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Abstract

Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for
classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks.
Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free
and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized
systems. They represent waves of transition from one stable state into another, spreading over the entire network. The
fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been
considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences.
An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching
factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field
theory for stationary patterns is constructed.
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Introduction

Studies of pattern formation in reaction-diffusion systems far

from equilibrium constitute a firmly established research field.

Starting from the pioneering work by Turing [1] and Prigogine

[2], self-organized structures in distributed active media with

activator-inhibitor dynamics have been extensively investigated

and various non-equilibrium patterns, such as rotating spirals,

traveling pulses, propagating fronts or stationary dissipative

structures could be observed [3,4]. Recently, the attention became

turned to network analogs of classical reaction-diffusion systems,

where the nodes are occupied by active elements and the links

represent diffusive connections between them. Such situations are

typical for epidemiology where spreading of diseases over

transportation networks takes place [5]. The networks can also

be formed by diffusively coupled chemical reactors [6] or

biological cells [7]. In distributed ecological systems, they consist

of individual habitats with dispersal connections between them [8].

Detailed investigations of synchronization phenomena in oscilla-

tory systems [9] and of infection spreading over networks [10]

have been performed. Turing patterns in activator-inhibitor

network systems have also been considered [11].

The analysis of bistable media is of principal importance in the

theory of pattern formation in reaction-diffusion systems. Travel-

ing fronts which represent waves of transition from one stable state

to another are providing a classical example of self-organized wave

patterns; they are also playing an important role in understanding

of more complex self-organization behavior in activator-inhibitor

systems and excitable media (see, e.g., [4,12]). The velocity and the

profile of a traveling front are uniquely determined by the

properties of the medium and do not depend on initial conditions.

Depending on the parameters of a medium, either spreading or

retreating fronts can generally be found. Stationary fronts, which

separate regions with two different stable states, are not

characteristic for continuous media; they are found only at special

parameter values where a transition from spreading to retreating

waves takes place. When discrete systems, formed by chains or

fractal structures of diffusively coupled bistable elements, are

considered, traveling fronts can however become pinned if

diffusion is weak enough, so that stable stationary fronts, which

are found within entire parameter regions, may arise [13–16].

In the present study, pattern formation in complex networks

formed by diffusively coupled bistable elements is numerically and

analytically investigated. Our numerical simulations, performed

for random Erdös-Rényi (ER) or scale-free networks and for

irregular trees, reveal a rich variety of time-dependent and

stationary patterns. The analogs of spreading and retreating fronts

are observed. Furthermore, stationary patterns, localized on

subsets of network nodes, are found. To understand such

phenomena, an approximate analytical theory for the networks

representing regular trees is developed. The theory yields the

bifurcation diagram which determines pinning conditions for trees

with different branching factors and for different diffusion

constants. Its results are used to interpret the behavior found in

irregular trees and for ER networks. Statistical properties of

stationary patterns in large random networks are moreover

analyzed in the framework of the mean-field approximation,

which has been originally proposed for spreading-infection
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problems [17–19] and has also been used in the analysis of Turing

patterns on the networks [11].

Bistable Systems on Networks
Classical one-component reaction-diffusion systems in continu-

ous media are described by equations of the form

_uu(x,t)~f (u)zD+2u(x,t) ð1Þ

where u(x,t) is the local activator density, function f (u) specifies

local bistable dynamics (see Methods) and D is the diffusion

coefficient. Depending on the particular context, the activator

variable u may represent concentration of a chemical or biological

species which amplifies (i.e. auto-catalyzes) its own production.

In the present study, we consider analogs of the phenomena

described by the model (1), which are however taking place on

networks. In network-organized systems, the activator species

occupies the nodes of a network and can be transported over

network links to other nodes. The connectivity structure of the

network can be described in terms of its adjacency matrix T whose

elements are Tij~1, if there is a link connecting the nodes i and j

(i,j~1,:::,N), and Tij~0 otherwise. We consider processes in

undirected networks, where the adjacency matrix T is symmetric

(Tij~Tji). Generally, the network analog of system (1) is given by

_uui~f (ui)zD
XN

j~1

Tijuj{Tjiui

� �
ð2Þ

where ui is the amount of activator in network node i and f (ui)
describes the local bistable dynamics of the activator. The last term

in Eq. (2) takes into account diffusive coupling between the nodes.

Parameter D characterizes the rate of diffusive transport of the

activator over the network links.

Instead of the adjacency matrix, it is convenient to use the

Laplacian matrix L of the network, whose elements are defined as

Lij~Tij{kidij , where dij~1 for i~j, and dij~0 otherwise. In this

definition, ki is the degree, or the number of connections, of node i

given by ki~
P

j Tji. In new notations Eq. (2) takes the form.

