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Abstract

Visual inspection of stimulus-induced gamma oscillations (30–70 Hz) often reveals a non-

sinusoidal shape. Such distortions are a hallmark of non-linear systems and are also

observed in mean-field models of gamma oscillations. A thorough characterization of the

shape of the gamma cycle can therefore provide additional constraints on the operating

regime of such models. However, the gamma waveform has not been quantitatively charac-

terized, partially because the first harmonic of gamma, which arises because of the non-

sinusoidal nature of the signal, is typically weak and gets masked due to a broadband

increase in power related to spiking. To address this, we recorded local field potential (LFP)

from the primary visual cortex (V1) of two awake female macaques while presenting full-

field gratings or iso-luminant chromatic hues that produced huge gamma oscillations with

prominent peaks at harmonic frequencies in the power spectra. We found that gamma and

its first harmonic always maintained a specific phase relationship, resulting in a distinctive

shape with a sharp trough and a shallow peak. Interestingly, a Wilson-Cowan (WC) model

operating in an inhibition stabilized mode could replicate this shape, but only when the inhibi-

tory population operated in the super-linear regime, as predicted recently. However, another

recently developed model of gamma that operates in a linear regime driven by stochastic

noise failed to produce salient harmonics or the observed shape. Our results impose addi-

tional constraints on models that generate gamma oscillations and their operating regimes.

Author summary

Gamma rhythm is not sinusoidal. Understanding these distortions could provide clues

about the cortical network that generates the rhythm. Here, we use harmonic phase analy-

sis to describe these waveforms quantitatively and show that gamma rhythm recorded

from the primary visual cortex of macaques has a signature arch shaped waveform, with a

sharp trough and a shallow peak, when visual stimuli such as full-screen plain hues and

achromatic gratings are presented. This arch shaped waveform is observed over a wide

range of stimuli, despite the variation in power and frequency of the rhythm. We then

compare two population rate models that have been used to accurately describe the
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stimulus dependencies of gamma rhythm and show that this arch shaped waveform is

obtained only in one of those models. Further, the waveform shape is dependent on the

operating domain of the system. Therefore, shape analysis provides additional constraints

on cortical models and their operating regimes.

Introduction

Gamma rhythm refers to oscillatory neural activity in the 30–70 Hz range that changes in

response to different stimuli and cognitive states [1]. In the primary visual cortex (V1), the

gamma rhythm has been studied extensively using achromatic gratings, wherein gamma

power and peak frequency have been shown to vary systematically with the properties of the

grating [2,3]. For instance, peak frequency of gamma increases with the contrast of gratings

[2,4] and, gamma power increases and frequency decreases with stimulus size [5,6]. More

recently, chromatic stimuli have also been explored, which, for low-wavelength (reddish) hues,

can generate huge gamma oscillations that are an order of magnitude stronger than gamma

produced by achromatic gratings [7–9]. Further, these plain colored blobs of different sizes

exhibited trends in gamma and firing rate analogous to that of achromatic gratings of different

sizes [8].

Gamma oscillations are thought to reflect the push-pull activity of interconnected excit-

atory and inhibitory neurons, which has been demonstrated in different spiking network mod-

els [10–13]. However, since such large-scale network models have several parameters to be

tuned and can become hard to interpret, simplified population rate models are sometimes

used. Although these models have limitations because of fewer free parameters, they are ana-

lytically more tractable. One pioneering model was proposed by Wilson and Cowan (WC)

[14], in which excitatory and inhibitory neurons were grouped into populations, and the

dynamics of these populations were characterized. Variants of WC models have recently been

used to explain some properties of the gamma rhythm. For example, based on the observation

that gamma rhythm appears in short bursts and its phase does not vary linearly with time [15–

17], a WC based model was proposed in which the activation function (input-output relation-

ship) was linear but driven by Poisson noise [17,18]. A variant of this model by Jia, Xing and

Kohn (JXK) [2], in which an additional global excitatory population was added, was used to

explain the stimulus dependence of gamma oscillations. On the other hand, Jadi and Sejnowski

(JS) [19] used a WC model with a non-linear (sigmoidal) activation function and showed that

constraining the model to operate in an inhibition stabilized mode [20] and the inhibitory

population to operate in superlinear domain can also reproduce the size and contrast depen-

dence of gamma rhythm. In this study, we focus on JXK and JS models since these are both

WC based models which can explain the size and contrast-based stimulus dependencies. More

complex rate models that explain stimulus dependencies and potentially also the gamma shape

are elaborated in the Discussion section.

Although both JXK and JS models can explain the stimulus dependence of gamma, the

shape of the rhythm likely depends on the presence (and type) of non-linearity. The shape

could be non-sinusoidal (see, for example, Fig 11 of [14]), which is represented in the spectral

domain as peaks at harmonics of the fundamental frequency. Such distortions have been

observed in various brain oscillations such as theta rhythm (for a review, see [21]). For gamma

rhythm, a visual inspection of raw traces reveals some distortion [22–24], which is also corrob-

orated by the presence of peaks at the first harmonic of the fundamental gamma peak in the

power spectra [4,5,7]. However, a quantitative study of the gamma waveform, which could
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potentially constrain the type and operating regime of models, has not been undertaken. This

is partly because the noise in the harmonic range could offset its phase estimates if the har-

monic is not prominent enough. To address this, we studied gamma oscillations produced by

presenting full-screen hues that generated salient gamma oscillations with prominent harmon-

ics [7], characterized the shape, and tested models that could replicate the shape.

Results

We collected spikes and LFP from 96 and 81 electrodes from two monkeys, M1 and M2, while

they viewed full-screen color patches of different hues. Limiting our analysis to electrodes with

reliable estimates of RF centers (see “Electrode selection” section in Methods and Models)

yielded 64 and 16 electrodes from the two monkeys.

First harmonic of gamma oscillation

In Fig 1A–1D, the top row shows the power spectral density (PSD; averaged across all trials

and subsequently across all electrodes) of the LFP signal in subject M1 during baseline period

(-500 to 0 ms from stimulus onset; black trace) and during stimulus period (250 to 750 ms

from stimulus onset; color/grey trace; the color indicates the hue that was presented and grey

trace represents gratings). The corresponding change in power (dB) from baseline (Fig 1A–1D

bottom row) shows a prominent peak in the gamma range, along with another prominent

peak near twice the frequency. Fig 1E–1H show the same plots from subject M2. We first tested

whether this second peak was indeed at twice the frequency. For each electrode and stimulus,

we measured the gamma peak frequency from trial-averaged baseline-corrected PSDs as the

highest peak within the 30–70 Hz band, and the peak of the second bump as the highest peak

occurring after 12 Hz past the identified gamma peak frequency but before 140 Hz (the identi-

fied peaks are highlighted by black crosses in Fig 1).

Fig 2 presents the medians of the frequency ratios of second bump to gamma peak frequen-

cies for each stimulus (hues indicated by color, gratings by grey color), computed across all

electrodes in each subject, with error bars indicating the standard error of the median com-

puted by bootstrapping. The stimuli are arranged along the horizontal axis by the average

gamma power across electrodes. The histogram of the median frequency ratios across stimuli

showed tight clustering around 2. Such clustering was especially observed for stimuli that pro-

duced strong gamma oscillations. To test whether the ratio for a given stimulus was signifi-

cantly different from 2, the frequency ratios computed in different electrodes for the stimulus

were subject to a Wilcoxon signed rank test. Stimuli for which the ratios were found to be sig-

nificantly different from 2 (p< 0.01) are indicated by open circles. Estimates of peak-fre-

quency ratios for stimuli producing less gamma power were more susceptible to noise and

showed larger deviations in frequency ratios, thus contributing the most to the broad tail of

the histograms. However, frequency ratios were distributed more narrowly around 2 for sti-

muli inducing stronger gamma. The median ± 1SE ratio value for M1 was 1.95±0.014 (red and

yellow horizontal lines in the histograms in Fig 2), significantly different from 2 (p = 0.018 for

M1; Wilcoxon signed rank test). For M2, the median ratio was 1.95±0.018, significantly differ-

ent from 2 (p = 1.01e-5; Wilcoxon signed rank test). However, note that because we computed

PSDs over a 500 ms window, the frequency resolution was 2 Hz, which introduced some error

in the estimated ratio. For example, if the true gamma and harmonic peaks are at 41 and 82

