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Abstract: Dental pulp vitality is a desideratum for preserving the health and functionality of the
tooth. In certain clinical situations that lead to pulp exposure, bioactive agents are used in direct pulp-
capping procedures to stimulate the dentin-pulp complex and activate reparative dentinogenesis.
Hydraulic calcium-silicate cements, derived from Portland cement, can induce the formation of a
new dentin bridge at the interface between the biomaterial and the dental pulp. Odontoblasts are
molecularly activated, and, if necessary, undifferentiated stem cells in the dental pulp can differentiate
into odontoblasts. An extensive review of literature was conducted on MedLine/PubMed database
to evaluate the histological outcomes of direct pulp capping with hydraulic calcium-silicate cements
performed on animal models. Overall, irrespective of their physico-chemical properties and the
molecular mechanisms involved in pulp healing, the effects of cements on tertiary dentin formation
and pulp vitality preservation were positive. Histological examinations showed different degrees
of dental pulp inflammatory response and complete/incomplete dentin bridge formation during
the pulp healing process at different follow-up periods. Calcium silicate materials have the ability
to induce reparative dentinogenesis when applied over exposed pulps, with different behaviors, as
related to the animal model used, pulpal inflammatory responses, and quality of dentin bridges.

Keywords: biomaterials; direct pulp capping; dental pulp; dentin bridge; calcium-silicate cements

1. Introduction

Dental pulp vitality preservation is a necessity for prolonging a tooth’s life in the
oral cavity. Dental pulp can be directly exposed in an oral environment as a result of
deep carious lesions caused by cariogenic microorganisms, traumatic injuries or iatrogenic
factors that can lead to bacterial infiltration, inflammation and infection [1,2]. Maintaining
pulp vitality is necessary to avoid further complications that can lead to endodontic therapy
or tooth extraction [3].

Pulp vitality can be maintained in certain situations by a stimulatory treatment that
involves the activation of the dentin-pulp complex so as to produce reparative dentin at
the level of the pulpal involvement area. In such situations, dental pulp protection against
bacterial infiltration or toxicity of restorative dental materials, and dentin layer healing can
be achieved by direct pulp capping (DPC) procedure, which involves the placement of a
pulp-capping agent at the level of exposure [4].
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Successful DPC consists in maintaining the vitality and functionality of the pulp and
in new dentin bridge formation [5]. In addition to the size and depth of exposure, the
presence of microorganisms at the site of exposure or the patient’s age [6], the type of
biomaterial used for DPC plays an important role in the prognosis and success of the
procedure [4,7].

1.1. Molecular Mechanisms in Dentinogenesis

The dentin–pulp complex is located inside the tooth. Both tissues, dentin and pulp, are
embryologically developed from the dental papilla of the neural crest’s ectomesenchyme [8].
Dentin is a mineralized connective tissue, harder than the regular bone and less hard
than the enamel, consisting mainly of calcium hydroxyapatite (Ca10(PO4)6(OH)2) and a
collagenous matrix [9]. The pulp is a soft connective tissue that contains different cells such
as odontoblasts, fibroblasts and undifferentiated mesenchymal cells [10], located in the
pulp chamber and in the root canal, being isolated and protected from external factors by
dentin, which surrounds it. Besides sensory, nutritional and defensive roles [11], dental
pulp’s prime function is to secrete dentin due to the external odontoblastic cell layer [12].

During odontogenesis and up until the end of apexogenesis, primary dentin is formed,
representing the majority of the circumpulpal dentine matrix [9]. Secondary dentin is
formed in physiological conditions by continuous deposition of dentin after root develop-
ment is completed, throughout life, as long as the tooth preserves its vitality [13]. Although
slightly different, both primary and secondary dentin have regular, tubular structures
comprising of intertubular and peritubular dentin. Tertiary dentin, a more dystrophic,
sometimes atubular matrix, is formed specifically at the pulp-dentin interface following
different pathological processes, either carious or traumatic. The intensity of the envi-
ronmental stimuli may vary and produce two types of tertiary dentin. In response to a
mild stimulus (e.g., slowly progressing caries), post-mitotic odontoblast cells are preserved
and stimulated to secrete reactionary dentin [14]. If the stimulus is stronger (e.g., rapidly
progressing deep caries, tooth cavity preparation or traumatic injury), the odontoblast cells
are destroyed, and a much complex process is generated, which involves mitosis, chemo-
taxis, migration, adhesion and differentiation of mesenchymal stem cells to form a new
generation of odontoblast-like cells, which will eventually secrete reparative dentin [15].
These cells may originate from the immune system, subodontoblastic cell layer, or from
pulp fibroblasts, and their origin may influence the cell phenotype and further cellular
interactions [14,16,17].

The differences regarding the morphology of the tubular structure of the three types
of dentine are thought to be due to molecular substrate [15]. In fact, dentin is a reservoir
of bioactive molecules, such as growth factors, neurotrophic factors, neuropeptides and
cytokines, sequestered in extracellular matrix during dentinogenesis and that can be
solubilized in pathological conditions: carious, traumatic or iatrogenic [18]. These bioactive
molecules are signaling molecules that lead to receptor phosphorylation and modulate
several signaling transduction pathways after binding, essential for dentinogenesis being
MAPK (mitogen-activated protein kinase) and PI3K/AKT/mTOR (phosphatidylinositol
3-kinase/protein kinase B/mechanistic target of rapamycin), pathways that are engaged
in cell proliferation, adhesion, migration and apoptosis. Among the MAPK family, p38
MAPK has the pivotal role of activating odontoblast’s secretory activity and is involved in
repair and regeneration processes [18,19].

Vital pulp therapies and pulp-capping materials enhance biological responses and
favor tertiary dentinogenesis by stimulating odontoblast’s secretory activity; therefore,
further research is needed to understand specific molecular mechanisms and how to use
them therapeutically.

1.2. Calcium-Silicate Biomaterials as Pulp Capping Agents

A variety of biomaterials have been proposed and developed over time for pulp-
capping procedures. Pulp-capping materials must ensure pulp regeneration and induce the
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formation of a hard tissue barrier following odontoblasts’ activation. Materials such as cal-
cium hydroxide (CH) [20,21], zinc oxide eugenol cement [22], resin-modified glass-ionomer
cement [23], MTA [24,25], adhesive systems [26], enamel matrix derivative [27], colla-
gen [28], formocresol [29] and hydroxyapatite [30] have been proposed as pulp-capping
agents over time.

In addition to the nature of the pulpal insult, the prognosis of success in pulp capping is
greatly influenced by the type of pulp-capping agent used. An ideal pulp-capping material
has to present biocompatibility, good adhesion to the dental hard tissues, compatibility
with the restoration materials it comes in contact with, good marginal sealing, insolubility
in tissue fluids, easy handling and manipulating, short setting time, proper mechanical
properties, radiopacity, antimicrobial activity and possibly low cost [31,32].

In the past, formocresol has been an agent of choice for pulp therapy, with very
controversial results, due to its cytotoxic, genotoxic and carcinogenetic effects [33]. Zinc
oxide eugenol cement has also been proposed as a pulp-capping agent, but its effective-
ness is questionable, especially because of eugenol’s high cytotoxicity and interfacial
leakage [34,35]. Although eugenol is considered to have antibacterial properties, which
might have been considered as an advantage of this material, it has been observed that its
availability diminishes dramatically within time [36]. Furthermore, in human studies, it
showed chronic pulpal inflammation and lack of healing or dentin bridge formation [37],
as opposed to CH.