_uui~f (ui)zD
XN

j~1

Lijuj : ð3Þ

When the considered network is a lattice, its Laplacian matrix

coincides with the finite-difference expression for the Laplacian

differential operator after discretization on this lattice.

A classical example of a one-component system exhibiting

bistable dynamics is the Schlögl model [20]. This model describes

a hypothetical trimolecular chemical reaction which exhibits

bistability (see Methods). In the Schlögl model, the nonlinear

function f (u) is a cubic polynomial

f (u)~{
LV

Lu
~{(u{r1)(u{r2)(u{r3) ð4Þ

so that V (u) has one maximum at r2 and two minima at r1 and r3.

We have performed numerical simulations and analytical inves-

tigations of the reaction-diffusion system (3) for different kinds of

networks using the Schlögl model.

Results

Numerical Simulations
In this section we report the results of numerical simulations of

the bistable Schlögl model (3) for random ER networks and for

trees (the results for random scale-free networks are given in the

Supporting Information S1). The ER networks with the mean

degree SkT~7 and sizes N~150 or N~500 are considered. The

trees have several components with different branching factors.

The model (3) with the parameters r1~1 and r3~3 is chosen; the

parameter r2 and the diffusion constant D were varied in the

simulations. The parameter r2 was restricted to the interval

1vr2v2.

Traveling activation fronts were observed in ER networks. To

initiate such a front, a node at the periphery (with the minimum

degree k) could be chosen and set into the active state u~r3,

whereas all other nodes were in the passive state u~r1. This

configuration was found to generate a wave of transition from the

passive to the active states. The wave spreads from the initially

active node to the rest of the system and reaches equidistant nodes,

located at the same distance (the shortest path length) from the

initial node, at about the same time.

Front propagation is illustrated in Fig. 1, where the nodes are

grouped according to their distance from the first activated node

and the average value rh of the activator density u in each group is

plotted as a function of the distance h. Three snapshots of the

traveling front at different times are displayed. As we see, for

increasing time the front moves into the subsets of nodes with the

larger distances. At the end, all nodes are in the active state r3.

Not all initial conditions lead, however, to spreading fronts. If

for example, for the same model parameters as in Fig. 1, a hub

node was initially activated, a spreading activation front could not

be produced. Retreating fronts were found at these parameter

values if the initial activation was set in a few neighbor nodes with

large degrees. Under weak diffusive coupling, stationary localized

patterns were furthermore observed. If the initial activation was set

on the nodes with moderate degrees, the activation could neither

spread nor retreat, thus staying as a stationary localized structure.

On the other hand, traveling fronts could also become pinned

when some nodes were reached, so that the activation could not

spread over the entire network and stationary patterns with

coexistence of the two states were established.

Degrees of the nodes play an important role in front pinning. In

the representation used in Fig. 2, the nodes with higher degrees lie

in the center, whereas the nodes with small degrees are located in

the periphery of the network. To produce the stationary pattern

shown in this figure, some of the central hub nodes were set into

the active state r3, while all other nodes were in the passive state r1.

The activation front started to propagate towards the periphery,

but the front became pinned and a stationary pattern was formed.

Figure 3 shows another example of a stationary pattern. Here, we

have sorted network nodes according to their degrees, so that the

degree of a node becomes higher as its index i is increased (the

stepwise red curve indicates the degrees of the nodes). Localization

on a subset of the nodes with high degrees is observed.

The importance of the degrees of the nodes becomes

particularly clear when front propagation in the trees with various

branching factors is considered (in a tree, the branching factor of a

node with degree k is k{1). The networks shown in Fig. 4 consist

of the component trees with the branching factors 2,3,4 and 5
which are connected at their origins. If the activation is initially

applied to the central node, it spreads for D~0:1 through the trees

with branching factors 2 and 3, but cannot propagate through the

trees with higher branching factors (Fig. 4A and Movie S1). If we

Traveling and Pinned Fronts in Network Systems
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Figure 1. Traveling front in an Erdös-Rényi network. The network size is N~500 and the mean degree is SkT~7. Three consequent snapshots
of activity patterns at times t~0,10,21 are shown. Quantity rh is the average value of the activator density u in the subset of network nodes located
at distance h from the node which was initially activated. Other parameters are r1~1, r2~1:2, r2~3; the diffusion constant is D~0:1.
doi:10.1371/journal.pone.0045029.g001

Figure 2. Stationary pattern in an Erdös-Rényi network. The network size is N~150 and the mean degree is SkT~7. The nodes with higher
degrees are located closer to the center. The nodes are colored according to their activation level, as indicated in the bar. The other parameters are
r1~1, r2~1:4 and r3~3; the diffusion constant is D~0:01.
doi:10.1371/journal.pone.0045029.g002

Traveling and Pinned Fronts in Network Systems

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45029



choose a larger diffusion constant D~0:35 and apply activation to

a subset of nodes inside the tree with the branching factor 5, the

activation retreats and dies out (Fig. 4B). When diffusion is weak

(D~0:03), the application of activation inside the component trees

leads to its spreading towards the roots of the trees. The activation

cannot however propagate further and pinned stationary struc-

tures are formed (Fig. 4C and Movie S2).