Hz, the estimated gamma will either be at 40 or 42 Hz, yielding a ratio of either 82/40 = 2.05 or

82/42 = 1.95. These margins of error are shown as dotted lines in Fig 2. Most of the points lay

within these error margins, especially for electrodes with higher gamma power. When we

restricted the analysis to the top five hues for each monkey in terms of gamma power, the
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ratios were 1.96±0.042 (p = 0.63; Wilcoxon signed rank test) and 1.95±0.026 (p = 0.25; Wil-

coxon signed rank test). These results confirm that the second peak was indeed the first har-

monic of gamma. The overall power at peak gamma and first-harmonic frequencies were also

Fig 1. Visual Stimulation induces narrowband activity in gamma and its harmonic bands. (A-D, top row) PSDs for baseline (-500 to 0 ms; 0 indicates

stimulus onset) and stimulus (250 to 750 ms) periods for different stimuli, averaged across trials and electrodes, from monkey 1 (M1). The baseline PSDs

are plotted in black, while the stimulus period PSDs are colored (corresponding to the hue presented) or grey (for fullscreen grating). (A-D, bottom row)

show the change in power (dB) in the stimulus period from the baseline, computed from the PSDs in the top row. The gamma power computed from the

change in power spectrum is represented by vertical dashed line). The peaks in gamma range and the second bump activity are marked in each plot. (E-H)

Same as A-D, for monkey M2.

https://doi.org/10.1371/journal.pcbi.1009886.g001
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highly correlated across electrodes in each monkey (Pearson correlation coefficient was 0.85,

p = 4.86e-19 for M1 and 0.86, p = 1.55e-5 for M2), and the results appeared similar if the

power at first harmonic was used instead of main gamma power in Fig 2.

For hues with low gamma power, the peak frequency ratios were more frequently less than

2 in both monkeys. Inspection of their PSDs showed some overlap between the gamma and

the harmonic bumps, resulting in non-zero change in power (dB) between the two. When the

actual gamma and harmonic peaks were not prominent enough, the overlapping region often

had higher power, leading to an overestimation of gamma peak frequency and an underesti-

mation of the harmonic peak frequency, both resulting in a decrease in the peak-frequency

ratio.

Shape of the gamma waveform

Fig 3 shows LFP traces from example trials corresponding to each stimulus case presented in

Fig 1. These traces revealed a characteristic arch shape of gamma waveform, featuring nar-

rower troughs separated by much broader crests, hinting at a characteristic alignment of

gamma fundamental and its harmonic in these cases (best observed in M2 when colored

patches were shown).

To visualize how phase differences between gamma and its first harmonic components

affected the shape of the summed signal, we added two sinusoids to emulate the fundamental

and the first harmonic of gamma, at frequencies 45 Hz and 90 Hz respectively, and varied the

initial phase of the 45Hz component (as described in Eq (2); shown in Fig 4A). Fig 4B shows

Fig 2. Second bump in PSD corresponds to the first harmonic of gamma. Median of peak frequency ratios of the second bump with respect to

the gamma band, scattered against average gamma power for each stimulus (circles are colored to represent the presented hues; grating stimulus is

represented by the grey circle). Error bars indicate the standard error of median (estimated by bootstrapping). Open circles mark stimuli whose

ratios were found to be significantly different from 2 (p-value< 0.01 without any Bonferroni correction; Wilcoxon signed-rank test). The dotted

horizontal lines correspond to the least-error margin 2±0.05. The histograms on the right show the distribution of the median peak frequency

ratios across all stimuli. The median ± 1SE computed for this distribution are represented by the red and yellow horizontal lines respectively.

https://doi.org/10.1371/journal.pcbi.1009886.g002
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Fig 3. Gamma waveform has consistent non-sinusoidal shape under different stimuli. (A-D) present LFP traces for different stimuli, shown in

Fig 1, from an example trial and electrode in M1. (E-H) shows LFP traces obtained from M2 for corresponding stimuli.

https://doi.org/10.1371/journal.pcbi.1009886.g003

Fig 4. Observed arch-shape of gamma corresponds to gamma-harmonic phase difference of 180˚. (A) Gamma (blue) and

harmonic (red) components, mimicked using sinusoids as in Eq (2) with different initial gamma phases (φG) in each row. (B)

Gamma waveform resulting from summation of gamma and its harmonic from the corresponding row in (B). (C) Phase difference

of gamma and its first harmonic, as given in Eq (1), computed from filtering and Hilbert transforming gamma and harmonic bands

from the summed waveform in (B) in each row. Note that the arch-shaped gamma observed in recordings arises from a phase

difference of 180˚ (middle row).

https://doi.org/10.1371/journal.pcbi.1009886.g004
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the waveforms produced at each of these phases, and Fig 4C indicates the corresponding values

of our phase difference measure (computed as in Eq (1)) between gamma and its harmonic.

Using our convention (Eq (1)), a phase difference of 180 degrees (Fig 4A–4C row 3) gave the

desired shape as troughs of both sinusoids aligned to produce a steeper overall trough.

Gamma waveform is similar for different hues

We considered, in each electrode, the mean gamma-harmonic phase difference in each trial

estimated over the stimulus period. In Fig 5A, we show the distribution of trial-averaged

gamma-harmonic phase differences in all electrodes, for each stimulus (indicated by color),

arranged horizontally in order of average gamma power produced. For each stimulus, the

trial-averaged phase differences from all electrodes were subject to a Rayleigh test, and the sti-

muli with non-uniform phase difference distributions (p-value < 0.01) are indicated by filled

circles. The circles are centered at the mean of the trial-averaged phase differences for all elec-

trodes and the error bars in each case represent the 95% confidence interval of the correspond-

ing mean phase differences. The histogram of these mean phase differences across stimuli with

non-uniform phase distributions (filled circles) exhibited a peak near 180˚ in both subjects.

Specifically, the phase differences at higher gamma generating stimuli were distributed close to

180˚ in both subjects, as predicted from the arch-shaped waveforms (Fig 4). Stimuli that pro-

duced low power had high dispersion of phase differences, likely originating from higher

Fig 5. Gamma-harmonic phase differences in different stimuli are concentrated near 180˚. (A) Circular mean of trial-averaged gamma-

harmonic phase differences (across all electrodes) are scattered against the average gamma power for each stimulus (circles are colored to represent

the presented hues; grey for grating stimulus). For each stimulus, the pool of trial-averaged phase differences from all electrodes is subject to

Rayleigh test of non-uniformity to check if phase-difference is consistent across electrodes so that circular mean estimates are reliable (p-

value< 0.01). If found reliable (even though it could be different from 180˚), the stimulus is represented by a filled circle. Error bars represent the

95% confidence interval of circular mean. The histograms on the right show the distribution of the electrode-averaged phase differences of stimuli

with reliable circular mean estimates (filled circles). The circular mean ± 95% confidence interval of this distribution are represented by the red and

yellow lines horizontal respectively. (B) The mean vector strengths for the different stimuli are distributed against the average gamma power for each

stimulus, similar to (A).

https://doi.org/10.1371/journal.pcbi.1009886.g005
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influence of noise, as is visible from the larger confidence intervals in M1, resulting in some

hues with nearly uniform phase difference distributions (unfilled circles; some cases lack error

bars as confidence intervals could not be computed due to their near-uniform distributions).

For hues that generated high gamma power, gamma-harmonic phase differences were concen-

trated slightly higher than 180˚ for M1 and close to 180˚ for M2. The circular mean of elec-

trode-averaged phase difference between gamma and its first harmonic across those stimuli

which showed unimodal distribution (filled circles in Fig 5A; 28 stimuli in M1 and all stimuli

in M2; indicated in the respective histograms in Fig 5A by the red and yellow horizontal lines)

was 197.33±14.44 degrees for M1 (194.00±17.93 degrees if all stimuli were considered) and

161.79±6.79 degrees for M2. When restricted to the five hues with the highest gamma power

for each monkey, the phases were 213.94±6.56 degrees for M1 and 183.92±2.26 degrees for

M2. Interestingly, although the harmonic-band activity was not saliently visible in the PSD in

the achromatic stimulus used here (especially for M2), the phase analysis nonetheless revealed

a consistent phase difference of 227.04±6.81 degrees for M1 (Rayleigh test; p-value = 6.10e-58)

and 164.38±9.57 degrees for M2 (p-value = 2.11e-29; grey filled circle in Fig 5A). The slight dif-

ference in distributions of gamma harmonic phase-differences across the two subjects could

arise from unavoidable differences in the recording depths and intrinsic biological differences.