CH has been the gold standard for several decades since its introduction in 1921 [38],
but its shortcomings such as lack of adhesion to dentin or resin restorations, poor me-
chanical properties, bacterial infiltration, tunnel defects in dentin bridges and pulpal
resorption [39–41] led to the choice of clinicians towards new, much more elaborate ma-
terials such as MTA and later, materials derived from MTA: calcium silicate, calcium
phosphates or calcium aluminate-based materials.

These biomaterials are hydraulic calcium-silicate cements that are derived from the
original PC, and their composition is detailed in Figure 1. PC and MTA have similar
compositions, while the other materials are modified or hybrid materials for mechanical and
biological improvements. Due to their bioactivity, they can provide a much better dentin
bridge formation than CH and a lower degree of pulpal inflammation [42]. The setting
reaction known as hydration is a chemical reaction that involves the major compounds in
dissolution and precipitation processes, resulting in different hydrates. This reaction can
occur in wet environments. The setting reaction implies the reaction of calcium silicate
with water forming calcium-silicate hydrate and calcium hydroxide [43].

1.3. Portland Cement (PC)

PC is the most common cement of general use and a basic ingredient of concrete. PC
is composed of lime, silica, alumina, ferric oxide and other compounds [44]. PC has the
following major phases: dicalcium and tricalcium silicate (as major constituents), tricalcium
aluminate and tetracalcium aluminoferrite [45]. Compared to similar conventional dental
materials, PC does not contain radiopacifying agents. PC also contains arsenic, which raises
major concerns regarding its use due to its possible toxic effects [46]. However, arsenic
levels are low and vary depending on the type of PC [47,48]. With this respect, the amount
of arsenic released is not a reason for its contraindication [49].

Given the low cost of PC and the fact that it has an almost identical composition to
MTA [50] and similar antibacterial effects [51], it can be considered a more economical
alternative. In various studies, ordinary PC has been modified with different compounds:
bismuth oxide, iodoform or zirconium oxide for radiopacification [52]; calcium chloride,
which decreased the setting time, maintained the pH at high values, decreased solubility
and reduced the quantity of water necessary for mixing, therefore, lowering the mate-
rial’s permeability [53]; CH for antibacterial activity [45]. However, these changes in
the material’s composition can affect the physico-chemical properties and bioactivity of
the cement.
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1.4. Mineral Trioxide Aggregate (MTA)

MTA was introduced in 1993 [54]. Initially, MTA was introduced as an endodontic
material for root filling treatment, as it offered the possibility of apexification in immature
teeth for apical barrier formation or repairment of various defects, such as perforations or
fenestrations [55,56]. The bioactivity of the material promotes stimulation and regeneration
at the level of the dentin-pulp complex, making it suitable as a pulp-capping agent. Initial
grey MTA was replaced by white MTA in 2004 for aesthetic considerations, as it lacked
in tetracalcium aluminoferrite, therefore, having a lower iron oxide content [57]. MTA
is presented as a fine powder that is mixed with water. Usually, the ingredients come
in pre-dosed packages. In terms of micro- and macroscopic properties, MTA is almost
identical to PC. MTA is mainly composed of Portland type I cement with the main phases
of tricalcium and dicalcium silicate, tricalcium aluminate, tricalcium and silicate oxides,
and bismuth oxide as a radiopacifying agent. Depending on the manufacturer, the setting
reaction can vary from a long time (2.5 h in the case of ProRoot MTA) to a much shorter time
(15 min in the case of MTA Angelus) [57]. Even if MTA remains the most representative
hydraulic calcium-silicate cement in its class, drawbacks, such as prolonged setting time,
which requires more treatment sessions, high cost and difficult handling [58], lead to the
release of derivate materials. New modified materials based on calcium silicates have
been formulated over time in response to the disadvantages of MTA, but also in order to
improve the pulpal response.

1.5. TheraCal LC

One MTA derivative material designed for direct or indirect pulp capping is TheraCal
LC (Bisco, Schaumburg, IL, USA), which is a light-cured resin-modified tricalcium-silicate
material released in 2011. TheraCal LC contains mineral compounds (type III PC), ra-
diopaque agent (barium zirconate), hydrophilic thickening agent (fumed silica) and resins
(bis-phenyl glycidyl methacrylate and polyethylene glycol dimethacrylate) [59,60]. The
setting reaction is based on light curing for 20 s for each layer of applied material. As
hydraulic cement, it depends on the water up taken from the dentin moisture and its
diffusion within the material. The advantages of this material compared to MTA are its
short setting time, leading to fewer treatment sessions, easy maneuverability and handling.
Being a resin-based material, which does not require any conditioning of the dentin surface,
TheraCal LC can be bonded with various types of adhesives after application [61]. In vitro
studies showed a very low cytompatibility of TheraCal LC [62] due to the fact that resin-
based materials exhibited toxic effects on cultured odontoblast-like cells [63]. This risk was
associated with the residual unpolymerized resin components that remained in contact
with pulp tissue, monomers such as BisGMA, HEMA, TEGDMA, and UDMA being cited
as having the lowest biocompatibility [64,65]. In the last five years, nanoparticles, such
as carbonic nanomaterials, hydroxyapatite, silica, iron and titanium oxide, zirconia, have
been used in dental materials, such as TheraCal LC, to enhance their physical, chemical,
and biological properties [66].

1.6. Biodentine

Biodentine (Septodont, Saint-Maur-des-Fossés, France) is a tricalcium-silicate cement
developed as a dentin substitute. Biodentine is a powder-liquid system. The powder has
the following main phases: tricalcium silicate, dicalcium silicate, calcium carbonate and
zirconium dioxide as radiopacifier [67]. The liquid consists of calcium chloride. After
mixing the components, the setting time takes up to 12 min for the cement to harden [68].
Compared to CH, Biodentine has lower porosity, better mechanical strength and less solu-
bility. The dentin bridges show no tunnel defects, having a better sealing ability. Biodentine
can be used as a temporary enamel substitute for up to 6 months and, without any surface
treatment, could be a permanent dentin substitute [69]. In the literature [70], Biodentine’s
behavior is presented as a favorable repair material based on its biocompatibility assigned
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to hydroxyapatite crystals’ deposition on the surface, which is in direct contact with tissue
fluids [71].

1.7. Bioceramic-Based Materials

Initially developed for various other purposes, such as joint replacements, blood
vessel prostheses or heart valves, they had been promoted as efficient and biocompati-
ble endodontic materials, with high success rates [72]. Endodontic bioceramics are not
influenced by humidity or blood contamination [73,74], are stable and insoluble over time,
providing an adequate seal [75]. Before setting, bioceramics manifest an antibacterial effect,
and afterwards, they become biocompatible and bioactive [76]. Among these bioceramic
endodontic materials, we can mention BioAggregate (Innovative Bioceramix, Vancouver,
BC, Canada), with a composition similar to that of MTA’s. Its composition consists of
tricalcium silicate, calcium phosphate and silicon dioxide and tantalum oxide as a ra-
diopacifier [67]. BioAggregate consists of Ca, Si and O, with a lower content of Al and
lack of heavy element contamination [77]. BioAggregate can promote adhesion, migration,
attachment [78], odontoblasts’ differentiation [79] and mineralization by activating the
MAPK pathway of the human dental pulp cells [80].

