons in the GCL. 

 In the primate, the number of retinal ganglion cells is 
comparable to the human eye (cynomolgus monkey: 900,000 
– 1,400,000 ganglion cells [110], cercopithecus: 1,228,646 
ganglion cells [111], rhesus monkey: 1,500,000 ganglion 
cells [112], cebus monkey: 1,340,000 – 1,400,000 ganglion 
cells [113], human: 700,000 – 1,500,000 ganglion cells 
[114]). Displaced amacrine cells in the GCL show a distinct 
distribution pattern representing 5-50% of the neurons in the 
different regions [115]: in the fovea region (-3mm), the 
number of displaced amacrines is at the lower end (5% of all 
neurons), whereas more nasally the amount raises up to 30% 
and temporally up to 50%. The estimations for the human 
retina are 3% displaced amacrines in the fovea region and up 
to 80% of displaced amacrines in the peripheral retina [114]. 
VII. CONCLUSIONS 

 Several implications can be drawn for the different animal 
models used in glaucoma research that should be kept in mind 
when using these species. 

 The mouse seems to be a good comparative animal model 
to study the influence of the LC on the process of glaucoma-
tous optic nerve head changes. Since it lacks a LC, the mouse 
can not be used for LC specific investigations; in addition, the 
size of the eye leads to different physical and physiological 
conditions which limit the transfer to the human situation. 
Strain differences seem to play a crucial role when comparing 
quantitative data of the optic nerve and retina of different 
mouse strains. The composition of the optic nerve head is 
comparable to the human situation (only non-myelinated ax-
ons and astrocytes) although the blood supply shows clear 
differences. 

 In the rat, strain differences seem to play an important role 
when investigating the role of the LC. So far, there exist no 
quantitative studies comparing the LC in different rat strains 
but the findings in the literature imply differences in suscepti-
bility to elevated pressure between different strains. Such 
studies could also clarify the role of the LC and its composi-
tion on the process of glaucoma. In rat as in mouse, the vascu-
lar supply and the localization of the central retinal vessels 
should be taken into account when comparing findings with 
the human situation. 

 The rabbit, chicken and quail seem to be less useful mod-
els to study the pathogenic process of glaucoma. The major 
problem comprises the myelinization of the axons penetrating 
through the sparsely developed LC into the nerve fiber layer 
of the retina changing profoundly the situation of cell compo-
sition and mechanical reactivity in the optic nerve head region. 
In addition, the retina is avascular which probably has a major 
influence on the optic nerve head blood supply, too. 

 

 

 Due to the size and anatomy of the optic nerve head and 
inner retina, the pig eye has numerous advantages compared to 
the animals discussed so far. It contains a well-developed 
lamina cribrosa (as do cat and dog), and the number of retinal 
ganglion cells is fairly high. The pig has only a poorly devel-
oped area centralis, but the possible influence of the fine reti-
nal structure on glaucoma pathology has not yet been evalu-
ated. In contrast to the porcine anatomy, the dog and cat eyes 
show relatively low values of retinal ganglion cell numbers 
although the centralization of the retina is more developed 
showing a clear area centralis. One major advantage to use cat 
eyes in glaucoma research is the well established classification 
of retinal ganglion cells. On the other hand, cats (as dogs) 
have an elaborated tapetum lucidum, which possible might 
cause trouble when comparing electrophysiological data in 
vivo. 

 The latter restriction holds also true for the primate mon-
key eye which shows closest relation to the human anatomy. 
This might be especially of interest when discussing the role 
of vascular disturbances and their possible role for the onset 
and progress of glaucoma. 

VIII. SUPPLEMENT: VARIETY OF CURRENT 
GLAUCOMA MODELS 

 Rodents. Numerous different glaucoma models exist in the 
mouse and rat eye comprising almost all aspects of mutations 
(natural and induced) and manipulations (blood flow changes, 
intravitreal injections, optic nerve injury). All models were 
described recently in an excessive review [116]. 

 Rabbit. Corticosteroid-induced ocular hypertension. In-
traocular alpha-chymotrypsin injection. Short time intraocular 
pressure elevation by needle injection. 

 Pig. Episcleral vein cauterization. In vitro models with 
porcine cadaver eyes (e.g. anterior chamber perfusion). 

 Dog. POAG in Beagles, American Cocker Spaniels, and 
other races. Spontaneous secondary glaucoma. 

 Cat. Primary and secondary narrow angle/ angle closure 
glaucoma in different cat strains. Short time intraocular pres-
sure elevation by needle injection. Corticosteroid-induced 
ocular hypertension. 

 Monkey. A small colony exists with an incidence of natu-
ral occurring glaucoma. Manipulations include laser treatment 
of the trabecular meshwork and damage of the optic nerve. 

 Chicken. Light-induced glaucoma. 

 Quail. Natural occurring glaucomatous mutant in the Japa-
nese albino quail. 
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