Phase differences for stimuli producing lower gamma powers appeared slightly less than

those at higher powers. For a second set of five stimuli with the highest gamma power below

10 dB for M1 and below 15 dB for M2, the phases were about 20˚ less (195.18±31.09 degrees

and 143.06±17.25 degrees, respectively). To test the possibility of this reduction arising from

any systematic bias in the phase analyses due to noise, we performed two tests. First, we

repeated the phase analyses on simulated data (see Methods and Models; Effect of harmonic
phase on gamma waveform) by adding Gaussian noise of different variances to the summed

waveform in Eq (2). Secondly, we chose trials in M2 which had the highest gamma power, and

created a synthetic signal which was a weighted average of the signal segments in the stimulus

and baseline periods. In both simulations, the gamma power in the simulated signal could be

reduced by increasing the variance of Gaussian noise and the fraction of baseline signal,

respectively. In both tests, the phase-difference estimates obtained from our analysis were not

biased by higher noise levels, but had larger confidence intervals as observed in the data at

lower gamma powers.

To assess the consistency of the ‘arch-shape’ of the gamma waveform over several cycles in

each trial, a mean vector strength was computed for each trial (see Experimental Design and
Statistical Analysis under Methods and Models). Fig 5B shows the mean of trial-averaged vec-

tor strengths across electrodes for each hue. Higher values of vector strength correspond to

greater consistency of the phase-difference (and hence the waveform shape) across different

gamma cycles, with 0 indicating that each gamma cycle was a different shape and 1 indicating

the same shape in every cycle. Vector strengths increased with gamma power, indicating high

cycle-by-cycle waveform consistency when gamma was prominent. Stimulus cases where

prominent gamma was recorded (as seen for M2), the vector strengths were close to 1 indicat-

ing that arch-shape waveforms were conserved in nearly each cycle.

Gamma waveform in a linear population rate model with stochastic inputs

To test whether the stereotypical gamma waveforms observed in the data could be modeled,

we focused on two recently developed rate models by Jia, Xing and Kohn (2013; abbreviated as

the JXK model) [2] and Jadi and Sejnowski (2014; JS model) [19], both of which can explain

the contrast and size dependence of gamma oscillations (see Studying non-sinusoidal wave-
forms in mean-field models of gamma under Methods and Models for detailed description of
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these models and their representations of stimulus size and contrast). These models, however,

differ in the mechanism of gamma generation. The JXK model produces gamma through per-

sistent stochastic perturbations provided by noisy inputs whereas the JS model produces

gamma through limit cycles without the need for time-varying inputs.

The JXK model, which is a piecewise linear model, operates as a damped oscillator in its lin-

ear domain and produces sustained oscillations by virtue of time-varying input drives gener-

ated by a Poisson process causing the responses to be stochastic as well. Hence, we simulated

the model over 2 seconds repeatedly for 50 iterations and analyzed the interval from 1–2 sec-

onds (‘analysis’ window). Fig 6A shows the gamma peak amplitude obtained from the average

PSD of the LFP proxy across iterations for each stimulus size and contrast; Fig 6B shows the

corresponding mean gamma peak frequencies. These plots show the model replicating the

stimulus size/contrast effects on gamma as demonstrated by Jia and colleagues [2]: gamma fre-

quency decreased and power increased as stimulus size increased, and gamma peak frequency

increased when contrast increased. Fig 6C shows the average PSD from all iterations for differ-

ent stimulus sizes (r) at a fixed contrast (c) of 10−0.25, showing a distinct bump of activity in

gamma range, whose peak frequency decreases but peak power increases as we go from small

to larger values of stimulus size (r). Likewise, Fig 6D shows the average PSD for different con-

trasts and a fixed size of 4.375. The gamma peak frequency in the LFP proxy increased with

contrast as demonstrated by Jia and colleagues [2]. However, the gamma bumps were broad,

as expected of a noisy pseudoperiodic signal, and no prominent harmonic band activity was

discernible in the PSDs. We performed phase analysis, considering the activity in the band

centered around twice the gamma peak frequency (Fig 6B) as the harmonic band activity. Fig

6E shows the harmonic amplitudes and Fig 6F shows the mean gamma-harmonic phase differ-

ences of LFP proxy traces from different iterations. We searched for stimulus size and con-

trasts which yielded arch-shaped gamma, or equivalently a gamma-harmonic phase

differences close to 180 degrees (Fig 4C, middle) consistently across iterations. Such domains

of inputs are shown by black contours in Fig 6F and are identified as ‘in-regime’ stimuli (see

Methods and Models; Identifying the operational input regimes using gamma-harmonic phase
difference). Such regimes were few and scattered sparsely. An example LFP proxy trace for the

highest contrast condition in Fig 6D, which was in-regime, is shown in Fig 6G. The top panel

shows the LFP proxy trace and the bottom panel shows the gamma (blue) and harmonic (red)

band signals. The LFP traces exhibited bursts of gamma oscillations with waveforms showing

varied distortions (and subsequently different gamma-harmonic alignments in subsequent

cycles). However, a few isolated, steep troughs could be found occasionally within some bursts,

which could be responsible for the emergence of a net 180˚ mean gamma-harmonic phase dif-

ference (see Gamma oscillations in the JXK model under Discussion for further elaboration).

To quantitatively assess the consistency of gamma harmonic phase difference in subsequent

cycles within each trial or iteration, the mean vector strength for gamma-harmonic phase dif-

ferences were computed as done on real data (S1A Fig). Unlike real LFP data for which mean

vector strengths were high (Fig 5B), the JXK results gave low vector strengths even for the con-

toured input combinations, indicating a less frequent and more spurious occurrence of the

observed 180˚ phase difference in the gamma cycles.

Gamma waveform in JS model

Jadi and Sejnowski [19] simulated visually evoked gamma using a firing rate model with only

an Excitatory and an Inhibitory population and demonstrated gamma as self-sustained oscilla-

tions in response to steady constant input drives. As a result, any waveform shape found in a

cycle of the oscillations is repeated throughout. We studied whether this model could produce
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Fig 6. Gamma properties for the JXK model. (A) Gamma peak amplitude and (B) frequency found in the average

PSD from 50 iterations at each stimulus size (r) and contrast (c) combination. (C) Average PSD of LFP proxy traces

generated at fixed contrast and different sizes, across all iterations. (D) Average PSD of LFP proxy traces generated at

different contrasts at a fixed size. The stimuli values that generated these PSDs are indicated in plots (A), (B) and (E)

using colored markers (same colors as the plots in C and D). Input combinations used in (C) were chosen to have
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realistic gamma waveforms by identifying the input regime (pairs of input drives to Excitatory

and Inhibitory population) that would give rise to gamma-harmonic phase difference around

180˚ in LFP.

We implemented the model with the parameters specified in [19] for different input drives

as listed in Table 1, and computed the LFP proxy in each case. Fig 7A and 7B shows the

gamma peak amplitude and frequency respectively computed from the LFP proxy for each

input-combination. The region within the white contour indicates an inhibition-stabilized net-

work in which the response function of the inhibitory population operates in the superlinear

regime (for details, see [19]). Fig 7C shows the PSDs of LFP proxies obtained for different

inhibitory input drives and a constant excitatory drive (input-combinations marked by same-

colored markers in Fig 7A and 7B), simulating the variation of stimulus size at a fixed contrast,

as simulated in [19]. The PSDs demonstrate the decrease in peak frequency and increase in

power of gamma in our LFP proxy signal with increasing stimulus size. To demonstrate the

contrast effect, we chose a set of input-combinations where both excitatory and inhibitory

input drives linearly increased with contrast (colored markers in Fig 7A and 7B). The PSDs of

LFP proxy generated for increasing contrasts are shown in Fig 7D. The gamma frequency

increased for higher contrasts mimicking gamma in LFP recordings [2]. Importantly, unlike

JXK, this model showed power at harmonic frequencies as well.

Fig 7F plots the gamma-harmonic phase differences in the LFP proxy trace generated for

each input combination. Regions in the input drives where the phase difference fell within

22.5˚ from 180˚ are enclosed by contours (Fig 7F, black contours) and identified as ‘in-regime’.