Thus, we see that both traveling fronts and pinned stationary

structures can be observed in the networks. Our numerical

simulations suggest that degrees of the nodes (and the related

branching factors in the trees) should play an important role in

such phenomena. The observed behavior is however complex and

seems to depend on the architecture of the networks and on how

the initial activation was applied. Below, it is analytically

investigated for regular trees with fixed branching factors. The

approximate mean-field description for stationary patterns in large

random networks is moreover constructed. Using analytical

results, complex behavior observed in numerical simulations can

be understood.

Front Dynamics in Regular Trees
Let us consider the model (3) for a regular tree with the

branching factor k{1. In such a tree, all nodes, lying at the same

distance l from the origin, can be grouped into a single shell and

front propagation along the sequence of the shells l~1,2,3,::: can

be studied. Suppose that we have taken a node which belongs to

the shell l. This node should be diffusively coupled to k{1 nodes

in the next shell lz1 and to just one node in the previous shell

l{1. Introducing the activation level ul in the shell l, the evolution

of the activator distribution on the tree can therefore be described

by the equation

_uul~f (ul)zD(ul{1{ul)zD(k{1)(ulz1{ul) : ð5Þ

Note that for k~2, Eq. (5) describes front propagation in a one-

dimensional chain of coupled bistable elements. Propagation

failure and pinning of fronts in chains of bistable elements have

been previously investigated [13–15]. The approximate analytical

theory for front pinning in the trees, which is presented below,

represents an extension of the respective theory for the chains [15].

Note furthermore that model (5) can be formally considered for

any values of kw2 of the parameter k (but actual trees correspond

only to the integer values of this parameter).

Comparing the situations for the chains of coupled single elements

and for coupled shells in a tree (Eq. (5)), an important difference

should be stressed. In a chain, both propagation directions (left or

right) are equivalent, because of the chain symmetry. In contrast to

this, an activation front propagating from the root to the periphery of

a tree is physically different from the front propagating in the

opposite direction, i.e. towards the tree root. As we shall soon see,

one of such fronts can be spreading while the other can be pinned or

retreating for the same set of model parameters.

The approximate analytical theory of front pinning can be

constructed (cf. [15]) if diffusion is weak and the fronts are very

narrow. A pinned front is found by setting _uul~0 in Eq. (5), so that

we get

f (ul)zD(ul{1{ul)zD(k{1)(ulz1{ul)~0 : ð6Þ

Suppose that the pinned front is located at the shell l~m and it

is so narrow that the nodes in the lower shells lvm are all

approximately in the active state r3, whereas the nodes in the

higher shells are in the passive state r1. Then, the activation level

um in the interface l~m should approximately satisfy the

condition

g(um)~f (um)zD (k{1)r1{kumzr3½ �~0 : ð7Þ

Thus, the problem becomes reduced to finding the solutions of

Eq. (7). When D~0, we have g(um)~f (um) and, therefore, Eq. (7)

has three roots um~r1,r2,r3; the front is pinned then. Equation (7)

has also three roots if D is small enough (see Fig. 5 for D~0:03). In

this situation, the front continues to be pinned. Under further

increase of the diffusion constant (see Fig. 5 for D~0:1), the two

smaller roots merge and disappear, so that only one (larger) root

remains. As previously shown for one-dimensional chains of

diffusively coupled elements [15], such transition corresponds to

the disappearance of pinned stationary fronts.

The transition from pinned to traveling fronts takes place

through a saddle-node bifurcation. When k is fixed, the

bifurcation occurs when some critical value of D is exceeded (see

Fig. 6A). If the diffusion constant is fixed, pinned fronts are found

inside an interval of degrees k (see Fig. 6B).

Generally, the bifurcation boundary can be determined from

the conditions g(um)~0 and g
0
(um)~0, which can be written in

the parametric form as

D~
2um{r2{r3ð Þ r1{umð Þ2

r1{r3

k~
{3u2

mz2 r1zr2zr3ð Þum{r1r2{r1r3{r2r3

D
: ð8Þ

Equations (8) determine boundaries between regions II and III

or II and IV in the bifurcation diagram in Fig. 7. The two

boundaries merge in the cusp point, which is defined by the

conditions g(um)~g
0
(um)~g

00
(um)~0 and is located at

Figure 3. Nodes activation levels for a stationary pattern in an
Erdös-Rényi network. Dependence of the activation level ui on the
degrees ki of the nodes i is presented for a stationary pattern in the ER
network of size N~500 and mean degree SkT~7. The nodes are
ordered according to their increasing degrees, shown by the stepwise
red curve. The other parameters are r1~1, r2~1:4 and r3~3; the
diffusion constant is D~0:01.
doi:10.1371/journal.pone.0045029.g003
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Dcusp~
r3zr2{2r1ð Þ3

27 r3{r1ð Þ
kcusp~

r2
1zr2

2zr2
3{r1r2{r1r3{r2r3

3Dcusp
ð9Þ

in the parameter plane.

