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Abstract

Aims/hypothesis Insulin controls glucose metabolism via
multiple signalling pathways, including the phosphatidyli-
nositol 3-kinase (PI3K) pathway in muscle and adipose
tissue. The protein/lipid phosphatase Pten (phosphatase and
tensin homologue deleted on chromosome 10) attenuates
PI3K signalling by dephosphorylating the phosphatidyli-
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nositol 3,4,5-trisphosphate generated by PI3K. The current
study was aimed at investigating the effect of haploinsuffi-
ciency for Pten on insulin-stimulated glucose uptake.
Materials and methods Insulin sensitivity in Pten hetero-
zygous (Pten””) mice was investigated in i.p. insulin
challenge and glucose tolerance tests. Glucose uptake was
monitored in vitro in primary cultures of myocytes from
Pten™"” mice, and in vivo by positron emission tomography.
The phosphorylation status of protein kinase B (PKB/Akt),
a downstream signalling protein in the PI3K pathway, and
glycogen synthase kinase 33 (GSK3f), a substrate of PKB/
Akt, was determined by western immunoblotting.

Results Following i.p. insulin challenge, blood glucose
levels in Pten”” mice remained depressed for up to
120 min, whereas glucose levels in wild-type mice began
to recover after approximately 30 min. After glucose
challenge, blood glucose returned to normal about twice
as rapidly in Pren"” mice. Enhanced glucose uptake was
observed both in Pren”” myocytes and in skeletal muscle
of Pten*"” mice by PET. PKB and GSK3 [ phosphorylation
was enhanced and prolonged in Pten”” myocytes.
Conclusions/interpretation Pten is a key negative regulator
of insulin-stimulated glucose uptake in vitro and in vivo.
The partial reduction of Pten due to Pten haploinsufficiency
is enough to elicit enhanced insulin sensitivity and glucose
tolerance in Pten™ mice.

Keywords Glucose uptake - Insulin hypersensitivity -
Insulin sensitivity - Pten haploinsufficiency

Abbreviations

"EDG  2-['®F]fluoro-2-deoxyglucose
GSK3  glycogen synthase kinase 3
PET positron emission tomography
PI3K  phosphatidylinositol 3-kinase
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PIP; phosphatidylinositol 3,4,5-trisphosphate

PKB protein kinase B

Pten phosphatase and tensin homologue

SHIP2 SH2-containing inositol 5’-phosphatase 2 (also
known as INPP5D)

Introduction

Type 2 diabetes mellitus is a multifactorial disease with a
complex pathophysiology that includes defects in insulin
production and a failure in peripheral tissues to take up
glucose in response to insulin. Signalling via phosphatidy-
linositol 3-kinase (PI3K) is a key pathway in the regulation
of glucose uptake by insulin [1]. Activation of PI3K via
insulin receptor substrate-1 causes PI3K to phosphorylate
inositol-containing phospholipids at the 3'-position of the
inositol ring, increasing the levels of the lipid messenger
phosphatidylinositol 3,4,5-trisphosphate (PIP;), among
others. PIP; activate a phosphoinositide kinases, which in
turn phosphorylate and activate protein kinase B (PKB),
also known as Akt, a key effector kinase for many of the
downstream metabolic effects initiated by insulin via PI3K.
The phosphatase and tensin homologue (PTEN) is a
phosphatase which recognises both protein and lipid
substrates. As a lipid phosphatase, PTEN dephosphorylates
PIP; at the 3’-position of the inositol ring, thereby acting as
an antagonist to PI3K signalling [2, 3]. PTEN was
originally identified as a tumour suppressor gene, and is
one of the most commonly mutated genes in human cancer
[4-6]. Mutation or deletion of PTEN has been identified in
many cancers including prostate, brain, breast, endometri-
um and skin [4-8].