Interestingly, this identified regimes fell inside the region predicted by Jadi and Sejnowski [19]

where inhibition was superlinear (Fig 7F, white contours), and further constrained the model

to operate in more restricted regions. Note that small regions lying close to the grey region on

the plot were also occasionally characterized as in-regime, but they are likely spuriously gener-

ated by simulation noise and the corresponding gamma and harmonic powers were very low

(Fig 7A and 7E) and were therefore not considered. Fig 7G presents an example LFP proxy

trace in the top panel, corresponding to the largest size condition in Fig 7C (in-regime), whose

constant contrast (5 vertically distributed markers) while those used in (D) had constant size (5 horizontally

distributed markers). (E) Harmonic band peak amplitude in the average PSD. The harmonic is taken to be twice the

gamma frequency. (F) Mean gamma-harmonic phase difference (Eq (1)) across multiple iterations, with in-regime

inputs encircled by black contours. (G) Example LFP proxy activity (top panel) and its gamma and first harmonic

components (bottom panel) generated at the highest contrast condition in (D) (identified as in-regime). This trace

shows occasional steeper troughs (bottom trace; near 1.35 s, 1.52 s and 1.58 s timepoints) although there is no

consistent trend between gamma and the harmonic.

https://doi.org/10.1371/journal.pcbi.1009886.g006

Table 1. Parameter values used in rate models.

JXK
WEE WEI WIE WII WEG WIG WGE τE, τI, τG (ms)

1.5 3.25 3.5 2.5 0.25 0.5 0.6 6,15,19

MN r c

0 1 to 5

(steps of 0.125)

0.01 to 1

(logarithmic steps of 0.5)

JS
WEE WEI WIE WII τE, τI (ms)

16 26 20 1 20,10

mE, mI θE, θI IE, II

1,1 5,20 0 to 20 (steps of 0.5)

https://doi.org/10.1371/journal.pcbi.1009886.t001
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Fig 7. JS model produces sustained arch-shaped gamma oscillations within the previously identified superlinear inhibitory

regime. (A) Peak gamma amplitude and (B) Peak gamma frequency in the LFP proxy generated by the JS model for each input-

drive combination. (C) PSD of LFP proxy generated for different stimulus sizes. (D) PSD of LFP proxy generated for different

contrast. Input combinations used in (C) and (D) are indicated by markers, with same colors as traces, in (A), (B) and (E). The

Inset on the right of (B) shows the same plot over a more restricted range for better visualization of input combinations. Input
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gamma fundamental (blue) and first harmonic (red) components are shown in the bottom

panel. The troughs of gamma and harmonic were indeed aligned in each cycle, adding up to a

wider crest and a sharper trough overall, resulting in mean vector strength of 1 (S1B Fig).

However, we note that the overall magnitude of the harmonic was smaller than what we

observed in real data. This could be a general limitation of mean field models, as discussed

later.

The LFP proxy used here involves both rE and rI with equal contributions, as suggested by a

computational modelling study of LFP proxies by Mazzoni and colleagues [10] (see Relation-
ship between firing rates and LFP under Discussion for further details and discussion of other

proxies). However, the contributions to LFP by different populations could vary with depth of

recording, proximity to the neurons since they determine the relative distribution of different

synapses in the recording neighborhood [25]. To test whether the ability of the models to gen-

erate arch-shaped waveforms depends on the relative contribution of the two populations, we

tested proxies containing contribution from only one population. S2 Fig shows the gamma-

harmonic phase differences and regimes found in both the models for these proxies. S2A Fig

show the phase differences in the JXK model using -rE as LFP proxy and S2B Fig shows the

results using -rI. As before, no connected region of in-regime stimuli could be found (similar

to the case in Fig 6F). S2C and S2D Fig show the phase differences found in the JS model using

these LFP proxies. While the location of in-regime inputs identified was different, the super-

linear regime was still found to contain a connected region of in-regime inputs in either case,

although the operating regions were very small now. Nevertheless, this suggests that an LFP

proxy chosen as any non-negative linear combination of -rE and -rI, would give rise to ‘in-

regime’ inputs within the superlinear regime of the JS model.

Discussion

We show quantitatively that gamma oscillations produced by different hues possess a distinc-

tive arch-shaped waveform, which leads to a distinct peak at the first harmonic of gamma in

the PSD, and a specific phase relationship between gamma and its harmonic. Further, we show

that a linear, stochastically forced model proposed by Jia and colleagues [2] does not produce

distinct harmonics with consistent phase relationship and hence does not retain a specifically-

shaped gamma waveform. On the other hand, a non-linear, self-oscillating model proposed by

Jadi and Sejnowski [19] produces prominent harmonics, and in a subdomain of inputs within

the previously identified superlinear regime, the model generates the observed gamma wave-

form as well.

One important point to note is that this arch shaped gamma waveform with prominent har-

monics were characterized for hue induced gamma, whereas most previous reports have used

achromatic stimuli. In the achromatic stimulus used here, harmonics were not salient, espe-

cially for M2. However, although earlier experimental studies using achromatic gratings did

combinations used in (C) were chosen to have constant IE (5 vertically distributed markers; the increase in size modelled as an

increase in II) while those used in (D) simultaneously varied in IE and II (5 markers distributed obliquely; the increase in contrast

modelled as a linear increase in IE and II). (E) Harmonic amplitude identified from the PSD of LFP proxy for each stimulus

condition. (F) Phase difference of gamma and its harmonic (Eq (1)) computed for each simulated input drive pair. The black

contours encircle input drives identified to be ‘in-regime’ from their phase differences. The white contour in each figure enclose

the input domain identified by Jadi and Sejnowski (2014) to replicate gamma power increase and peak frequency decrease in

response to increasing stimulus size, and it can be seen to enclose a significant portion of the 180˚ phase difference regime (black

contour). (G) LFP proxy activity trace corresponding to the largest stimulus size shown in Fig 7C. The dotted horizontal line

shown is equidistant from the minima and maxima of the traces. A sinusoidal oscillation would have the same crest and trough

width on this line. The bottom panels show the gamma and its first-harmonic components, plotted in blue and red respectively,

filtered from the LFP proxy traces.

https://doi.org/10.1371/journal.pcbi.1009886.g007
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not describe or quantify the gamma waveform, visual inspection of raw LFP traces containing

gamma bursts reveal a similar shape in some studies (Fig 1A of [26], Fig 2 of [23] and Fig 2 of

[17]) showing that the arch-shape of gamma is observed for at least some achromatic stimuli.

The arch shape described here is also visible when colored natural images were presented (Fig

2 of [27] and Fig 2 of [9]). Interestingly, some papers (Fig 1 of [5]; Fig 9 of [26]) have shown

traces with an inverted arch shape. It is unclear why this is the case; potential reasons could be

due to differences in the position of the reference wire, cortical depth of recording, or differ-

ences in the conductance level. For example, arch-shaped gamma waveform is observed in bio-

physical ING-PING and spiking models as well (Fig 4 of [10]; Fig 4 of [28]), in which non-

sinusoidal gamma arises from the dynamics of the voltage-gated conductances, and the spe-

cific shape produced by the model varies when the conductances are varied (effects of conduc-

tances on gamma shape could be operating through similar shifts in input/response regimes as

shown here). LFP waveform also changes with the recording depth (Fig 4B versus 4C of [10]).

Non-sinusoidal waveforms are common in neural rhythms, such as the sawtooth-shaped theta

rhythm in the hippocampus and comb-shaped beta rhythm, arising from a variety of different

biophysical phenomena [21].

Generalizing the arch shape and the associated phase-difference between gamma and its

first harmonic observed in the fullscreen iso-luminant chromatic stimuli used in this study to

other visual stimuli would be challenging, especially for stimuli that produce less gamma pow-

ers such as achromatic gratings of smaller sizes. Indeed, for stimuli such as small achromatic

gratings that do not produce strong gamma but produce high firing rate (leading to high

broadband ‘pedestal’), estimation of the phase of the gamma or harmonic may not be possible

at all, even though the two models used in this study had been designed to explain the firing

rates and gamma observed when achromatic gratings were presented. This is because unlike

quantities such as change in power, for which the ‘pedestal’ can be subtracted out by either

using the power spectral density at baseline period (as done here) or by explicitly modeling the

pedestal [29], the overall phase at a particular frequency has contributions from both the true

gamma signal and the broadband pedestal. Phase analysis is therefore susceptible to errors and

increased variability caused by high broadband noise, especially at low gamma powers (as evi-

dent from the larger error bars at low powers in Fig 5A).