1.8. Premixed Materials

A series of premixed or ready-to-use materials have been developed; this category in-
cludes iRoot BP Plus (also known as EndoSequence root repair material/EERM; Innovative
BioCeramix, Vancouver, BC, Canada), TotalFill BC RRM (FKG Dentaire SA, La Chaux-de-
Fonds, Switzerland) or Endocem MTA (Maruchi, Wonju, Korea). Their advantage is that
they have a uniform consistency, are not technique sensitive and lack waste [81]. Premixed
bioceramics require moisture from the environment in order to harden.

iRoot BP Plus is a premix bioceramic thick/putty white paste material, radiopaque,
composed of tricalcium silicate, zirconium oxide, tantalum pentoxide, dicalcium silicate,
calcium sulfate, calcium phosphate monobasic and filler agents, aluminum-free, insolu-
ble [67], which requires water to harden and does not shrink during setting, with excellent
physical properties [82]. During the setting reaction, when it comes in contact with water
and/or moisture, it produces CH [82]. iRoot BP plus is a biocompatible material with
antibacterial properties capable of inducing new dentin bridge formation when applied as
a DPC agent [83].

TotalFill BC RRM (root repair material) is a calcium-silicate-based material for root
canal repair and filling material. TotalFill BC RRM is available in three consistencies:
injectable paste, putty and malleable putty. According to the manufacturer, TotalFill BC
RRM consists of tricalcium silicate, dicalcium silicate, zirconium oxide, tantalum pentoxide
and anhydrous calcium sulfate. The material has a very good radiopacity and an adequate
setting time [84]. However, the material showed less marginal adaptation and sealing
ability when compared to ProRoot MTA [85].

Endocem MTA is an MTA-derived material for endodontic use. Endocem MTA’s
composition consists of calcium oxide, aluminum oxide, silicate oxide, magnesium oxide
and bismuth oxide [86]. Endocem MTA has a number of advantages such as a faster setting
time than conventional MTA and a better washout resistance [87], less tooth discoloration
than MTA [88], a low cytotoxicity effect for preosteoblastic cells [89], calcium release and
the ability to form apatite-like structures [90].

These bio-inductive materials, based on calcium silicates, can be used in different
endodontic procedures, depending on the nature of each material and its purpose: apex-
ification and apexogenesis, root perforations repair, as direct and indirect pulp-capping
agents, in pulpotomy or pulpectomy procedures, regenerative procedures and as root
filling materials [67].

The purpose of this review is to highlight the effect of calcium-silicate cements in
reparative dentinogenesis, providing a better insight on molecular mechanisms on the
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different types of calcium-silicate cements and on histological findings in animal models,
following DPC capping with these pulp-capping agents.
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***** [91]).

2. Histological Findings in Animal Model Following Direct Pulp Capping Procedure
Methodology

We performed an extensive search of the PubMed (Medline) database, limited from
1962 to October 2020, to identify studies that were eligible for the aim of this review. During
the screening process, two reviewers (MA and RPV) extracted the data independently,
using EndNote X8 and X9 (Clarivate Analytics) for reference management. The search
strategy for PubMed used medical subject heading terms and their variations, as shown in
Table 1. Case series and reports, letters to the editor, and reviews were excluded manually
during the screening process. Reference lists of the included articles were hand-searched
in order to identify further eligible studies. Afterwards, full-text articles were assessed
for eligibility.

The studies were included if they met the following criteria:

• original scientific studies;
• studies performed on animal subjects;
• studies reporting DPC with hydraulic calcium-silicates cements;
• studies reporting histological assessments, with highlights on inflammatory cell infil-

trate, pulp tissue disorganization, reparative dentin formation, quality of reparative
dentin, defective area or cell inclusion, the impact of dentin fragments.

We considered a study ineligible for inclusion if any of the following criteria were met:

• case reports, case series, letters to the editor, reviews;
• studies performed in vitro;
• studies that included indirect pulp capping or pulpotomy on animal models;
• non-English language publications.

For each included study the following data were recorded: author, publication year,
country, study design, animal species, sample size, follow-up time, intervention, materials
used, outcomes assessed and results.
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Table 1. The search strategy for PubMed used medical subject heading terms and their variations.

Search Strategy Pubmed Database

#1 ((((“Animals, Laboratory”[Mesh]) OR “Animals, Laboratory/drug effects”[Mesh]) OR
(animal AND testing)) OR (laboratory animal)) OR (animal AND laboratory)

#2

(((“Dental Pulp Capping”[Mesh]) OR (Dental Pulp Capping)) OR (“Dental Pulp
Capping/adverse effects”[Mesh])) OR ((((“Dental Pulp Exposure”[Mesh]) OR “Dental Pulp
Exposure/drug therapy”[Mesh]) OR “Dental Pulp Exposure/physiopathology”[Mesh]) OR

“Dental Pulp Exposure/adverse effects”[Mesh]) OR (dental pulp)

#3 (((((“Dentinogenesis”[Mesh]) OR “Dentinogenesis/drug effects”[Mesh]) OR
“Dentinogenesis/physiology”[Mesh]) OR (dentinogenesis)) OR (tertiary dentin)) OR (dentin)

#4
(((((“Histological Techniques/analysis”[Mesh] OR “Histological

Techniques/diagnosis”[Mesh] OR “Histological Techniques/drug effects”[Mesh])) OR
(histologic)) OR (histology)) OR (histocytologic))

#5

((((((((pulp-capping agent[MeSH Terms]) OR ((((“mineral trioxide aggregate” [Supplementary
Concept]) OR “Calcium Compounds”[Mesh]) OR “Calcium Compounds/adverse

effects”[Mesh]) OR “Calcium Compounds/therapeutic use”[Mesh])) OR (MTA cement)) OR
(Aggregate ProRoot)) OR (Tricalcium Silicate)) OR (Biodentine)) OR (“accelerated Portland

cement” [Supplementary Concept])) OR (Portland cement)) OR (MTA)

#6 #1 AND #2 AND (#3 OR #4) AND #5 AND (English(Filter))

From the articles included for the review, only the part concerning the histological
evaluations following DPC on animal models was selected. Additionally, each study had to
involve the use of a pulp-capping agent that is a calcium-silicate-based material, regardless
of whether the material was used as a tested material or as a control material. Studies
reporting results of pulpotomies or indirect pulp capping were excluded.

3. Results

A total of 26 publications were included in this review. The studies were performed
on different experimental animals. We have included in our review 13 studies performed
on rats or mice (Table 2), 9 studies on dogs (Table 3), 3 studies on minipigs (Table 4) and
1 study on primates (Table 5). The number of animals included in studies varied from 2 to
45, while the number of teeth on which DPC was applied varied from 19 to 128. All studies
compared MTA with other pulp-capping agents, except for one study that compared
MTA with MTA enriched with calcium chloride [92], one that did not include MTA in the
materials tested [93] and one that did not have a comparison material for MTA [94]. In all
selected articles, the pulp chamber was opened by mechanical exposure, using different
shaped burs, files, probes or endodontic explorers. The cavities were prepared mainly
on maxillary molars, except for one study that performed DPC on incisors [95], two on
canines [96,97], one on anterior teeth [98], two on incisors, canines and premolars [92,99],
two on incisors, canines, premolars and molars [100,101], one on incisors and molars [102],
one on mandibular molars [103] and four did not provide this information [93,104–106].
The cavities performed on molars were primarily class I occlusal cavities, while for the
other categories of teeth, class V cavities were prepared mainly on the buccal surface.
The pulp exposure diameter varied from 0.4 mm to 1.5 mm, the majority being between
0.8 and 1 mm wide. Various restorative materials were used for cavity filling after the
placement of the DPC agent, such as self-curing glass-ionomer cement, light-cured glass-
ionomer cement, light-cured dental resin, flowable dental composite, zinc-eugenol oxide
intermediate restorative material or silver amalgam. Follow-up periods of time varied
among the included studies from a minimum of 7 days to up to 3 months. There were
11 studies [92,93,95,96,102,104,105,107–110] that had only one follow-up evaluation, 10
with two [97,98,100,101,106,111–115], 3 with three [99,103,116], 1 with four [117] and 1
with five [94] follow-up evaluations. After the animals were euthanized, the teeth were
histologically processed so that they could be analyzed under light microscopy.
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Table 2. Histological evaluation following DPC with calcium-silicate-based materials on rats/mice animal models.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Guerrero-Gironés, et al.,
2020 [107]