As many of the metabolic outcomes of insulin are
achieved through recruitment of PI3K and the subsequent
rise in PIP; levels, PTEN may have a critical role in
modulating sensitivity to insulin-stimulated glucose uptake.
Recent studies in which Pfen was ablated specifically in
liver, adipose tissue and muscle in mice by Cre recombi-
nase-based strategies have shown a role for Pten in the
regulation of insulin sensitivity in those organs, and
highlighted the contributions of those organs to glucose
homeostasis of the whole animal [9-11]. However, the
effect of global reduction of Pten levels on glucose uptake
and metabolism has not yet been shown in an in vivo
mouse model. Unfortunately, experimental genetic inacti-
vation of both Pten alleles (Pten ") results in early
embryonic lethality [6, 12]. Thus mice harbouring inacti-
vation of one Pten allele (haploinsufficiency, Pren™") are
an important experimental model for studying the role of
Pten in vivo. Haploinsufficiency for Pfen has important
consequences for cell proliferation and tumorigenesis in
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mice [6, 12—14]. Pten™"” mice exhibit defective apoptosis in
T cells, B cells and macrophages and spontaneous neo-
plasms in various tissues including prostate, liver, endome-
trium and others [12-14]. Here we show that Pten
haploinsufficiency results in insulin hypersensitivity and
enhanced insulin-mediated glucose uptake.

Materials and methods

Experimental animals All laboratory animals were cared
for and used according to guidelines of the Canadian
Council on Animal Care. Pten”” mice were generated by
R. Parsons [12]. These mice were backcrossed with
C57BL6 mice for more than ten generations. The genotypes
of the mice were determined as described [12].

Blood glucose determination For determination of blood
glucose levels, glucose levels in blood samples taken from
tail vein were determined using a One Touch Ultra blood
glucose monitor (LifeScan Inc., Milpitas, CA, USA). For
the glucose tolerance test, mice were fasted overnight (15 h)
prior to i.p. injection of glucose (2 mg/g body weight).
Blood glucose levels were then determined at the indicated
time-points following glucose injection. For the insulin
challenge test, mice were fasted for 15 h prior to i.p.
injection of 0.6 mU insulin/g body weight. Blood glucose
levels were then determined at the indicated time-points
following insulin injection.

Determination of insulin in plasma Mice were fasted for
15 h, then approximately 100 pl of blood was collected
from the tail vein using pipette tips precoated with heparin.
The mice were then injected i.p. with 2 mg glucose/g body
weight, and a second blood sample was obtained 15 min
following injection. The blood samples were centrifuged at
805 g in a table-top centrifuge, and insulin in the plasma
fraction was determined using an insulin ELISA system
(ALPCO Diagnostics, Salem, NH, USA) according to the
manufacturer’s instructions.

Isolation of pancreatic islets and glucose-stimulated insulin
release Islets were isolated from pancreata of mice as
described [15]. Pancreata from three mice were pooled.
After 24 h in culture, islets were preincubated in Krebs—
Ringer bicarbonate buffer plus 0.1% BSA (KRBB-BSA)
and 1.67 mmol/l glucose. The islet cells were incubated for
1 h in 1 ml KRBB-BSA containing the desired concentra-
tion of glucose (1.67 or 16.7 mmol/l). The incubation
medium was then collected, and centrifuged and the
supernatant fractions were used for assay of insulin content
by ELISA. Total extractable insulin in islets was deter-
mined by adding 0.5 ml lysis buffer (1 mol/l acetic acid
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with 0.1% BSA) to the islet pellet. Cell debris was pelleted
by centrifugation, and the supernatant fraction was used for
insulin assay.

Fluorescent immunohistochemistry of pancreatic islets
Immunocytochemistry has been described [16]. Pancreata
from wild-type and Pten”” mice were embedded in
paraffin. Five-micron sections were incubated for 1 h at
room temperature with guinea-pig anti-insulin antibody
(1:100 dilution; Dako, Mississagua, ON, Canada) and
rabbit anti-glucagon antibody (Dako; 1:75 dilution). Sec-
tions were visualised by incubation with Alexa—Fluor 488
goat anti-guinea-pig (Invitrogen, Molecular Probes, Bur-
lington, ON, Canada; 1:100 dilution) and Texas Red
donkey anti-rabbit antibodies (Jackson ImmunoResearch
Laboratories, West Grove, PA, USA; 1:100 dilution).
Sections were examined by fluorescence microscopy.