Although our results may not be generalizable to stimuli that do not produce very strong

gamma, they may nevertheless be useful when comparing two different schemes or principles

that produce oscillations. As discussed below, the two models use two very different principles–

the JXK model is a damped oscillator which is driven by stochastic noise and therefore cannot

produce gamma that is structured over long timescales, while oscillations in the JS arise from a

resonance phenomenon which can maintain a consistent shape over multiple cycles. Therefore,

by showing that gamma oscillations have a consistent arch shape (even for some classes of sti-

muli), a resonant type architecture can be favored over a noise-driven architecture.

Gamma oscillations in the JXK model

The JXK model, like another model proposed by Kang and colleagues [18], explains the

“bursty” nature of gamma oscillations, which was shown in previous studies [15,17]. These

studies observed that gamma band power varied during a trial, with short intervals (~130 ms)

of high gamma power, interspersed by durations of no prominent power. Based on these, Xing

and colleagues [17] suggested that gamma rhythms were the outcome of cortical network reso-

nating to the stochastic component in the inputs. During periods in a trial when stochastic var-

iations in input are less, the cortical network would tend to asymptotically stabilize and

oscillations would get weaker over time. Xing and colleagues [17] demonstrated this
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mechanism in a piecewise linear asymptotically stable model with noisy inputs. The JXK

model [2] emulated gamma burst-activity exhibiting the observed dependencies of gamma

power and frequency on stimulus parameters such as size and contrast by varying input drives

and recurrent excitation to the neural populations. However, the JXK model does not produce

a consistent waveform shape, because despite the presence of a rectification component, the

model operates mostly in a linear (post-rectification) domain for all inputs simulated. In this

domain the step response would be sinusoidal oscillations damping exponentially over time.

Although the presence of Poisson inputs distorted the waveform and prolonged oscillations

for a longer duration, these distortions are not consistent across different cycles of oscillation.

This was reflected as wide band of activity around the gamma band in the PSD (Fig 6C and

6D), and a lack of discernible harmonic activity. Therefore, while these models adequately

explained the bursty nature of gamma oscillations, it is not surprising that they failed to pro-

duce a specific gamma waveform.

However, a recent study has shown that the duration of gamma ‘burst’ activity reported in

Xing and colleagues [17] could have been underestimated [30]. This error arises because the

spectral estimator that is used to compute gamma power is itself noisy, causing the rhythm to

appear bursty in the spectral domain (see [30] for details). Chandran KS and colleagues [30]

used Matching Pursuit algorithm with a Gabor dictionary, which chooses the best-matching

template to estimate the duration of a gamma burst in the time domain itself to show that

gamma bursts during presentation of achromatic grating were longer than reported earlier

(median of ~300 ms, although the mode was ~100 ms). Along with the results presented here,

this suggests that the gamma rhythm could have more temporal regularity than what is pre-

dicted by these stochastic models.

However, we note that the non-sinusoidal nature of gamma rhythm described here could

potentially be introduced in the JXK model by changing the activation function. Specifically, if

a non-linear activation function is used in the place of the piece-wise linear rectifier, the step

response of the system would itself be a specific non-sinusoidal waveform in subsequent cycles

of the resulting damped oscillation. When stochastic perturbations are added, the resultant

bursts of oscillatory activity could contain both irregular distortions caused by the noisily fluc-

tuating inputs and more regular distortions induced by non-linearity at specific parts of the

trajectory in each cycle. Therefore, although we show that our results are reproduced by the JS

model within the superlinear regime, it is possible that the JXK model with a suitable activation

function can also replicate our findings. Further, in the JXK model, we have used Poisson

noise as in the original paper [2] to study the inherent propensity to produce arch-shaped

waveforms. However, a more realistic input would be colored noise [31], and it would be inter-

esting to study the modulatory effects on the waveform shape in different cycles. Furthermore,

the JXK model, despite having a rectification in its activation, operates in the linear region in

almost all gamma cycles. A substitution of a smoother non-linearity with similar slope could

still induce distorted waveforms while still requiring noisy inputs to sustain oscillations.

Indeed, while the JS model generates the proper gamma shape within a sub-regime, the dura-

tion of gamma is as long as the duration of the stimulus itself. Therefore, some stochasticity

may be necessary to replicate all features of gamma rhythmicity, including duration and shape.

We therefore tried several different non-linearities such as power law rectification or sigmoid

in the JXK model (see S3 Fig for results on power law non-linearity) but found that the model

still retained its forced oscillator nature. The location and distribution of the sparse ‘in-regime’

input combinations varied, but the waveform did not show consistent arch-shaped gamma,

suggesting spurious origins of this phase-difference (as revealed by low mean vector strengths

in S3 Fig). A more thorough analysis is required to determine the extent to which consistent

‘arch-shaped’ waveforms can emerge in non-linear forced oscillatory models.
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In the JXK model, there were a few inputs that satisfied our phase-difference criteria for ‘in-

regime’ behavior. However, a close examination of the ‘in-regime’ trace (example in Fig 6G)

revealed that, in addition to the irregularly distorted gamma cycles, these inputs had occasional

isolated steep troughs. These steep troughs could be approximated by a negative impulse,

which could be decomposed as a series of sinusoids with their troughs aligned, resulting in

sporadic 180-degree phase-difference estimates. However, these sharp troughs and the ensuing

spurious phase differences were rare within a trial and hence resulted in predominantly low

trial-averaged direction vector strength as shown in S1A Fig. Since these distortions are of

lower frequency than gamma, the JXK model does not operate ‘in-regime’ for any input

combination.

Gamma oscillations in the JS model

The JS model is a two-dimensional WC model that operates in ISN mode, where the strong

recurrent excitation would lead to instability if the inhibitory population were inactivated [20].

Using a WC model operating as ISN, Tsodyks and colleagues [20] were able to model firing

rate modulation and phase shift of CA1 interneurons in theta rhythm cycles, and further dem-

onstrated a paradoxical behaviour where reduction in external drive to inhibitory population

resulted in a transient increase in inhibitory activity. In V1, Ozeki and colleagues [32] mod-

elled surround suppression as an increase in inhibitory drive and found that the ISN model

showed a simultaneous reduction in network excitation and inhibition, as observed in their

experiments.

Jadi and Sejnowski [19] modelled gamma rhythm as limit cycles generated for a range of

inputs by a local instability and observed that the observed stimulus dependencies of gamma

amplitude and frequency could be simulated while the model operated in a certain range of

inputs, which resulted in the local activation of inhibitory population to be strongly super-

linear. Superlinear activation in individual neurons have been used to explain normalization

and size-tuning in the Supralinear stabilized network (SSN) model [33]. Note that while the

SSN model specifies power law activations for both the excitatory and inhibitory cells, the

‘Superlinear’ regime of JS requires only that, about the steady-state activity, excitatory popula-

tion activation either be weakly superlinear or sublinear when the inhibitory population is

strongly superlinear. Stronger super linearity of inhibitory population could be attributed to

their higher firing rates and a higher convergence of lateral excitatory inputs onto inhibitory

cells.

In the current study, we could observe that the superlinear regime contains a subregion

where the waveform shape of limit cycles is the same arch shape observed during presentations

of our fullscreen hues and gratings. Further, we note that for proxies -rE-rI and -rE, the in-

regime input combinations include the higher values of inhibitory drive (II) (see Figs 7 and

S2), which in the model, corresponds to surround suppression during presentation of larger

size stimuli such as the full-field stimuli used in our experiments.

Limitations and future directions

While the LFP simulated in the JS model exhibited the desired gamma-harmonic phase differ-

ences and size-contrast effects, there are several limitations. First, the regime for the arch shape

was obtained for a highly restrictive set of inputs. Second, the JS oscillations showed very weak

distortions from a sinusoid (low harmonic power). Finally, the results were tested only for a

particular type of activation function as described in the JS model. We found that changing the

type of activation function had a drastic effect on both JS and JXK models. While it is possible

that another type of activation function can produce stronger harmonics over a larger input
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space, we have tried to remain as close as possible to the original models and tested whether

these models can satisfy the new constraints that are imposed by the shape of gamma and the

presence of harmonics.