Melatonin
(5 mg, Sigma-Aldrich, St. Louis,

MA, USA)
MTA

(ProRoot MTA, Dentsply
Maillefer, Ballagues,

Switzerland)
MTA and melatonin

Melatonin + melatonin

Sprague
Dawley rats

First and secondary
maxillary molars

30 days follow-up

- All four groups of MTA, melatonin, MTA and melatonin and melatonin + melatonin
showed vital pulps with a regular odontoblastic layer, lack of necrosis and new
dentin bridge formation.

- Melatonin’s dentinogenetic effect was no significantly different from that of MTA.

Paula, et al., 2020 [103]

White ProRoot MTA
(Dentsply Tulsa Dental

Specialties, Tulsa, OK, USA)
Biodentine

(Septodont, France)
Positive control group:
Glass ionomer cement

(Ketac Fil Plus Aplicab, 3M
Espe, USA)

Negative control groups
(No intervention performed)

Wistar Hun rats First
mandibular molars

3 days follow-up

- Substantial amount of inflammatory cell infiltration was present in all groups, with
complete pulp tissue disorganization, loss of connective tissue density and increase
of calcium deposition in the MTA specimens.

- Biodentine specimens were characterized by the presence of mild inflammatory infiltrate.

7 days follow-up

- Matrix calcification was present in the Biodentine group with intense inflammatory
infiltrate and increased cell morphology disorganization.

- Slight inflammatory infiltrate and mineralized deposits with the maintenance of
the tissue morphology were present in the MTA samples.

21 days follow-up

- Pathological calcification and pulp tissue inflammatory cell infiltration, with dentin
bridge formation and increased disorganization of cell morphology of the odonto-
blasts adjacent to the exposure site were observed in MTA samples.

- Biodentine samples presented a normal structure under the dentin bridge, with the
maintenance of the monolayer of odontoblasts in the pulp periphery, except for the
exposure site.
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Table 2. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Hanada, et al., 2019 [117]

Bioactive glass cement *
(Nishika Canal Sealer

BG/NCS-BG; Nippon Shika
Yakunin, Yamaguchi, Japan),

NSY-222-S—modified
from NCS-BG,

WMTA
(WMTA ProRoot Dentsply, Tulsa

Dental, OK, USA)
CH

(Dycal, Dentsply Caulk
Milford, DE)

Wistar Rats Maxillary first
molars

1st day follow-up

- A mild inflammation and no dentin bridge formation were observed in all groups

4 days follow up

- Signs of slight pulp tissue inflammation were present and of a necrotic layer
covering the entire exposed pulp and no signs of new dentin deposition.

7 days follow-up

- A thin reparative dentin layer was present in all groups, and odontoblast-like cells
were distributed with mild inflammation.

14 days follow-up

- A thick reparative dentin with dentinal tubes was present, with mild inflammation
and a decreasing tendency of the necrotic layer.

- All tested materials had a similar response in new hard tissue deposition.

Trongkij, et al., 2019 [116]

White ProRoot MTA
(Dentsply Tulsa Dental

Specialties, Tulsa, OK, USA)
Bio-MA

(M-Dent/SCG,
Bangkok, Thailand)

Positive control group
(uncapped pulp exposure)
Negative control groups

(intact teeth)

Wistar rats Maxillary
first molars

First-day follow-up

- Regarding the inflammatory response, the two experimental materials had similar
behaviors, presenting mild to moderate pulp inflammation with local disruption
of the odontoblastic layer.

- A mild to moderate inflammatory response in the positive control group.
- No deposition of reparative dentin was present in any groups.

7 days follow-up

- Moderate to severe inflammatory pulpal response was present in the positive control group.
- Reduced inflammation in most specimens from both experimental groups with

moderate hard tissue deposition, as well as a newly formed mineralized matrix.

30 days follow-up

- Severe inflammatory response was present in the positive control group with moder-
ate hard tissue deposition with non-tubular structure.

- The presence of odontoblasts-like cells could be noticed under the newly deposited
hard tissue layer in the Bio-MA and MTA groups.

- Both MTA and Bio-MA induced hard tissue deposition, completely covering the
exposed areas, with more than 50% tubular structure and cell inclusion, with no
major differences between them in terms of quantity and quality of reparative
dentin deposition.

* All negative control groups displayed no inflammatory signs and intact odontoblastic
layer at all follow-up times.
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Table 2. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Trongkij, et al., 2018 [115]

White ProRoot MTA
(Dentsply Tulsa Dental

Specialties, Tulsa, OK, USA)
Bio-MA **

(M-Dent/SCG,
Bangkok, Thailand)

Positive control group
(pulp exposure without

capping material)
Negative control group

(intact teeth with
no preparation)

Wistar rats Maxillary
first molars

First-day follow-up

- Mild to moderate inflammatory signs in the positive, MTA and Bio-MA groups.
- Dental hard tissue deposition was absent in all groups.
- Local disruption of the odontoblastic layer in MTA, Bio-MA and positive

control groups.
- Intact odontoblastic layer and lack of inflammatory signs in the negative

control group.

7 days follow-up

- The presence of a newly formed mineralized matrix was observed, and deposition
of reparative dentin was present in some specimens from MTA and Bio-MA groups.

- Only one sample in both testing groups displayed a continuous dentin bridge.
- Diffused calcification below the exposure site in the positive control group.
- Intact odontoblastic layer and lack of inflammatory signs in the negative

control group.

Long, et al., 2017 [112]

MTA
(ProRoot MTA, Dentsply, Sirona,

Tulsa, OK)
Novel bioactive glass: ***
phosphate buffer solution

solely (BG-PB)
and

phosphate buffer solution in
addition with 1 wt.% sodium

alginate (BG-PB-SA)
Negative control group

No DPC was applied, the cavity
was sealed with a

glass-ionomer cement
(Fuji IX, GC International,

Tokyo, Japan)

Wistar rats Maxillary
first molars

One week

- Low inflammatory cell response was present in all experimental groups.
- The BG-PB-PA and MTA groups showed a slight layer of newly generated matrix,

while a mild hard tissue formation was observed in the BG-PB group.
- Necrosis was present in the control group, with no hard tissue deposition.

4 weeks

- No inflammatory response was observed in the majority of specimens, and only a
few mild inflammatory responses occurred in the testing groups.

- All testing groups showed heavy hard tissue deposition with regular tubular
patterns in the newly formed dentin bridge, except for two MTA samples, with
well-organized tubular dentin bridges.

- An incomplete dentin bridge was present in the control group.