Beta cell mass calculation Following insulin immunostain-
ing, pancreatic sections were captured under an FITC filter
using a Zeiss Axioplan 2 microscope equipped for
epifluorescence and Pathvysion imaging software. The
insulin immunopositive area (as a proportion of pancreatic
area) was determined in at least six fields per section using
Zeiss AxioVision software, performed on eight pancreatic
sections per mouse. Beta cell mass was calculated as
pancreatic mass times the percent beta cell area for each
mouse.

2-["8F]fluoro-2-deoxyglucose uptake and microPET
scanning Mice were fasted for 15 h prior to i.p. injection
with 0.6 mU insulin/g body weight. Twenty minutes after
insulin injection, mice were injected with 2-['*F]fluoro-2-
deoxyglucose ('*FDG) (4.1 MBq) via the tail vein, and
whole-body distribution of '"FDG was monitored by
positron emission tomography (PET) using a microPET
R4 tomograph (Concorde Microsystems, Knoxville, TN,
USA). The image data were attenuation-corrected using a
%8Ge rod source. Wild-type and Pren”” mice were
positioned side-by-side and scanned simultaneously for
60 min after "*FDG injection. Data were analysed using the
manufacturer’s software, ASIPro VM 5.0.1.0. For data
analysis, regions of interest (ROIs) were specified in the
coronal section of a hindlimb for each mouse. The "*FDG
activities in each ROI were summed across all coronal
planes, and expressed as a proportion of '*FDG in the
whole mouse (total '*FDG activity was also taken as the
sum of activity across coronal planes).

Primary myocyte culture Primary myocytes were cultured
from fore- and hindlimbs from wild-type and Pren™ mice
according to a protocol adapted from Springer et al. [17].
Skeletal muscle was excised and minced and then incubated

at 37°C for 2 h with 2.4 units/ml dispase II. Dispase
digestion was halted by addition of 10 ml F-10-based
myocyte medium (400 ml F-10 nutrient mixture, 100 ml
fetal bovine serum, 25 pg basic fibroblast growth factor,
penicillin/streptomycin). The tissue slurry was then strained
through a fine metal mesh and centrifuged at 500 g for
5 min. The supernatant fraction was removed to a fresh
centrifuge tube and the pellet was resuspended and plated
to a 5-cm collagen-coated culture dish in a total of 4 ml
F-10-based medium. The supernatant fraction was re-
centrifuged and the pellet was pooled with the first. The
cells were passaged when they reached 70-80% conflu-
ence. To enrich for myocytes, the old medium was
removed by aspiration, the cells washed with PBS, then
incubated in a film of this buffer for 15 min. Myocytes
were loosened from the dish by striking the dish several
times sharply on the bench top. Cells were washed from
the dish with PBS. The PBS incubation was repeated and
the cells were pooled. Cells kept in culture for more than
5-6 days began to exhibit the elongated morphology
typical of myotubes [18]. Cells in these older cultures also
exhibited spontaneous twitching. All experiments were
performed with cells on days 2-3 of culture.

2-Deoxy[°H]glucose uptake Experiments were performed
on wild-type or Pren"” cells from passage two to eight,
grown on 24-well (1-cm diameter wells) plates. Cells were
preincubated in serum-free medium for 12 h prior to
experiments. The cells were washed twice with HEPES-
buffered saline (140 mmol/l NaCl, 20 mmol/l HEPES,
2.5 mmol/l MgSO,, 1 mmol/l CaCl,, 5 mmol/l KCI, pH
7.4), then incubated with 10 pumol/l 2-deoxy[*H]glucose
(0.037 MBg/ml) for 5, 10, 20 or 30 min, in the absence or
presence of 0.1 umol/l insulin. At the end of the incubation
period, the radioactive substrate was removed, and the cells
were washed three times with ice-cold 20 mmol/l glucose.
Cells were lysed with 0.2 ml 2% SDS, and the lysates were
used for scintillation counting. Non-specific diffusion of 2-
deoxy[*H]glucose was determined by incubating cells in
the presence of 2-deoxy[*H]glucose and 10 umol/l cytocha-
lasin B, a specific inhibitor of glucose uptake [19].