It is likely that more complex models such as PING models [10] and rate models with syn-

aptic dynamics [11] can explain these results, since they often exhibit strong arch-shaped

waveforms (see Fig 4 of [10] and Figs 1 and 2 in [11]; the rate and synaptic variables show

inverted arch-shape with sharp crests, which yield arch-shaped gamma in our LFP proxy from

Eq (1)). Indeed, a typical weak PING model involves the activation of the E population that

then excites the I population within a few milliseconds, and the resulting inhibition shuts

down both E and I cells, with the cycle repeating once the E cells recover from the inhibition

and fire again [12,34]. Some experimental studies have indeed shown that spikes tend to occur

just before the trough of gamma [35–37], with the pyramidal cells leading the interneurons by

a few milliseconds [38–40]. In the JS model as well, we found that the E population led the I

population by about 50˚ or 2–3 ms in the superlinear regime. Further, the results were qualita-

tively similar when just E or I or the sum of both were used as the LFP proxy (Figs 7 and S2).

Relationship between firing rates and LFP

JXK and JS models used excitatory cell activity to study the power and frequency trends of

gamma. Here, we converted these firing rates to a “proxy” LFP to be compatible with the real

data. Because the extracellular potential is generated due to the spatial separation of transmem-

brane currents (generating dipoles or multi-poles), as well as alignment of such dipoles across

neurons, LFPs are thought to mainly reflect the transmembrane currents of pyramidal neurons

[41]. Hasenstaub and colleagues [38], in their in-vivo study of ferret prefrontal cortex, found

that the postsynaptic potentials and the firing of regular-spiking excitatory neurons and fast-

spiking interneurons were both synchronized to the extracellular gamma rhythm, but the acti-

vation of interneurons was more aligned with the troughs of the oscillation. A modelling study

[10] simulated a Leaky Integrate-and-Fire (LIF) network and computed LFP by injecting the

simulated synaptic currents on corresponding synapses distributed over a population of mor-

phologically realistic neuron models. The LFP, thus simulated, was compared against various

outputs of the LIF network (such as firing rates, membrane potential and synaptic currents).

They found that the sum of absolute values of synaptic currents (with both AMPA and GABA

currents weighted nearly equally) served as the best proxy for LFP. This paradox of both depo-

larizing (sink) and hyperpolarizing (source) postsynaptic currents adding up in the same

polarity could be explained considering the spatial organization of the synapses. In a cortical

pyramidal cell, inhibitory synapses are typically concentrated towards the soma, whereas excit-

atory synapses are distributed less densely along the apical and the basal dendrites. In such an

arrangement, a large proportion of the depolarizing and the hyperpolarizing postsynaptic cur-

rents would themselves constitute ‘synaptic’ dipoles [25], whose effect on the LFP would be in

the polarity of the source or sink closest to the electrode. Consequently, the polarity (sign) of

LFP proxy would vary with recording depth (see Fig 4 in [10]). The arrays in our dataset were

1 mm long and therefore are expected to be in superficial/granular layers where the firing of

both E and I cells are expected to produce a downward deflection in the LFP [10]. Hence in

our simulations, the LFP proxy was taken as the sum of excitatory and inhibitory contribu-

tions, both with a negative polarity.

Gamma and Harmonics vs slow/fast gamma

Murty and colleagues [3] showed that fullscreen achromatic gratings produced two different

oscillations simultaneously–a fast gamma (40–70 Hz), which has been observed previously for
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smaller sized gratings, and a slow gamma (20–40 Hz) which is prominent only for large sti-

muli. Even though this also generates two bumps in the PSD, fast gamma is not a harmonic of

the slow gamma. First, the peak frequency of fast gamma was not twice that of slow gamma.

Second, slow and fast gamma were not co-tuned: they had distinct orientation, contrast, tem-

poral frequency and size tuning preferences.

The arch-shape shown here poses additional problems for phase coding schemes in which

spike position relative to the gamma phase is used to code information [36,42], because spikes

tend to occur near the trough of the rhythm and having a sharper trough reduces the operating

range. Other studies have proposed that gamma oscillations may not play a role but could be a

useful marker/indicator of cortical processing [24]. In that framework, properties such as

shape and duration along with stimulus tuning could provide additional clues about the

underlying circuitry.

Methods and models

Ethics statement

All monkey experiments were carried out in adherence to guidelines approved by the Institu-

tional Animal Ethics Committee of the Indian Institute of Science-Bangalore and the Commit-

tee for the Purpose of Control and Supervision of Experiments on Animals.

Data acquisition

We used LFP data recorded by Shirhatti and Ray [7] from V1 of two female macaques, whom

we refer to as M1 and M2 (correspond to M1 and M3 in the earlier paper). Data from the third

monkey were not considered in this paper since it showed relatively weaker gamma and har-

monic power and very strong broadband high-gamma power, which caused systematic biases

in the harmonic peak-frequency estimation. However, even for this monkey, the phase rela-

tionship between gamma and its harmonic (as shown in Fig 2B) was around 180˚, similar to

the other two monkeys.

Both monkeys were fitted with a titanium headpost and trained to perform a visual passive

fixation task, after which a Utah array (96 and 81 electrodes for M1 and M2) was implanted in

V1 (details of the surgery and implants are provided in [7]). The raw signals from microelec-

trodes were recorded using the 128-channel Cerebus neural signal processor (Blackrock

Microsystems). LFP was obtained by filtering the raw signals online between 0.3 Hz and 500

Hz (Butterworth filters; first-order analog and fourth-order digital respectively), and recorded

at 2 kHz sampling rate and 16-bit resolution. No further offline filtering was performed on this

data before analysis.

Multiunit activity was also extracted from the raw signal by filtering online between 250 Hz

and 7.5 kHz (Butterworth filters; fourth-order digital and third-order analog respectively), and

subjecting the resultant signal to an amplitude threshold of ~5 SD of the signal. The recorded

units were found to have receptive fields located in the lower left quadrant of the visual field

with respect to fixation in both monkeys, at an eccentricity of *3˚–4.5˚ in M1 and *3.5˚–

4.5˚ in M2. Full-field iso-luminant hues did not drive the neurons well, and therefore we did

not get usable spiking activity from most electrodes (see S1 Fig of [7] for description of spiking

activity). In our current study, all the analyses were performed only on LFP data.

Experimental setup and behavior

During the experiment, the monkey was seated in a monkey chair with its head held stationary

by the headpost. The monkey viewed a monitor (BenQ XL2411, LCD, 1,280 × 720 resolution,
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100 Hz refresh rate) placed *50 cm from its eyes. The monkey and the display setup were

housed in a Faraday enclosure with a dedicated grounding separate from the main supply

ground to provide isolation from external electrical noise. The monitor was calibrated and

gamma-corrected using i1Display Pro (x-rite PANTONE) to obtain a mean luminance of 60

cd/m2 on its surface and to obtain a gamma of unity for each of the three primaries of the

color gamut, which had the following CIE chromaticity xy coordinates: red, (0.644, 0.331);

green, (0.327, 0.607); blue, (0.160, 0.062). The white point was at (0.345, 0.358).

Each monkey performed a passive fixation task, which required them to fixate at a small

dot of 0.05˚–0.10˚ radius at the center of the screen throughout the trial (3.3 or 4.8 s duration;

fixation spot was displayed throughout). Each trial began with fixation, following which an ini-

tial blank grey screen of 1,000 ms was displayed, and then, two to three stimuli were shown for

800 ms each with an interstimulus interval of 700 ms. The monkey was rewarded with juice for

maintaining fixation within 2˚ from the fixation point. Trials in which fixation was broken

were not considered in our analyses. Eye position data was recorded as horizontal and vertical

coordinates using the ETL-200 Primate Eye Tracking System (ISCAN) and monitored

throughout the task using custom software running on macOS, which also controlled the task

flow, generated stimuli, and randomized stimuli presentation. Although the monkeys were

required to maintain fixation within 2˚ of the fixation spot, they were able to hold their fixation

well within these limits (standard deviation < 0.4˚ across all sessions for all monkeys) during

the task. Since the stimuli were all full screen, the small deviations are unlikely to affect the

results.