Molecules 2021, 26, 2725 11 of 28

Table 2. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Liu, et al., 2015 [111]

iRoot BP Plus
Innovative BioCeramix,
Vancouver, BC, Canada)

MTA
(Dentsply, Tulsa Dental, Tulsa,

OK, USA)
Glass ionomer cement

(Control group)
(Fuji IX, GC International,

Tokyo, Japan)

Wistar rats Maxillary
first molars

1 week follow-up

- A similar inflammatory cell response was present in both iRoot BP Plus and
MTA groups.

- Regarding hard tissue deposition, all samples in the iRoot BP Plus group presented
a mild hard tissue deposition, while the MTA group revealed a slight layer of newly
generated matrix adjacent to the material in three-quarters of the specimens.

- Mild to moderate inflammatory signs in the control group.

4 weeks follow-up

- All iRoot BP Plus specimens and three-quarters of MTA specimens exhibited repar-
ative dentin bridge formation, with a tubular dentin structure and the newly
deposited dentin was connected to the primary dentin.

- All specimens from the control group showed necrosis.

Kim, et al., 2015 [108]

Endocem Zr
(Maruchi, Wonju, Korea)

MTA
(ProRoot, Dentsply, Tulsa Dental,

Tulsa, OK, USA)
Light-cured

glass-ionomer cement
(Control group)

(Fuji II LC, GC, Tokyo, Japan)

Wistar rats Maxillary
first molars

4 weeks follow-up

- Both Endocem Zr and MTA displayed reparative dentin with complete continuity
underneath the pulp-capping materials at four weeks post-treatment, with no
significant differences between the tested materials.

- No hard-tissue presence was found in the control group, where teeth were DPC
capped with a light-cured glassionomer

Lee, et al., 2014 [109]

α-tricalcium phosphate-based
(α-TCP; Mediclus,
Cheongju, Korea)

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)
Light-cured glass-ionomer

cement (control group)
(Fuji II LC; GC, Tokyo, Japan)

Wistar rats Maxillary
first molars

4 weeks follow-up

- Tertiary dentin with complete continuity was formed underneath the pulp-capping
agent in both testing groups. Odontoblasts-like cells were polarized and arranged
in a palisade pattern.

- No hard tissue deposition was found in the control group.
- There were no significant differences between the two tested groups (α-TCP

and MTA).
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Table 2. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Moazzami, et al.,
2014 [113]

Odontoblastic
differentiating material

(ODM) ****
MTA

(ProRoot MTA, Dentsply, Tulsa
Dental, Tulsa, OK, USA)

2 control groups: teeth DPC with
ODM without active ingredient

and with a light-cured
glass-ionomer cement (GC

International, Tokyo, Japan)

Sprague
Dawley

rats
Maxillary molars

2 weeks follow-up

- All specimens in the MTA group had vital pulps and, in some samples, mild
inflammatory responses were present.

- The ODM group presented a more intense inflammatory reaction, and only 80% of
the pulps were vital.

- Odontoblastic differentiation and reparative dentin formation were present in the
ODM and MTA groups.

- All specimens from both control groups were necrotic with no odontoblastic differ-
entiation or hard tissue deposition.

2 months follow-up

- Odontoblastic differentiation and reparative dentin deposition occurred in both
groups with a maximum mean thickness of the dentin in the ODM group, where
most of the pulps were vital, with partial necrosis beneath the capping site.

- A well-organized tubular dentin bridge with predentin and the odontoblastic layer
was present in MTA and ODM specimens on the floor of the pulp chambers.

Park, et al., 2014 [110]

Endocem
(Maruchi, Wonju, Korea)

MTA
(ProRoot, Dentsply, Tulsa Dental,

Tulsa, OK, USA)
Light-cured

glass-ionomer cement
Control group

(Fuji II LC, GC, Tokyo, Japan)

Rats Maxillary
first molars

4 weeks follow-up

- The histological evaluation showed tertiary dentin formation with complete conti-
nuity beneath the pulp-capping agent in both testing groups, with no inflammatory
or a mild inflammatory pulp tissue response.

- Odontoblasts-like cells were present and arranged in a palisade pattern.
- In the control group, there was no presence of tertiary dentin deposition.
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Table 2. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Kuratate, et al., 2008 [94]

WMTA
(white ProRoot MTA, Dentsply

Tulsa Dental, Tulsa, OK)
Negative control group

Rats Maxillary
first molars

1st day follow-up

- A thin necrotic layer and a few inflammatory cells at the exposure site were present.

3 days follow-up

- A slight to mild inflammation response was present.

5 days follow-up

- New matrix formation was present at the exposure site.

7 days follow-up

- A thin calcified bridge adjacent to the exposure site being observed in all samples.

14 days follow-up

- Dentin bridge formation with a tubular structure was present in all samples with
odontoblasts-like cells.

Simon, et al., 2008 [114]

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)
Light-cured resin

Control group
(Point4, Kerr Hawe,

Bioggio, Switzerland)

Mice Maxillary
first molars

2 weeks follow-up

- A line with a high affinity for histological dye following the material contour was
observed in the MTA group.

5 weeks follow-up

- Samples from the control group showed normal pulp tissue with no inflammatory
signs and lack of dentin bridge formation.

- New dentin bridge formation was present in all specimens from the MTA group,
and dentinal tubes with non-linear and interrupted trajectory could be observed in
the matrix of the dentin bridges of three specimens.

* Bioactive glass cement [117]—Composition: NCS-BG: Paste A: fatty acid, bismuth subcarbonate, silicon dioxide; Paste B: magnesium oxide, purified water, calcium-silicate glass, silicon dioxide and others.
NSY-222-S: Paste A: fatty acid, bismuth subcarbonate, silicon dioxide; Paste B: calcium oxide, purified water, calcium-silicate glass, silicon dioxide and others. ** Bio-MA [115]—Composition: calcium oxide,
silicon dioxide, aluminum oxide, bismuth oxide, purified water and calcium chloride. *** Novel bioactive glass: BG-PB and BG-PB-SA [112]—Composition: powder: bioactive glass (82.36% SiO2, 15.36% CaO,
and 2.28% P2O5); liquid: only phosphate buffer solution for BG-PB and phosphate buffer solution with the addition of 1 wt% sodium alginate for BG-PB-SA. **** ODM [113]—Composition: combination of active
ingredients: 1, 25-dihydroxy vitamin D3, β-glycerophosphate disodium salt hydrate and dexamethasone; Polymer blend: sodium carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 934.
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Table 3. Histological evaluation following DPC with calcium-silicate-based materials on dog animal model.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Zaen El-Din, et al.,
2020 [98]

MTA
(ProRoot White MTA,

Dentsply, Sirona)
Biodentine
(Septodont,

Saint-Maur-des-Fossés, France)
Nano-hydroxyapatite

(nHAP) *
CH

(Dycal, Dentply
Sirona Endodontics)

Dogs Anterior teeth

7 days follow-up

- In the CH, Biodentine and MTA groups, there were mild signs of pulp inflammation,
with partial pulp necrosis in some specimens and early signs of calcifications in
one-third of samples. Some specimens showed partial tissue necrosis.

- The nHAP group presented mild to none inflammatory pulpal tissue response, with
partial tissue necrosis or early signs of mineralization in some samples.

3 months follow-up

- Moderate inflammation was present in half samples of the CH group, while in
the MTA, Biodentine and nHAP groups, pulp inflammation was absent or mild
in two-thirds of the specimens, with tissue necrosis extended in some MTA and
Biodentine samples.