Determination of cell-surface GLUTI and GLUT4 levels
Primary myocytes were grown in 10-cm culture dishes. The
cells were rinsed with PBS, and incubated with 0.5 mg/ml
sulpho-NHS-LC-biotin (Pierce Biotechnology, Rockford,
IL, USA) in PBS for 20 min. Cells are impermeable to this
reagent and it labels the amine groups of cell-surface
proteins. Following the incubation, the cells were washed
three times with PBS, then lysed with 0.5 ml lysis buffer
(1% NP-40, 150 mmol/l NaCl, 50 mmol/l Tris pH 7.5,
including protease and phosphatase inhibitors). Protein was
quantified with a BCA protein assay kit (Pierce). Strepta-
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Table 1 Blood glucose levels in wild-type and Pren”™” mice during ad
libitum feeding and after a 15-h fast

Mean blood glucose+SD p value (independent

(mmol/1) Student’s ¢ test)
Wild-type Pten'””

Ad libitum 7.1£0.4 6.3+0.2 0.006

feeding (n=5) (n=4)

Fasting 6.5+0.3 5.8+0.3 0.008
(n=5) (n=5)

vidin-agarose beads (Pierce) were pre-blocked by incuba-
tion with 2% BSA in lysis buffer. Each sample (1.2 mg
protein) was incubated with the streptavidin beads (100 pl,
50% bead slurry) for 1 h at room temperature. The beads
were washed five times, for 30—60 min each wash, using
lysis buffer containing 0.1% SDS. After the final wash,
50 ul SDS sample-loading buffer were added, and heated at
95°C for 10 min, then vortexed to elute the biotinylated
proteins. The proteins in the supernatant fractions were
analysed by SDS-PAGE, then transferred to nitrocellulose.
Proteins were probed using polyclonal antibodies against
GLUT1 and GLUT4 (also known as SCLA2A1 and
SCLA2AA4, respectively).

Western immunoblotting for PKB, phospho-PKB and
phospho-glycogen synthase kinase 3 (GSK3)-o/3 Total
protein extracts of primary myocytes were prepared by
lysing cells in NP-40-based lysis buffer. Thirty to fifty
micrograms of protein per sample were analysed by SDS-
PAGE, then transferred to nitrocellulose. Rabbit polyclonal
anti-PKB, anti-phospho-PKB (Ser473) and anti-phospho-
GSK3-a/f (Ser21/9) antibodies were obtained from Cell
Signaling Technology (Beverly, MA, USA). Mouse mono-
clonal anti-vinculin antibody was obtained from Sigma (St
Louis, MO, USA). Horseradish peroxidase-conjugated sec-
ondary antibodies were obtained from Dako. Protein bands
were visualised using an enhanced chemiluminescence
system and autoradiography by exposure to X-ray film.

Statistical analysis Statistical analysis was performed using
Student’s ¢ test. Significance was assessed at the 95%
confidence level.

Results

As glucose metabolism may be altered due to a change in
insulin sensitivity in Pfen™"” mice, blood glucose levels in
wild-type and Pfen™ mice were determined. Slight but
statistically significant hypoglycaemia was observed in
Pten”” mice during ad libitum feeding (11.3% lower blood
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glucose in Pten”” mice) (Table 1). Fasting caused a drop in
glucose levels in both groups, with slight but significant
hypoglycaemia in the Pren” group (10.8% lower blood
glucose) relative to wild-type mice. An insulin challenge
test revealed hypersensitivity to insulin in Pren”  mice
(Fig. la). Following i.p. insulin injection (0.6 mU/g body
weight), blood glucose levels in Pren”” mice remained
depressed at all time-points measured (up to 120 min). In
contrast, wild-type mice started to recover after 30 min, and
glucose levels returned to fasting levels 120 min after
injection. A glucose tolerance test showed that Pren” mice
had greater glucose tolerance than wild-type mice (Fig. 1b).
After i.p. glucose injection, blood glucose levels in Pren'”
mice returned to fasting levels in less than 60 min,
approximately twice as rapidly as in wild-type mice.