Stimuli

The stimuli consisted of 36 hues and 1 achromatic grating. The hues were equally spaced along

the circular hue space of the standard HSV nomenclature (0˚ hue to 350˚ hue, where 0˚, 120˚,

and 240˚ represent red, green, and blue respectively), which were displayed full screen and at

full saturation and value. The achromatic grating was at an orientation of 90˚ and had a spatial

frequency of 4 cpd for M1 and 2 cpd for M2. These grating parameters were optimized to cap-

ture strong fast gamma with minimal slow gamma (see [3]). The full-screen stimuli, in our

setup, subtended a visual angle of *56˚ in the horizontal direction and *33˚ in the vertical

direction.

Electrode selection

As with our previous report [7], electrodes were considered for analysis only if they gave con-

sistent stimulus-induced changes and reliable receptive field estimates across sessions, deter-

mined by a receptive field mapping protocol that was run across multiple days [43]. Further,

we discarded signals from electrodes with unusable or inconsistent signals, a high degree of

crosstalk with other electrodes, or impedances outside the range of 250–2,500 kO for monkey

M1 and 125–2,500 kO for M2. This resulted in 64 and 16 usable electrodes for M1 and M2,

respectively.

Data analysis

Stimulus presentations with excessive recording artifacts (<5.9% and <5.0% of presentations

of each stimulus in M1 and M2) were discarded for each session. The typical artifacts were

large deflections in the recorded traces observed across electrodes, usually accompanying occa-

sional physical movements from the subjects (jaw movements, for instance). A trial was

rejected from our analyses if the corresponding LFP trace showed deflections about the mean

greater than 6 times the standard deviation of the traces during the stimulus period. This

PLOS COMPUTATIONAL BIOLOGY Shape analysis of gamma rhythm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009886 February 14, 2022 19 / 27

https://doi.org/10.1371/journal.pcbi.1009886


process removed prominent artifacts and yielded 19.9±6.2 repeats in M1 and 20.2±1.0 repeats

in M2 per stimulus.

Spectral analysis of LFP

For each stimulus, LFP recorded from -500 to 0 ms from stimulus onset was taken as the ‘base-

line period’ and 250 to 750 ms from stimulus onset was taken as the ‘stimulus period’ to avoid

the transient responses to the stimulus onset. This yielded a frequency resolution of 2 Hz in

the Power Spectral Density (PSD). PSD was computed using the Multitaper method using the

Chronux toolbox [44], with three tapers. The change in power was calculated as 10 times the

difference between base-10 logarithm of PSDs at stimulus period and baseline period,

expressed in decibels (dB). Estimation of peak frequencies was done on these baseline-cor-

rected PSDs.

Gamma range was taken as 30–70 Hz, and ‘gamma peak frequency’ was estimated as the

highest peak within this range. In most stimulus conditions tested, a discernible ‘second

bump’ was observed in the baseline-corrected PSD. The peak frequency of the second bump

was estimated as the highest peak occurring beyond 12 Hz after the estimated gamma peak fre-

quency up to 140 Hz, to exclude higher frequency bumps.

Analysis of gamma and harmonic phases

To compute the phase difference of gamma and its first harmonic, gamma and harmonic sig-

nals were extracted from LFP during the stimulus period by bandpass filtering using separate

Butterworth filters (zero-phase; order 4). The passband for gamma was 20 Hz wide, centered

around the gamma peak frequency, identified from trial-averaged PSD for a given stimulus

and an electrode. The passband for the first harmonic of gamma was also 20 Hz wide but cen-

tered around twice the corresponding gamma peak frequency. The phases of these signals

(φgamma and φharmonic) were then computed using Hilbert transform. The phase difference

between gamma and its harmonic was calculated as:

Phase difference ¼ j2�φgamma � φharmonicj ð1Þ

The above phase difference estimate was computed at each timepoint within the stimulus

period of every trial for each electrode. Note that the 20 Hz passband for gamma and its har-

monic-band filters is wide enough so that errors in gamma peak-frequency detection do not

affect the phase difference estimates.

Effect of harmonic phase on gamma waveform

To illustrate the effect of the gamma-harmonic phase relationship on the shape of gamma

waveform, gamma and its first harmonic were mimicked using sinusoids and the initial phase

of gamma (φG) was varied. The formulation of gamma and harmonics were as follows:

Gamma wave; G ¼ cosð2p 45 tþ φGÞ

Harmonic wave; H ¼ 1=4
�cosð2p 90 tÞ

Sum of gamma and harmonic ¼ GþH ð2Þ

These waveforms are displayed in Fig 4A and 4B along with the phase difference (Fig 4C)

obtained by applying Eq (1).
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Experimental design and statistical analysis

First, we tested our hypothesis that the second bump in PSD accompanying gamma was

indeed its harmonic by computing the ratio of harmonic to gamma peak-frequencies, obtained

from the trial-averaged change in power (dB) from baseline spectra for each electrode. The

ratios were subsequently subjected to a non-parametric Wilcoxon signed rank test (Null

hypothesis: median ratio = 2). The standard error (SE) of the median of the gamma-harmonic

frequency ratio was estimated by bootstrapping over N iterations (where N is the number of

datapoints). This involved random sampling with replacement of the ratio data N times and

estimating their median each time, which resulted in N medians, whose standard deviation

(SD) is reported as the standard error (SE).

Circular statistics on the gamma-harmonic phase difference data were computed in Matlab

using the Circular Statistics toolbox [45]. The mean phase differences are reported as

MEAN ± CI in Fig 5A, where MEAN is the circular mean and CI is the 95% confidence inter-

val of MEAN, under a Von Mises distribution (implemented in circ_mean and circ_confmean
functions of the Circular Statistics toolbox).

To validate that the distribution of gamma-harmonic phase differences was non-uniform

and, thus, assess the validity of circular mean estimates in Fig 5, we subjected trial-averaged

phase-differences gathered from all electrodes for a given stimulus to a Rayleigh test of non-

uniformity (Null hypothesis: uniform distribution of phases). When the gamma activity

recorded for a given stimulus has a specific waveform across electrodes, the corresponding dis-

tribution of gamma-harmonic phase-differences will be unimodal. We considered this to be

the case when the p-value of the Rayleigh test was less than 0.01. Furthermore, we computed

the mean vector strength of the gamma-harmonic phase-difference to quantify the consistency

of the non-sinusoidal distortion in subsequent gamma cycles. At each time point within the

analysis window in a trial, unit vectors were taken with orientation equal to the gamma-har-

monic phase-difference at each time point within the analysis window and the magnitude of

the average of these unit vectors was considered as the mean vector strength for the corre-

sponding trial. The mean vector strengths across trials of a specific stimulus presentation were

then averaged for each electrode. The mean vector strength corresponding to each stimulus is

presented in Fig 5B as MEAN ± SE, where MEAN and SE are the average and standard devia-

tion of the trial-averaged vector strengths across electrodes for each stimulus.

Studying non-sinusoidal waveforms in mean-field models of gamma

To understand the factors resulting in the characteristic waveform of gamma, we investigated

the gamma-harmonic phase relationship emerging in two mean-field models introduced in

earlier works, which produced gamma oscillations with power and frequency trends as

observed in experiments. We explored the waveform in these models by identifying input

regimes that produced a first-harmonic with a specific phase difference from the fundamental

of gamma, as required for its arch-shape. We assessed the presence of such regimes in two

models. The first model operated linearly and produced oscillations by virtue of stochastic

time-varying inputs (Jia-Xing-Kohn or JXK model; [2]), while the second model had non-lin-

ear dynamics, which gave rise to gamma frequency limit cycles in response to constant inputs

(Jadi and Sejnowski or JS model; [19]).