Figure 4. Spreading, retreating and pinning of activation fronts in trees. A) For D~0:1, the fronts spread to the periphery through the nodes
with the degrees k~2,3,4, while they are pinned at the nodes with the larger degrees. B) For D~0:35, the front is retreated from nodes with degree
k~6. C) For D~0:03, the fronts propagate towards the root, but not towards the periphery. In each row, the initial configuration (left) and the final
stationary pattern (right) are displayed. The same color coding for node activity as in Fig. 2 is used. Other parameters are r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g004
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Above the cusp point, there should be a boundary line

separating regions III and IV. Indeed, fronts propagate in opposite

directions in these two regions and, to go from one to another, one

needs to cross a line on which the propagation velocity vanishes.

This boundary can be identified by using the arguments given

below.

Suppose that the diffusion constant is fixed and DvDcusp. Then

the pinned fronts are found inside an interval of degrees k, where

equation g(um)~0 has three roots, as in Fig. 8A for k~7. Outside

this interval, equation g(um)~0 has a single root, which

corresponds to spreading fronts if it is close to r3 (Fig. 8A for

k~4) or to retreating fronts if it is close to r1 (Fig. 8A for k~9).

Thus, if we traverse the bifurcation diagram in Fig. 7 below Dcusp

by increasing k, function g(um) will change its form as shown in

Fig. 8, having three zeroes within an entire interval of degrees k

that corresponds to the pinning region II. When the diffusion

constant is increased and the cusp at D~Dcusp is approached,

such interval shrinks to a point. If we traverse the bifurcation

diagram in Fig. 7 above the cusp, the function g(um) changes as

shown in Fig. 8B. For a given diffusion constant D, there is only

one degree k, such that the function g(um) has an inflection point

coinciding with its zero. The boundary separating regions III and

IV is determined by the conditions g(um)~0 and g
00
(um)~0. In

the parameter plane, these conditions yield the curve

D~
r1zr2{2r3ð Þ r2zr3{2r1ð Þ r1zr3{2r2ð Þ

9 3(r3{r1){ r3zr2{2r1ð Þk½ � ð10Þ

where the propagation velocity of the fronts is changing its sign.

The above results refer to the first kind of fronts, where the

nodes in the lower shells (lvm) of the tree are in the active state

u~r3 and the nodes in the periphery are in the passive state u~r1.

A similar analysis can furthermore be performed for the second

kind of fronts, where the nodes in the periphery are in the active

state and the nodes in the lower shells are in the passive state. Such

pinned fronts are again determined by equation (7), where

however the parameters r3 and r1 should be exchanged. The

pinning boundary for them can be obtained from equations (8)

under the exchange of r1 and r3. This yields.

D~
r1zr2{2umð Þ r3{umð Þ2

r1{r3

Figure 5. Functions g(um) for three different values of D. The
other parameters are r1~1, r2~1:4,r3~3 and k~4.
doi:10.1371/journal.pone.0045029.g005

Figure 6. The roots of Eq. (7). The roots um are plotted as functions (A) of the diffusion constant D for k~4 and (B) of the degree k for D~0:1.
Pinned fronts correspond to red parts of the curves. The model parameters are r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g006

Figure 7. The bifurcation diagram. Regions with different
dynamical regimes are shown in the parametric plane k{D. Black
curves indicate the saddle-node bifurcations given by the Eq. (8), while
the blue curve stands for the saddle-node bifurcations given by Eq. (11).
The green dot indicates the cusp point given in Eq. (9), the red curve
shows the boundary determined by Eq. (10). The model parameters are
r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g007

Traveling and Pinned Fronts in Network Systems

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e45029



k~
{3u2

mz2 r1zr2zr3ð Þum{r1r2{r1r3{r2r3

D
: ð11Þ

Fronts of the second kind are pinned for sufficiently weak

diffusion, inside region I in the bifurcation diagram in Fig. 7. The

boundary of this region is determined in the parametric form by

Eqs. (11).