- Regarding hard tissue formation, in the MTA and Biodentine groups there were two-
thirds of specimens with complete calcified dentin bridge, in the CH group, there
were some samples with complete and more samples with interrupted calcified
dentin bridge.

- In the nHAP group, there were samples with both continuous and interrupted
dentin bridges and a few samples with scattered calcific formations.

Akhavan, et al., 2017 [99]

MTA (ProRoot MTA, Dentsply,
Sirona, Tulsa, OK),
Dentin adhesives:

Clearfil S3/CS3, Bond (Kuraray,
Osaka, Japan); Optibond
(FL/OBF, Kerr, Orange,

CA, USA);
Single Bond/SB, (3M, ESPE, MN,

USA); Clearfil SE/CSE Bond
(Kuraray, Tokyo, Japan)

CH
(Dycal, Dentsply, Germany)

Dogs
Premolars, canines,

first, second and
third incisors

7 days follow-up

- CSE and OBF induced necrosis in one, respectively two specimens, while SB and
CS3 induced the hard tissue deposition in two specimens.

- Inflammation was present in the OBF group in four samples, while SB induced
stimulated odontoblastic generation.

21 days follow-up

- Inflammation was present in 4 samples from the OBF group.
- SB stimulated odontoblastic layer formation in 4 samples.

63 days follow-up

- MTA specimens had the lowest inflammatory response, odontoblastic layer forma-
tion and the highest amount of hard tissue deposition.
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Table 3. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Negm, et al., 2017 [106]

MTA
(Endocem Maruchi, Korea)

Port Cal **
PC

with 20% bismuth oxide

Dogs N/A

3 weeks follow-up

- None of the three silicate-calcium-based materials presented new dentin bridge formation.
- Port Cal specimens exhibited a continuous odontoblastic layer same as PC with 20%

bismuth oxide group.
- MTA samples showed destruction of the odontoblastic layer near the exposure site

and some areas of superficial necrosis.

3 months follow-up

- All groups had partial and complete new dentin bridge formation with the presence
of a continuous odontoblastic layer.

- Port Cal specimens displayed partial and complete dentin bridge formation, contin-
uous odontoblastic layer and minimal inflammatory signs.

- The PC with 20% bismuth oxide specimens showed the highest inflammation cell
count, with complete or incomplete new dentin bridge formation.

- MTA samples exhibited the highest scores for dentin bridge formation with the
regularity of the pulp tissue architecture, with normal pulp and continuous odon-
toblastic layer.

Shi, et al., 2016 [95]

iRoot BP Plus
(Innovative BioCeramix,
Vancouver, BC, Canada)

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)

Beagle dogs
Maxillary and

mandibular
incisors

3 months follow-up

- Calcified bridge formation at the interface of pulp exposure could be observed in
most of the specimens from both groups, with regular or irregular dentinal tubes
pattern and dentin chips presence in some specimens.

- One MTA specimen had connective tissue in the dentin bridge.

Danesh, et al., 2012 [97]

BCAp ***
(biomimetic carbonated apatite)

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)

Beagle dogs Canines

7 days follow-up

- MTA and BCAp groups had all pulps vital.
- Some MTA samples with no complete dentin tissue formation.
- BCAp samples with neither complete nor incomplete hard tissue bridges formation,

with lateral deposition of hard tissue in 4 specimens.

70 days follow-up

- All pulps from both groups were vital.
- None of the specimens in the BCAp group presented new dentin bridge formation.
- 6 specimens from the MTA group six had complete or incomplete hard tissue

bridges, with mild or lack of pulp tissue inflammation. The bridges were thinly
composed of dentin or irregular hard tissue.
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Table 3. Cont.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Parirokh, et al., 2011 [92]

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)
MTA

With addition of
calcium chloride

Dogs
Lateral incisor,

canines and
premolars

2 months follow-up

- There were insignificant differences between the two groups, with no acute inflammation.
- Specimens capped with MTA with CaCl2 showed a higher chronic inflammatory

response and less completely calcified dentin bridge formation and inferior quality.

Asgary, et al., 2008 [96]

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)
CH

(Dycal, LD Caulk, Milford, DE)
NEC ****

(Novel endodontic cement)

Beagle dogs Canines

8 weeks follow-up

- The CH group presented all pulps vital, pulp necrosis in two specimens and no
complete calcified bridge formation.

- All samples from both MTA and NEC groups had vital pulps with no sign of
inflammatory response; complete dentin bridge formation was observed in 75% of
the specimens.

- The NEC group had a slightly better well-organized odontoblast-like cell layer and
a sufficient thickness of the dentinal bridge.

Briso, et al., 2006 [104]

MTA
(ProRoot MTA, Dentsply, Tulsa

Dental, Tulsa, OK, USA)
CH

(Reagen, Quimibras, Rio de
Janeiro, Brazil)

Mongrel dogs N/A

60 days follow-up

- In the MTA group, there were more specimens with complete and incomplete
dental bridge formation than in the CH group.

- There were fewer specimens in the MTA group with inflammatory cell response
and necrosis.

- The dentin bridge morphology was better in the MTA specimens with bridges
composed of dentin associated or not to areas of irregular hard tissue deposition.

- MTA specimens exhibited thicker hard tissue brides than CH.

Faraco and Holland,
2001 [105]

MTA
(Dentsply Tulsa, Tulsa,

OK, USA)
CH

(Dycal, L.D. Caulk, Milford, DE)

Dogs N/A

2 months follow-up

- MTA group had obviously better results than the CH group in terms of new hard
tissue formation.

- All MTA specimens exhibited hard tissue bridges with tubular dentin, while CH
specimens presented a lower number of the newly formed structures.

- The inflammatory pulp response was also better in the MTA group, while chronic
inflammatory response and severe neutrophilic infiltrate were present in several
cases in the CH group.

- Absence of inflammatory infiltrate and microorganisms in the MTA samples.

* nHAP [98]—Composition: nano-hydroxyapatite crystals. ** Port Cal [106]—Composition: PC with addition of 10% calcium hydroxide and 20% bismuth oxide. *** BCAp [97]—Composition: white MTA with a
sterile calcium- and magnesium-free phosphate-buffered saline solution for 40 days at 37 ◦C. **** NEC [96]—Composition: calcium hydroxide, calcium oxide, calcium phosphate, calcium sulfate, calcium silicate
and calcium carbonate.
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Table 4. Histological evaluation following DPC with calcium-silicate-based materials on pig animal model.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Li, et al., 2018 [100]

MTA
(ProRoot MTA, Dentsply, Sirona,

Tulsa, OK, USA),
TheraCal LC

(Bisco, Schaumburg, IL, USA)
TCS 50 *

Gottingen
minipigs

Incisors, canines,
premolars
and molars

7 days follow-up

- Regarding the inflammatory response, all three materials showed similar behavior.
- TCS50 presented a well-organized exposed pulp tissue, with no inflammatory signs

in the deeper pulp area and a normal odontoblastic layer.
- No hard tissue deposition was observed in any of the groups.

70 days follow-up

- The specimens from all groups did not show inflammatory pulp reactions.
- All three materials induced the formation of a complete mineralized tissue, with

the highest thickness in the case of TCS 50.
- In the MTA group, the matrix had a tubular structure with calcifications entrapped

in the matrix.
- In some samples from the TheraCal LC group, necrotic pulp tissue and a blood clot

were present underneath the exposure site, but the deeper area of the reparative
dentin presented continuous tubes.