Jia-Xing-Kohn (JXK) model

Jia and colleagues [2] defined a linear EI rate-model and extended it by adding a Global Excit-

atory Population (G) to approximate recurrent excitatory feedback within V1 [2]. The model,

when subjected to step input, acts as a damped oscillator but produces oscillations by virtue of
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constant perturbation from the Poisson inputs. The original model, formulated in the paper,

incorporates detailed stimulus descriptions, namely Masked Noise (MN) level and stimulus

size (r) and contrast (c). The stimulus size parameter (r) scales the extent of Network recur-

rence (G) in steady-state proportionally as larger size stimuli excite a larger area of cortical

cells, increasing the global feedback. The stimulus contrast (c) proportionally increases the

drives to the excitatory and inhibitory populations, IE and II respectively. In our simulations,

the Masking Noise level (MN) has been set to 0, resulting in the following reduced formula-

tion. The resultant reduced JXK model formulation is as follows:

tE
drE
dt
¼ � rE þWEEbrEc � WEIbrIc þWEGbrGc þ Einp

tI
drI
dt
¼ � rI þWIEbrEc � WIIbrIc þWIGbrGc þ Iinp

tG
drG
dt
¼ � rG þ r2:WGEbrEc

where bxc = x if x>0, otherwise bxc = 0, and Einp and Iinp approximate a Poisson process with

average rates IE and II respectively, which vary with stimulus contrast (c) as:

IE ¼ 40:
c2

c2 þ 0:32
; II ¼ 32:

c2

c2 þ 0:32
ð3Þ

Parameter values of this model are given in Table 1.

Jadi-Sejnowski (JS) model

Jadi and Sejnowski [19] used a simple rate model to qualitatively describe stimulus size and

contrast dependent modulation of gamma. The model consisted of an excitatory and an inhib-

itory population with sigmoidal activation, operating as an Inhibition Stabilized Network

(ISN), and had constraints on the input drives to the populations to reproduce the increase in

power and decrease in peak frequency of gamma with increasing stimulus size as earlier stud-

ies have observed in V1 [5,6].

The model defines the population firing rates of Excitatory and Inhibitory populations as

follows:

tE
drE
dt
¼ � rE þ sE WEErE � WEIrI þ IEð Þ

tI
drI
dt
¼ � rI þ sI WIErE � WIIrI þ IIð Þ

sP xð Þ ¼
1

1þ expðmP:ðyP � xÞÞ
�

1

1þ expðmP:yPÞ
ð4Þ

In this model, larger stimuli were simulated by an increased inhibitory drive (II) to the pop-

ulation, owing to suppression from the surrounding populations [32], whereas stimuli of dif-

ferent contrasts could be simulated by applying co-varying drives to inhibitory (II) and

excitatory (IE) populations [46].

Oscillations in this model emerged after the system underwent a supercritical Hopf bifurca-

tion at sufficiently high input drives. Since the model operated close to the Hopf bifurcation,
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the amplitude and frequency of oscillations in firing rates could be closely approximated by

linearization of the model (For the interested readers, we refer to Appendix-B in [19] for their

detailed discussion). The authors deduced and demonstrated that the model gave rise to the

observed trends in the gamma when the inputs were such that the inhibitory population was

strongly ‘superlinear’. This means that the summed inputs to the inhibitory population (from

recurrent and external sources; argument of σI in Eq (4)) must lie in a certain range of values

where the activation function σI curves upwards (increasing in slope with increasing summed

input). For the sigmoidal activation function used in Eq (4), the summed inputs must operate

in the lower half of the sigmoid. Superlinear activation of the excitatory population, on the

other hand, was antagonistic and, hence, excitatory activation should not be strongly super-

linear. The set of such inputs constitute the operating regime of the model, which we refer to

as the ‘superlinear’ regime. In Fig 7C and 7D, we have presented examples of the size and con-

trast effects on gamma rhythm in the model. The example input combinations (indicated by

markers in Fig 7A and 7B) were chosen such that they lay within the ‘superlinear’ regime and

were varied based on the above criteria to represent different sizes and contrasts.

Identifying the operational input regimes using gamma-harmonic phase

difference

Because the gamma-harmonic relationship was studied using LFP recordings in real data

while the model simulations yielded firing rates of excitatory and inhibitory populations, these

firing rates had to be converted to a ‘proxy’ LFP. The relationship between the two is complex

[10,38,41]. For simplicity, we used the negative sum of population firing rates of the excitatory

and inhibitory populations in the models as a proxy for LFP, since the LFP, being the extracel-

lular potential, could be approximated to vary inversely with the depolarization (excitability)

of these populations. Furthermore, the spatial organization of the synapses are likely to pro-

duce strong dipole contributions with negative polarity to the LFP recorded in our setup. We

elaborate this further in the Discussion section. We also approximated the LFP as the negative

of just the excitatory or inhibitory populations, which yielded qualitatively similar results.

The environment used for simulation was Matlab 2019b (Mathworks, RRID:SCR_001622),

where the models were simulated by a forward Euler method, with parameters as in Table 1.

Simulations were run for a duration of 2 seconds in time-steps of 0.1 ms, on all pairs of 41

excitatory and 41 inhibitory input values sampled from the ranges specified in Table 1. In each

case, PSD of the LFP proxy was computed between 1–2 seconds to avoid the initial slow tran-

sient. The gamma and harmonic peak frequencies were identified as frequencies containing

maximum power in the 30–70 Hz range and twice the gamma peak frequency, respectively.

For further analyses in the JS model, only those input combinations were considered for which

gamma and harmonic frequency amplitudes were greater than 1e-3 and 1e-6 units respec-

tively, to ensure phase analysis of oscillatory activity was not dominated by simulation errors

or noise (grey region in Fig 7F). The LFP proxy signal was filtered using 20 Hz passbands cen-

tered at each frequency identified above. The gamma-harmonic phase difference (Eq (1)) was

computed, just as for LFP in macaque data. An input point (pair of values supplied as excit-

atory and inhibitory input drives; stimulus parameters in the case of JXK) was said to be ‘in-

regime’ if the gamma-harmonic phase difference was within 22.5 degrees from 180-degrees

(ideal for arch shape; Fig 4). Since JXK takes stochastic inputs, to assess if there is indeed a

unique gamma-harmonic phase difference at each of the mean input-drive combinations

tested and whether the model can indeed exhibit in-regime behavior, we ran the simulation 50

times (analogous to 50 different trials) for each stimulus condition. In each iteration, we con-

sidered the mean phase-difference over the 1–2 second interval. For every selected input
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combination, the mean phase difference over this interval in each iteration was taken and the

resultant pool of 50 mean phase differences was subjected to Rayleigh test of uniformity to

identify those inputs that have a ‘consistent’ gamma-harmonic phase relationship across itera-

tions (p-value < 0.01). Among the qualifying input combinations, those input drive pairs for

which the circular mean of mean phase differences across iterations lay within 180±22.5

degrees were deemed to be ‘in-regime’. For JXK, the gamma-harmonic phase reported in Fig 6

is the circular average of the phase differences from all the iterations. The amplitudes of

gamma and its first harmonic in the figure are estimated from the average PSD (examples in

Fig 6C and 6D), computed as the mean of the PSDs obtained from 50 iterations for a given

stimulus combination.

Supporting information

S1 Fig. Mean direction vector strengths of Gamma-harmonic phase differences in JXK vs

JS. (A) Time-averaged direction vector strengths, averaged across 50 iterations of JXK model

simulation for the -rE-rI proxy, computed similarly as for the LFP data. The low vector

strengths suggest that the near 180˚ phase differences identified ‘in-regime’ points were likely

not produced by consistent arch-shaped waveforms in subsequent cycles but arose from much

rarer sharp troughs in the proxy traces. (B) The mean vector strength computed from the sim-

ulation of the JS model for the -rE-rI proxy. For input combinations that generate oscillations

by self-oscillation, subsequent gamma cycles have the same shape, resulting in vector strength

of 1. The white contour surrounds the superlinear regime of the JS model as in Fig 7F. The

black contours in (A) and (B) encircle the input combinations that satisfied our ‘in-regime’ cri-

terion on phase differences as in Figs 6F and 7F.

(TIF)

S2 Fig. Gamma-harmonic phase difference in rate models using different LFP proxies. (A)

Phase difference of gamma and its harmonic in the JXK model computed for each stimulus

condition (as in Fig 6F) but using only E population activity to compute the LFP proxy. (B)

Gamma-harmonic phase differences in JXK using I population activity alone. (C) Phase differ-

ences in JS model using E population activity only. (D) Phase differences in JS using I popula-

tion activity only. Black contours encircle stimulus conditions identified as ‘in-regime’. White

contours in (C) and (D) mark the superlinear regime of the JS model.

(TIF)

S3 Fig. Gamma in JXK model with a different activation function. JXK model was simulated

for an example input combination with a modified activation function obtained by replacing

brIc with
brIc

n

n with n = 2.5 (A-G) Same as Fig 6A–6G (H) Same as S1A Fig.

(TIF)
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