Thus, our approximate analysis has allowed us to identify

regions in the parameter plane (k,D) where the fronts of different

kinds are pinned or propagate in specific directions. Predictions of

the approximate analytical theory agree well with numerical

simulations for regular trees. Figure 9 shows traveling and pinned

fronts found by direct integration of Eq. (5) in different regions of

the parameter plane. For each region, the behavior of two kinds of

the fronts, with the activation applied to the nodes of the lower

shells (lƒ6) or periphery nodes (lw6), is illustrated. When the

parameters D and k are chosen within region I of the bifurcation

diagram, both kinds of fronts are pinned (Figs. 9A(I),B(I)). In

region II, the front initiated from the tree origin is pinned

(Fig. 9A(II)), whereas the front initiated in the periphery

propagates towards the root (Fig. 9B(II)). Activation fronts which

propagate in both directions, towards the root and the periphery,

are found in region III (Fig. 9A(III),B(III)). In region IV, the

activation front initiated at the root is retreating (Fig. 9A(IV)),

whereas the front initiated at the periphery is spreading

(Fig. 9B(IV)).

In addition to providing examples of the front behavior, Fig. 9

also allows us to estimate the accuracy of approximations used in

the derivation of the bifurcation diagram. In this derivation, we

have assumed (similar to Ref. [15]) that diffusion is weak and the

fronts are so narrow that only in a single point the activation level

differs from its values r1 and r3 in the two uniform stable states.

Examining Fig. 9, we can notice that this assumption holds well for

the lowest diffusion constant D~0:01 in region I, whereas

deviations can be already observed for the faster diffusion in

regions II, III and IV. Still, the deviations are relatively small and

the approximately analytical theory remains applicable.

Figure 10 shows the numerically determined propagation

velocity of both kinds of activation fronts for different degrees k
at the same diffusion constant D~0:1. The blue curve

corresponds to the fronts of the first kind, with the activation

applied at the tree root. Such front is spreading towards the

periphery for small degrees k (region III), is pinned in an interval

of the degrees corresponding to region II, and retreats towards the

root for the larger values of k (region IV). The red curve displays

the propagation velocity for the second kind of fronts, with the

activation applied at the periphery. For the chosen value of the

diffusion constant, such front is always spreading, i.e. moving

towards the root. We can notice that, for the same parameter

values, the absolute propagation velocity of the second kind of

fronts is always higher than that for the fronts of the first kind.

Using Fig. 9, we can consider evolution of various localized

perturbations in different parts of the bifurcation diagram (Fig. 7).

Inside region I, all fronts are pinned. Therefore, any localized

perturbation (see Fig. 11A(I),B(I)) is frozen in this region. If the

activation is locally applied inside region II, it spreads towards the

root, but cannot spread in the direction to the periphery

(Fig. 11A(II)). On the other hand, if a local ‘‘cold’’ region is

created in region II on the background of the ‘‘hot’’ active state, it

shrinks and disappears (Fig. 11B(II)). In region III, local activation

spreads in both directions, eventually transferring the entire tree

into the hot state (Fig. 11A(III)), whereas the local cold region on

the hot background shrinks and disappears (Fig. 11 B(III)). An

interesting behavior is found in region IV. Here, both kinds of

fronts are traveling in the same direction (towards the root), but

the velocity of the second of them is higher (cf. Fig. 10). Therefore,

the hot domain would gradually broaden while traveling in the

root direction (Fig. 11A(IV)). The local cold domain (Fig. 11B(IV))

would be however shrinking while traveling in the same direction.

With these results, complex behavior observed in numerical

simulations for the trees with varying branching factors (Fig. 4) can

be understood. In the simulation shown in Fig. 4A, the diffusion

constant was D~0:1 and, according to the bifurcation diagram in

Fig. 7, the nodes with degrees k~2,3,4 should correspond to

region III, while the nodes with the higher degrees k~5,6 are in

the region II. Indeed, we can see in Fig. 4A that activation can

propagate from the root over the subtrees with the small

branching factors, but the front fails to propagate through the

subtrees with node degrees 5 and 6. In the simulation for D~0:35
shown in Fig. 4B, the activation has been initially applied to a

group of nodes with degree k~6 corresponding to region IV. In

accordance with the behavior illustrated in Fig. 11A(IV), such local

perturbations broaden while traveling towards the root of the tree,

but get pinned and finally disappear. In Fig. 4C we have D~0:03
and, therefore, we are in region II for all degrees k. According to

Fig. 11A(II), local activation in any component tree should spread

Figure 8. The typical form of functions g(um) in different regions of the parameter plane. Functions g(um) are shown below
(A, D~0:1) and above (B, D~0:32) the cusp point. The green curve in part (B) corresponds to the boundary between regions III and IV, where the
front propagation velocity vanishes. The other parameters are r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g008
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towards the root, but cannot propagate towards the periphery, in

agreement with the behavior illustrated in Fig. 4C.