a
14
12
3 104
<3 10
E
2 8-
[e]
(53
=2
[S
el
o}
k]
m 4 4
24
0 T T T T T T T 1
0 20 40 60 80 100 120 140
Time (min)
b
25 4
20 1
3
£
~ 15 -
[
173
o
o
2
.g’ 10 4
o
[
5 B
0 T T T T T T T 1
0 20 40 60 80 100 120 140
Time (min)

Fig. 1 Insulin hypersensitivity in Pfen™ mice. a Insulin challenge
test. Mice were fasted for 15 h prior to ip. injection of insulin
(0.6 mU/g body weight). Blood glucose levels were determined at the
indicated times. Means=SEM for six wild-type mice (white circles)
and six Pten”” mice (black circles). b Glucose tolerance test. Mice
were fasted for 15 h prior to i.p. injection of glucose at 2 mg/g body
weight. Means=SEM for six wild-type mice (white circles) and seven
Pten”” mice (black circles)
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Table 2 Plasma insulin levels in wild-type and Pren”  mice after
fasting, and 15 min after i.p. glucose administration (2 mg glucose/g
body weight)

Mean plasma insulin+SD p value (independent

(ng/ml) Student’s 7 test)
Wild-type Pten™~
(n=7) (n=6)
Fasting 0.50+0.04 0.36+0.10  0.05
Post-glucose  1.8+0.5 24+0.4 >0.05 (not significant)
challenge

The observed difference in ability to normalise blood
glucose levels could be due to differences in insulin
sensitivity or islet function and insulin production. We
therefore investigated insulin levels in the mice, as well as
properties of pancreatic cell morphology and function.
Fasting plasma insulin levels were slightly but significantly
lower in Pten'”” mice (Table 2), which is consistent with
increased peripheral insulin sensitivity. Fifteen minutes
after i.p. glucose administration (2 mg glucose/g body
weight), similar increases in plasma insulin were observed
in the two groups (Table 2), suggesting that there is no
marked difference in insulin production in the Pren"’ mice.
Insulin released from islets isolated from Pren"" and Pren”
" mice was also examined. Islets were cultured as described
in Materials and methods, and incubated in the presence of
low (1.67 mmol/l) or high (16.7 mmol/l) glucose. Insulin
released into the medium was determined by ELISA and
calculated as percentage of total insulin content in the islets.
Per cent of total insulin release (presented as mean valuet
SD) was similar under conditions of low glucose (Pren*",
3.3+0.4% vs Pten””, 2.8+£0.3%; p>0.05 no significant
difference, n=3 per group) and high glucose (Pten’*, 4.2+
0.7% vs Pten"", 3.7£0.2%; p>0.05 no significant differ-
ence, n=3 per group).

Immunofluorescence of pancreatic sections revealed
similar morphology of islets of wild-type and Pren™"™ mice
(Fig. 2), suggesting Pten haploinsufficiency has no marked

Fig. 2 Pancreatic islet morphol- a
ogy and immunohistochemistry
for insulin (green) and glucagon
(red) in wild-type (a) and
Pten”” (b) mice. Pancreatic
sections were immunostained as
described in Materials and
methods and visualised by
fluorescence microscopy.
Original magnification x40

effect on islet morphology. Accordingly, beta cell mass was
not found to be significantly different between wild-type
and Pten”” mice (Table 3).

Skeletal muscle is an important tissue involved in
insulin-stimulated glucose uptake [10, 20]. In vivo glucose
uptake was assessed by monitoring distribution of '*FDG
into muscles in real-time by PET. '"®FDG is transported into
cells by glucose transporters and is phosphorylated by
hexokinase, but is not a substrate for further metabolism in
the glycolytic pathway [21]. To compare insulin-stimulated
glucose uptake in wild-type and Pren™ mice, the mice were
fasted for 15 h, then injected i.p. with insulin (0.6 mU/g
body weight) 20 min prior to injection with "®)FDG via the
tail vein. Mice were imaged for 'FDG uptake into the
hindlimb for 60 min (Fig. 3a). '*FDG activity in hindlimbs
was analysed as a proportion of total body activity, and was
found to be higher in Pten™” than in wild-type mice at all
time-points (Fig. 3b).