Tziafa, et al., 2014 [101]

Biodentine
Experimental group

(Septodont,
Saint-Maur-des-Fossés, France)

MTA
Control group

(Angelus, Londrina, PR, Brazil)

Miniature
swine pigs

Incisors, canines,
premolars, molars

3 weeks follow-up

- None of the two biomaterials showed a mature bridge formation.

8 weeks follow-up

- Reactionary dentin formation around the exposure site associated with the newly
formed matrix.

- Both test groups presented a mineralized matrix formation in the form of a complete
hard tissue bridge, with no detectable inflammatory responses or pulp necrosis.

Shayegan, et al.,
2009 [102]

Beta-tricalcium phosphate
(beta-TCP)

(RTR, Septodont)
White MTA

(Dentsply, DeTrey GmbH)
White PC

(Cantillana, Belgium)
CH

(Dentsply, DeTrey GmbH)

Pigs
Incisors,

maxillary and
mandibular molars

3 weeks follow-up

- All beta-TCP specimens presented new dentin bridge formation with a normal
histological pulp pattern and odontoblastic layer.

- All WMTA samples displayed complete thin calcified bridges with normal pulp
tissue and lack of inflammatory response.

- All specimens of the white-PC groups showed normal pulp architecture and com-
plete calcified bridge formation.

- In the CH group, one sample had moderate incomplete new dentin bridge formation,
while the others presented complete calcified new dentin bridge formation.

- There were no significant differences between the four groups in terms of inflam-
matory response and hard tissue deposition.

* TCS 50 [100]—Composition: Powder: 50 wt.% tricalcium silicate and 50 wt.% zirconium oxide; Liquid: calcium chloride.
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Table 5. Histological evaluation following DPC with calcium-silicate-based materials on primate animal model.

Publication. DPC Agent Animal Type Teeth Type Histological Evaluation

Cannon, et al., 2014 [93]

TheraCal LC
(Bisco, Schaumburg, IL, USA)

Pure PC with 2%
Chlorhexidine solution,
Glass ionomer cement

(Triage, Fuji VII, GC, USA)
CH

(Dycal, Dentsply)

Primate
(Capucin

Cebus Opella)

3 teeth in each
quadrant

4 weeks follow-up

- Only one sample in the TheraCal LC group lacked the deposition of hard tissue,
most likely due to pulp necrosis.

- A mixed result regarding the inflammatory response was present in all groups.
- The newly formed dentin bridge had the highest average depth in the TheraCal

LC group, followed by the PC, glass-ionomer cement and CH groups.
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The histological evaluation of the dental pulp and of the new dental hard tissue
formation, subsequent to the action of the DPC agent, was performed by the authors by
scoring the following criteria: inflammatory cell infiltrate, pulp tissue disorganization,
reparative dentin formation, quality of reparative dentin, defective area or cell inclusion,
the impact of dentin fragments (dentin chips) into the pulp (Figure 2). Detailed results of the
eligible studies are presented in Tables 2–5, including histological evaluations, along with
the type of DPC materials used, the animals and the teeth on which DPC was performed.
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4. Discussions

The main purpose of DPC is to maintain the full integrity of the pulpal tissue in
different pathological exposure conditions. An ideal DPC material should not induce
inflammatory pulpal reactions, which may lead to necrosis, and should provide a quality
repair dentin at the level of the exposure site [118]. Calcium-silicate-based materials have
good efficacy on dental pulp when used as DPC agents [119].

MTA’s novelty was represented by the setting reaction that could occur in an aqueous
environment. Following the setting reaction, calcium oxide converts into CH and calcium
ions are released, stimulating cell adhesion and proliferation and leading to an increase
of the pH, which offers antibacterial activity [120]. MTA can induce and stimulate cells to
form hard tissue deposition and promote mineralization [121]. MTA’s ability to release
calcium ions can induce dental pulp stem proliferation [122]. MTA showed a relatively
fast pulp response by deposition of newly formed hard tissue, with slight signs of pulp
inflammation [94].

CH was considered a gold standard pulp-tissue-regenerating material due to its
biocompatibility, highly alkaline pH, bactericidal effect and capability to induce tertiary
dentin formation [123]. Furthermore, CH had high clinical success as DPC material,
documented in studies that followed patients for more than 10 years [124]. However, due
to its high alkalinity, it also induces necrosis and inflammatory pulp responses [38]. Other
disadvantages are its high solubility [125] and its lack of adherence to hard tissues, failing
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to offer an optimal seal, although, by the time of its full dissolution, the dentin bridge seems
to be fully formed [126]. There is also stated that the dentin bridge induced by CH presents
“tunnel defects” [40]; however, there is data that shows that the aspect of these defects
improved with the thickening of the dentin bridge [127]. Light-cured CH has a better
success rate than conventional CH because it is less subject to the process of hydrolysis of
CH in the presence of moisture [128]. MTA has a higher clinical success rate than CH [98]
and can induce the formation of much thicker dentin bridges [105,129]. However, in a
clinical study on human vital teeth, performing indirect pulp capping with MTA and
CH, similar behavior of the two materials was observed after clinical and radiological
assessment, for 24 months [130].

Conventionally, it was believed that CH irritates the pulp due to its alkaline pH and
stimulated tertiary dentin deposition [131]. CH and MTA have similar mechanisms of ac-
tion based on calcium oxide, which reacts to carbon dioxide in tissues. Calcite granulations
are formed, and fibronectin accumulates to the site, favoring cellular migration, prolifer-
ation, adhesion and differentiation [132], which leads to hard tissue formation [133,134].
During this process, bioactive molecules are released, Bone Morphogenic Protein (BMP)
and Transforming Growth Factor-Beta One (TBF-β1), which mediate pulp regeneration
and are incorporated in the dentin matrix during dentinogenesis [131,135–137].

The studies we have included in this review showed that animals pulp capped with
MTA showed more frequently complete formation of new dentin bridges, with tubular
structures, superior morphology and a lower rate of pulpal inflammation and necrosis,
when compared to CH [96,99,102,104,105,117]. Even though MTA is more expensive than
CH [3], it may be more cost-effective due to its stable clinical results over time, compared
to CH, which requires future costly reinterventions [138].

Some authors tested modified MTA cements by incorporating different additives in
order to improve their physical and biological performances; however, the results we have
collected do not entirely support this supposition, especially concerning histological results.
The addition of calcium chloride or amorphous calcium lactate gluconate-based liquid
accelerated the setting reaction and improved handling, while the addition of propylene
glycol provided a higher pH, with antibacterial effect [139], better flowability and increased
calcium release [140]. There were no significant differences concerning acute inflammation
between MTA with or without calcium chloride as DPC agents; however, MTA with calcium
chloride showed a higher chronic inflammatory response, and the quality of the dentin
bridge was inferior [92]. MTA modified with melatonin, a highly lipophilic hormone,
which acts as a circadian rhythm regulator and anti-inflammatory agent [141], showed no
significant differences regarding hard tissue deposition and pulp inflammatory response
when compared to conventional MTA [107].