Although our study has been performed for the trees, its results

can also be used in the analysis of front propagation in large

random Erdös-Rényi networks. Indeed, it is known [21] that the

ER networks are locally approximated by the trees. Hence, if the

initial perturbation has been applied to a node and starts to spread

over the network, its propagation is effectively taking place on a

tree formed by the node neighbors. Previously, we have used this

property in the analysis of oscillators entrainment by a pacemaker

in large ER networks [22,23]. Only when the activation has

already covered a sufficiently high fraction of the network nodes,

loops start to play a role. When this occurs, the activation may

arrive at a node along different pathways and the tree

approximation ceases to hold. In this opposite situation, a different

theory employing the mean-field approximation can however be

applied.

Mean-field Approximation
Random ER networks typically have short diameters and

diffusive mixing in such networks should be fast. Under the

conditions of ideal mixing, the mean-field approximation is

applicable; it has previously been used to analyze epidemic

spreading [17–19], limit-cycle oscillations and turbulence [24], or

Turing patterns [11] on large random networks. In this

approximation, details of interactions between neighbors are

neglected and each individual node is viewed as being coupled to a

global mean field which is determined by the entire system. The

network nodes contribute to the mean field according to their

degrees k. The strength of coupling of a node to such global field

and also the amount of its contribution to the field are not the

same for all nodes and are proportional to their degrees. Thus, a

node with a higher number of connections is more strongly

affected by the mean field, generated by the rest of the network,

and it also contributes stronger to such field. The mean-field

approximation is applied below to analyze statistical properties of

stationary activation patterns which are well spread over a network

and involve a relatively large fraction of nodes.

Similar to publications [11,24], we start by introducing the local

field

Figure 9. Stationary and traveling fronts in regular trees. The arrows show the propagation direction for traveling fronts. The labels refer to
different regions of the bifurcation diagram in Fig. 7. They correspond to the parameter values (I) k~3, D~0:01, (II) k~6, D~0:03, (III) k~3, D~0:1
and (IV) k~12, D~0:1. The other parameters are r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g009

Figure 10. Dependence of the front velocity on node degree.
The blue curve corresponds to the first kind of fronts, shown in Fig. 9A;
the red curve is for the second kind of fronts shown in Fig. 9B. The
diffusion constant is D~0:1; the other parameters are r1~1, r2~1:4
and r3~3.
doi:10.1371/journal.pone.0045029.g010
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qi~
XN

j~1

Tijuj ð12Þ

determined by the activation of the first neighbors of a network

node i. Then, the evolution equation (2) can be written in the form

_uui~f (ui)zD(qi{kiui) ð13Þ

so that it describes the interaction of the element at node i with the

local field qi.

The mean-field approximation consists of the replacement of

the local fields qi by qi~kiQ, where the global mean field is

defined as

Q~
XN

j~1

wjuj : ð14Þ

Here, the weights

wj~
kjPN

n~1 kn

ð15Þ

guarantee that the nodes with higher degrees ki contribute

stronger to the mean field. After such replacement, Eq. (13) yields

_uu~f (u)zb(Q{u) ð16Þ

where b~Dk. Note that the index i could be removed because the

same equation holds for all network nodes.

Equation (16) describes bistable dynamics of an element coupled

to the mean field Q. The coupling strength is determined by the

parameter b which is proportional to the degree k of the

considered node. According to Eq. (16), behavior of the elements

located in the nodes with small degrees (and hence small b) is

mostly determined by local bistable dynamics, whereas behavior of

the elements located in the nodes with large degrees (and large b) is

dominated by the mean field.

The fixed points of Eq. (16) yield activator levels u in single

nodes coupled with strength b to the mean field Q. Self-organized

stationary patterns on a random ER network can be analyzed in

terms of this mean-field equation. Indeed, the activator level in

each node i of a pattern can be calculated from Eq. (16), assuming

that the node is coupled to the mean field determined by the entire

network. In Fig. 12, the mean-field approximation is applied to

analyze the stationary pattern shown in Fig. 3. This pattern has

developed in the ER network of size N~500 and mean degree

SkT~7 when the diffusion constant was fixed at D~0:01. The

mean field corresponding to such pattern was computed in direct

numerical simulations and is equal to Q~1:5. Substituting this

value of Q into Eq. (16), activator levels u in single node, coupled

to this mean field can be obtained. In Fig. 12A, the activator level

u is plotted as a function of the parameter b. When a node is

decoupled (b~0), Eq. (16) has three fixed points r1,r2,r3. As b is

increased, the system undergoes a saddle-node bifurcation beyond

which only one stable fixed point remains.