Tissues from Pten’” mice exhibited slightly reduced
levels of Pten protein relative to wild-type mice [14, 22—
24]. In order to examine cellular glucose uptake and
intracellular signalling events, primary myocytes were
cultured from hindlimb muscle of wild-type and Pren*’”
mice. In the absence of insulin, cells from Pten™” mice
showed increased 2-deoxy[*H]glucose uptake at all time-
points measured, to a maximum increase of twofold
relative to wild-type cells at the 3 h time-point (Fig. 4a).
This result, together with the lower fasting glucose level
of Pten™” mice, suggest that the PI3K/PKB pathway was
chronically activated in Pren™ animals. In the presence of
insulin, Pten™ cells exhibited a further increase in
glucose uptake, up to threefold greater than wild-type
cells. This observation is consistent with the above results
of the insulin and glucose challenge tests and 'FDG
uptake experiment in showing a hypersensitivity to insulin
due to Pten haploinsufficiency.

Glucose transport into skeletal muscle occurs by a
facilitated diffusion process mediated primarily by the
glucose transporter proteins, GLUT1 and GLUT4. The

b
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Table 3 Pancreatic beta cell mass of Pren™" and Pren™ littermates

Mean beta cell mass=SE (mg)

Pren™* 1.2440.30 (n=3)
Pten™"” 1.2940.15 (n=3)

level of GLUT4 at the plasma membrane is tightly
regulated by insulin, whereas GLUTI is found constitu-
tively on the cell surface [25]. Since 2-deoxy[*H]glucose
uptake was elevated in Pren™" cells even in the absence of
insulin (Fig. 4a), we analysed cell-surface GLUT4 and
GLUT1 by western immunoblot as described in Materials
and methods (Fig. 4b). This analysis showed increased
GLUT4 at the cell surface in Pren™” cells, while similar
GLUT]1 levels were observed in the two cell types.

As PKB is a key effector kinase that mediates many of
the downstream cellular events induced by the PI3K
signalling pathway, including insulin-stimulated glucose
uptake [26, 27], we determined the phosphorylation status
of PKB in wild-type and Pren™” myocytes. Little to no
phosphorylation was observed in the absence of insulin,
and phosphorylation at Ser473 was observed upon addition
of insulin (Fig. 5). Whereas PKB phosphorylation started to
decrease after 4 h in wild-type cells in the presence of
insulin, phosphorylation was sustained in Pren” cells
during the course of the experiment (up to 6 h). Immuno-
blotting for total PKB protein showed that PKB levels were
consistent in Pten™” and Pten™" cells (Fig. 5). Immuno-
blotting for vinculin was included as a protein-loading
control. An immediate downstream substrate of PKB is
GSK3f3. This enzyme becomes inactivated upon phosphor-
ylation by PKB, in turn allowing its substrate, glycogen
synthase, to mediate glycogen synthesis and thus promote
glucose storage. Consistent with the observed enhancement
of PKB phosphorylation in Pten” cells, these cells also
exhibited a higher degree of GSK3{3 phosphorylation in
comparison with Pten™" cells (Fig. 5).