PC, with a similar composition as MTA [142,143], can be modified to achieve better
performance through the addition of 20% bismuth oxide for radiopacity [106], the addition
of antibacterial agents such as 2% chlorhexidine solution [93], calcium chloride to accelerate
the setting reaction by increasing the hydration reaction and methylcellulose to avoid early
washout following its application to the dentin [144]. PC cement is biocompatible and
favors cellular attachment and growth [145]. PC can be considered as a low-cost substitute
to MTA [146]. When PC with 20% bismuth oxide addition was compared to MTA and
Port Cal (a material obtained from PC with 20% bismuth oxide and 10% CH powder
added in the mixture), MTA had the best histological outcome followed by Port Cal,
while PC had the highest inflammatory cell count. Although similar in composition,
MTA’s fine and homogeneous particles’ content, as opposed to PC, offer this material
its better neodentinogenetic characteristics [147], while the addition of CH in Port Cal
may be the reason for less hard dentinal tissue deposition, due to its weaker and porous
composition [106,147].

TheraCal LC, a hybrid DPC agent, induced dentinal hard tissue deposition at the
level of exposure site with low inflammatory cell response [93,100]. This is due to the
formation of CH following the hydration reaction, which created the premise of a high
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pH with antibacterial activity and the formation of calcium ions that induced morpho-
differentiation and proliferation of odontoblast-like cells at the level of pulp exposure
site [148]. Even though TheraCal LC contains resin in its composition, and there is a risk
of remaining unpolymerized resin monomers, it has good biocompatibility compared to
CH [149]. However, one study indicated that after 72 h, TheraCal LC showed a decrease in
the percentage of cell viability, similar to CH [150]. Another study reported a lack of dentin
bridge formation, probably due to pulp necrosis [93], and also the presence of necrotic pulp
tissue and blood cloth underneath the exposure site at 70 days follow-up [100].

Biodentine and MTA had a similar effect concerning new dentin bridge formation
capacity and induced fewer inflammatory signs when applied on human dental pulps
following iatrogenic pulp exposure [151]. These aspects may be due to the fact that Bio-
dentine induces odontoblastic differentiation from human dental pulp stem cells [152] and
shows better biocompatibility and bioactivity than MTA and TheraCal LC [153]. The results
related to Biodentine revealed that this material could induce thicker dentinal bridges
than MTA and nHap, a nano-hydroxyapatite material [98], and a lower inflammatory pulp
response [101].

iRoot BP Plus showed a slightly more favorable result as all specimens generated new
dentinal tissue when compared to MTA [154]. In terms of bio-efficiency, both iRoot BP Plus
and MTA had a similar effect on the dental pulps, leading to the deposition of a dentin
structure with regular or irregular dentinal tubes pattern [155]. This aspect is mainly due
to the ability of iRoot BP Plus to form apatite structures [82].

Bioactive glass materials [117] induced the formation of new dentin bridge formation
one month after application, with low signs of pulpal inflammation and hard tissue
deposition [112]. New endodontic cement (NEC) that contains several calcium compounds
showed better results than MTA but without major differences. NEC specimens had a better
organized odontoblastic layer with thick dentin bridges and a lack of pulp inflammation
signs [96]. Nano-hydroxyapatite-based materials [98], Endocem, a fast-setting calcium-
silicate-based cement containing zirconium oxide [108,110], ß-tricalcium phosphate [78], α-
tricalcium phosphate-based materials [109] or Bio-MA [115,116] showed similar favorable
pulp responses when compared to MTA.

Different materials such as dentin adhesives [99], light-cured resins [114], light-cured
glass-ionomer cement [109], odontoblastic differentiating material [113] or biomimetic
carbonated apatite [97] have been tested in an attempt to come up with new pulp-capping
agents. In most cases, when compared to MTA, these materials showed less favorable
results in terms of pulp inflammatory response and hard tissue deposition. New dentin
bridge formation occurred in every specimen of the MTA group, while in the group with
polymeric-based materials, there was no hard tissue deposition, even if the pulp tissue
lacked any signs of inflammation [114] or, as shown in other studies, adhesive materials
only induced formation in a few samples, and in several, there was inflammation and pulp
necrosis [112]. Light-cured resin-based materials, such as restorative materials and dentin
bonding agents, can induce pulpal adverse reactions due to the remaining incompletely
polymerized monomer that may diffuse into the dental pulp and induce cell death [156] and
to the shrinkage following the polymerization reaction that favors micro-infiltration [145].
Controversially, DPC with dentin adhesives on children’s permanent teeth showed a
beneficial effect without signs of pulpal inflammation or necrosis and with a low failure
rate [157], and in teeth pulp capped with a glutaraldehyde-based dentin-adhesive system,
the results were favorable over a period of 6 months [158].

Summarizing, our results show that immediately after DPC, there is a substantial
acute inflammatory response [103] underneath the pulp exposure, that tends to intensify
over the next period of time and starts to diminish gradually afterwards [102,112], so as to
become absent after one month following the intervention [96,97,100,101,110]. The lowest
inflammation response was present in MTA samples and bioceramic materials, while CH
samples showed a moderate response, and resin-based materials showed more persistent
responses. The inflammatory process is beneficial and necessary for pulp healing and
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dental bridge deposition, as long as it is limited and does not lead to extensive necrosis
and cell apoptosis [159]. Partial necrosis beneath the capping site was observed since the
1st day of follow-up [94], and the area extended in the next period [98]. Superficial necrosis
was associated with the destruction of the odontoblastic cell layer [106] at 3 weeks after
the intervention. At approximately 3 to 4 weeks, the odontoblast-like cells were present
and organized in a palisade pattern underneath the injury site [110,116]. Additionally,
disorganization of cell morphology adjacent to exposure site was observed at 3 weeks
follow-up [103], but they became better organized within the following month [96]. Lack
of necrosis was reported from the 30th day [101,107] and was associated with a continuous
odontoblastic layer at 3 months follow-up [106]. Irrespective of the pulp-capping agent,
during the first days following DPC, there were no signs of mineralized tissue at the
exposure site. Only after 7 days, a newly formed mineralized matrix was observed, espe-
cially in MTA and Biodentine samples [103,112,115]. A dentinal tubular structure showed
up during the 2nd week of follow-up [94], and by the 4th week, a heavier hard tissue
deposition was observed, with both regular and irregular tubular patterns [93,100,112,114],
that connected to the primary dentin [111]. Complete hard tissue bridge was reported
in few studies, only in those that had longer follow-up periods [95,102]. The use of most
resin-based materials, glass-ionomers and BCAp was not associated with signs of dental
bridge formation [97,108–110], while CH had fewer spectacular results, as compared to
MTA or bioceramic materials [104–106].

A possible limitation of our study is that we performed the search only in PubMed
(Medline) database, and we excluded articles published in other languages than English.
The results were heterogeneous, and a methodological inconsistency was observed through-
out the included publications, concerning the animal model used, the pulp-capping agents,
the follow-up periods and the outcomes assessed. Additionally, the evaluation criteria also
made it difficult to perform a more concise analysis of the extracted data.

5. Conclusions

From in vivo experiments on animal models, it can be clearly seen that MTA remains
the most commonly used and optimum DPC agent for vital pulp therapy, either as a
material in the test group or as a reference material. MTA has taken over the gold standard
from CH cements, remaining today a reference standard in this group of pulp-capping
materials due to its properties in terms of biocompatibility, stimulation of odontoblasts,
differentiation and proliferation of dental pulp cells in order to produce tertiary dentin,
as shown on molecular and histological levels. As far as histological findings revealed,
resin-based materials seem to be less suitable materials for pulp capping. More recently
developed materials, such as bioceramic materials derived from MTA, show similar results
and even surpass the ones already grounded for MTA. However, due to the diversity
of animal models/teeth, type of pulp exposure, and DPC conditions, the translational
success rate for some of the calcium-silicate cements might cover a wide range in human
permanent/temporary teeth.
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