According to the definition of the parameter b, each node i with

degree ki is characterized by its own value bi~Dki of this

bifurcation parameter. Therefore, the fixed points of Eq. (16) can

be used to determine the activation levels for each node i, if its

Figure 11. Nonlinear evolution of local perturbations. The evolution of different local perturbations (A,B) is shown in various regions of the
bifurcation diagram. The arrows show the propagation direction. The parameter values are (I) k~3, D~0:01, (II) k~6, D~0:03, (III) k~3, D~0:1
and (IV) k~12, D~0:1. The other parameters are r1~1, r2~1:4 and r3~3.
doi:10.1371/journal.pone.0045029.g011
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degree ki is known. The stationary activity distributions, predicted

by the mean-field theory and found in direct numerical

simulations, are displayed in Fig. 12B, where the nodes are

ordered according to their increasing degrees. Note that the value

Q~1:5 of the mean field, used to determine the activity levels, has

been taken here from the numerical simulation. As we see, data

points indeed lie on the two stable branches of the bifurcation

diagram, indicating a good agreement with the mean-field

approximation. In the Supporting Information S1, a similar

mean-field analysis is performed for self-organized stationary

activity patterns on scale-free networks.

Discussion

Traveling fronts represent classical examples of non-equilibrium

patterns in bistable reaction-diffusion media. As shown in our

study, such patterns are also possible in networks of diffusively

coupled bistable elements, but their properties are significantly

different. In addition to spreading or retreating activation fronts,

stationary fronts are found within large parameter regions. The

behavior of the fronts is highly sensitive to network architecture

and degrees of network nodes play an important role here.

In the special case of regular trees, an approximate analytical

theory could be constructed. The theory reveals that branching

factors of the trees and, thus, the degrees of their nodes, are

essential for front propagation phenomena. By using this

approach, front pinning conditions could be derived and

parameter boundaries, which separate pinned and traveling fronts,

could be determined. As we have found, propagation conditions

are different for the fronts traveling from the tree root to the

periphery or in the opposite direction. Generally, all fronts become

pinned as the diffusion constant is gradually reduced. While the

theory has been developed for regular trees, where the branching

factor is fixed, it is also applicable to irregular trees where node

degrees are variable. Indeed, at sufficiently weak diffusion the front

pinning occurs locally and its conditions are effectively determined

only by the degrees of the nodes at which a front becomes pinned.

The results of such analysis are relevant for understanding the

phenomena of activation spreading and pinning in large random

networks. It is well known (see, e.g., [21]) that, in the large size

limit, random networks are locally approximated by the trees. If

the number of connections (the degree) of a node is much smaller

than the total number of nodes in a network, the probability that a

neighbor of a given node is also connected to another neighbor of

the same node is small, implying that the local pattern of

connections in the vicinity of a node has a tree structure. This

property holds as long as the number of nodes in the considered

neighborhood is still much smaller that the total number of nodes

in the network. Previously, the local tree approximation has been

successfully used in the analysis of pacemakers in large random

oscillatory networks [22,23].

When activation is applied to a node in a large random network,

it spreads through a subnetwork of its neighbors and, at sufficiently

short distances from the original node, such subnetwork should be

a tree. Hence, our study of front propagation on the trees is also

providing a theory for the initial stage of front spreading from a

single activated node in large random networks. Depending on the

diffusion constant and other parameters, the fronts may become

pinned while the activation has not yet spread far away from the

original node. Whenever this takes place, the approximate pinning

theory, constructed for the trees, is applicable.

On the other hand, if the activation spreads far from the origin

and a large fraction of network nodes become thus affected, the

patterns can be well understood with the mean-field approxima-

tion. This approximation, proposed in the analysis of infection

spreading on networks [17], has also been applied to analyze

Turing patterns in network-organized activator-inhibitor systems

[11] and effects of turbulence in oscillator networks [24]. In this

paper, we have applied this approximation to the analysis of

stationary activity distributions in random Erdös-Rényi and scale-

free networks of diffusively coupled bistable elements. We could

observe that, within the mean-field approximation, statistical

properties of network activity distributions are well reproduced. It

should be noted that, similar to previous studies [11,24], the mean-

field values used in the theory were taken from direct numerical

simulations and were not obtained through the solution of a

consistency equation. Hence, we could only demonstrate that such

an approximation is applicable for the statistical description of the

emerging stationary patterns, but did not use it here for the

prediction of such patterns.

Figure 12. The stationary activity pattern and the mean-field bifurcation diagram. (A) The bifurcation diagram of Eq. (16) for the mean
field Q~1:5. (B) Activity distribution in the stationary pattern in the ER network of size N~500 and mean degree SkT~7 at D~0:01 is compared
with the activator levels u predicted by the mean-field theory for Q~1:5. Blue crosses show the simulation data. Black and red curves indicate stable
and unstable fixed points of the mean-field equation (16). The other parameters are r1~1, r2~1:4, r3~3.
doi:10.1371/journal.pone.0045029.g012
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Thus, our investigations have shown that a rich behavior

involving traveling and pinned fronts is characteristic for networks

of diffusively coupled bistable elements. In the past, pinned fronts

were observed in the experiments using weakly coupled bistable

chemical reactors on a ring [25,26]. It will be interesting to

perform similar experiments for the networks of coupled chemical

reactors. Recent developments in nanotechnology allow to design

chemical reactors at the nanoscale and couple them by diffusive

connections to build networks [6]. It should be also noted that,

while the chemical Schlögl model has been used in our numerical

simulations, the results are general and applicable to any networks

formed by diffusively coupled bistable elements. The phenomena

of front spreading and pinning should be possible for diffusively

coupled ecological populations and similar effects may be involved

when epidemics spreading under bistability conditions is consid-

ered.

Methods

Bistable Dynamics
The Schlögl model [20] corresponds to a hypothetical reaction

scheme

Az2X /?
c2

c1
3X

X /?
c4

c3
B : ð17Þ

If concentrations of reagents A and B are kept fixed, the rate

equation for the concentration u of the activator species X reads.

_uu(t)~{c2u3(t)zc1au2(t){c3u(t)zc4b ð18Þ

where the coefficients c1,c2,c3,c4 are rate constants of the

reactions; a~½A�, b~½B� and u~½X � are concentrations of

chemical species. By choosing appropriate time units, we can set

c2~1. Then, the right side of Eq. (18), can be written as

f (u)~{(u{r1)(u{r2)(u{r3) ð19Þ

where the parameters r1,r2,r3 satisfy the conditions

c1~
r1zr2zr3

a

c3~r1r2zr1r3zr2r3

c4~
r1r2r3

b
: ð20Þ

The cubic polynomial f (u) has three real roots which

correspond to the steady states (fixed points) of the dynamical

system (18).

Networks
Erdös-Rényi networks were constructed by taking a large number

N of nodes and randomly connecting any two nodes with some

probability p. This construction algorithm yields a Poisson degree

distribution with the mean degree SkT~pN [27]. In our study we

have considered the largest connected component network, namely,

we have removed the nodes with the degree k~0.

Tree networks with branching factor k{1 were constructed by

a simple iterative method. We start with a single root node and at

each step add k{1 nodes to each existing node with the degree

k~1. After L steps this algorithm leads to a tree network with the

size N~
PL

l~1 (k{1)l{1, where the root node has degree k{1,

the last added nodes have degree 1 and all other nodes have

degree k. In our numerical simulations we have also used complex

trees consisting of component trees with different fixed branching

factors which are connected at their origins.

Scale-free networks, considered in the Supporting Information

S1, were constructed by the preferential attachment algorithm of

Barábasi and Albert [27]. Starting with a small number of m nodes

with m connections, at each next time step a new node is added,

with m links to m different previous nodes. The new node will be

connected to a previous node i, which has ki connections, with the

probability ki=
P

j kj . After many time steps, this algorithm leads

to a network composed by N nodes with the power-law degree

distribution P(k)*k{3 and the mean degree vkw~2m.

To display the networks in Figs. 2, 4 and S2B we have used the

Fruchterman-Reingold force-directed algorithm which is available

in the open-source Python package NetworkX [28]. This network

visualization algorithm places the nodes with close degrees k near

one to another in the network projection onto a plane.

Numerical Methods
For networks of coupled bistable elements, simulations were

carried out by numerical integration of Eq. (3) using the explicit

Euler scheme

u
(tz1)
i ~u

(t)
i zdt f u

(t)
i

� �
zD

XN

j~1

Liju
(t)
j

" #
ð21Þ

with the time step dt~10{3. The integration was performed for

5|105 steps. The initial conditions were ui~1 for all network

nodes i, except a subset of nodes to which initial activation was

applied and where we had ui~3. The explicit Euler scheme with

the same time step dt was also used to integrate Eq. (5) which

describes patterns on regular trees.

Supporting Information

Supporting Information S1 The results of the numerical
simulations of the bistable Schlögl model (3) for scale-
free networks are provided. Traveling fronts and stationary

localized patterns are reported for networks with mean degree

SkT~6 and sizes N~150 or N~500 nodes. The observed

stationary pattern is compared with the mean-field bifurcation

diagram.

(PDF)

Movie S1 This movie shows time evolution starting
from the initial conditions in Fig. 4A (left). For numerical

simulations, we have used the parameters D~0:1, r1~1, r2~1:4
and r3~3. The same color coding for the node activity as in Fig. 2

is applied.

(MP4)
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Movie S2 This movie shows time evolution starting
from the initial conditions in Fig. 4C (left). For numerical

simulations, we have used the parameters D~0:03, r1~1, r2~1:4
and r3~3. The same color coding for the node activity as in Fig. 2

is applied.

(MP4)
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