Discussion

Recent studies utilising tissue-specific deletion of Pfen in
liver, adipose and muscle have shown that these organs
make important contributions to the glucose homeostasis
of the animal and clearly establish Pten as a negative
regulator of insulin signalling in vivo [9-11]. In a separate
report, in vivo antisense treatment resulted in 90%
reduction of Pten levels in the liver of diabetic mice,
normalising blood glucose levels and improving perfor-
mance in an insulin tolerance test [28]. While the above
studies focused on the role of Pten in specific tissues, the
current work defines the effects of partial systemic
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Fig. 3 Insulin-stimulated uptake of '®FDG in wild-type and Pren”  mice.
Mice were fasted for 15 h prior to i.p. injection of 0.6 mU insulin/g body weight.
Twenty minutes after insulin injection, mice were injected with '*FDG via a tail
vein, and whole-body distribution of "*FDG was monitored by microPET for
60 min. The experiment was repeated three times with similar results. Typical
results are shown. a—f Imaging of '®FDG distribution in coronal section; wild-
type mouse is on the left and Pren™ mouse is on the right (a 5 min; b 15 min;
¢ 25 min; d 35 min; e 45 min; f 55 min). Hindlimb muscles were highlighted
as regions of interest, and "*FDG activity in each region of interest quantified
across coronal planes at each time-point, as described in Materials and methods.
g Graphical representation of relative '®FDG activity. Data are shown as
proportion of "SFDG activity in hindlimbs relative to activity in whole body for
wild-type mice (circles) and Pren™ mice (triangles) (mean+SD; n=3 per point)
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Fig. 4 a 2-Deoxy[’H]glucose uptake in wild-type and Pren"”
myocytes. Myocytes were serum-starved for 12 h prior to incubation
with 10 pmol/l 2-deoxy[*H]glucose (0.037 MBgq/umol/l) for the
indicated times with 0 or 1 umol/l insulin. Following incubation cells
were lysed and aliquots of lysates were taken for determination of
radioactivity by scintillation counting. Means+SD for three separate
determinations. White circles, wild-type cells 0 pwmol/l insulin; black
circles, wild-type cells 1 umol/l insulin; white triangles, Pten™" cells
0 wmol/l insulin; black triangles, Pren™ cells 1 wmol/l insulin. b Cell-
surface GLUT1 and GLUT4 levels. Levels of cell-surface GLUT1 and
GLUTH4 proteins in wild-type (WT) and Pten™~ cells were determined as
described in Materials and methods

reduction of Pten on the regulation of insulin sensitivity in
the context of the whole animal.

PTEN expression/activity is tightly regulated by a
complex mechanism that is currently poorly understood.
PTEN is transcriptionally regulated by transcription factors
such as p53, Egr-1, NFkB and SMADs, while protein
levels and activity are modulated by phosphorylation,
oxidation, subcellular localisation, phospholipid binding
and protein stability [29]. Previous studies showed that
Pten haploinsufficiency results in only a 15-50% reduction
in Pten protein, leaving a substantial amount of Pten protein
remaining in the tissues examined [14, 22-24, 30]. In our
hands, western blot analysis indicated similar decreases in
tissue Pten levels (data not shown). The present study
provides the first evidence that Pten haploinsufficiency
leads to insulin hypersensitivity in vivo, suggesting that
even small changes in Pten levels or activity can lead to
dramatic effects on insulin responses. Thus partial systemic
inhibition of PTEN activity may represent a novel strategy
to ameliorate the pathology of type 2 diabetes.

The PI3K/PKB signalling axis is central to maintenance
of normal glucose homeostasis [1]. Pten-deficient cells
typically have elevated levels of intracellular PIP; [31, 32].
The sustained phosphorylation of PKB/Akt and a down-
stream effector, GSK3[3, observed in the current study is
consistent with previous reports of elevated PKB/Akt
activation as a result of impaired desensitisation of PI3K-

dependent signals under conditions of Pten inactivation or
inhibition [9—11, 28]. A subtle reduction of Pten in the
Pten™" mice appears sufficient to achieve a prolonged and
robust insulin signal. The roles of PIP; and PKB/Akt in
insulin-mediated glucose uptake have been well-estab-
lished; therefore, our data collectively suggest that sus-
tained PI3K/PKB/Akt/GSK3 signalling may, in part,
contribute to insulin hypersensitivity in Pten"” mice.
However, other PKB/Akt-independent signalling pathways,
as well as additional signals delivered by the protein
phosphatase and/or adaptor functions of Pten may also
contribute to the insulin hypersensitivity phenotype man-
ifested by Pten haploinsufficiency.

GLUT! glucose transporters are constitutively present at
the cell surface, while GLUT4 cycles between intracellular
vesicles and the cell surface in a manner controlled by
insulin-mediated signalling mechanisms [25]. In unstimu-
lated fat and muscle cells, the majority of GLUT4 exists in
intracellular compartments, while the insulin signal stim-
ulates the exocytosis of GLUT4 to the cell surface. Studies
involving PKB/Akt-null animals and silencing of PKB/Akt
by RNA interference have demonstrated that PKB/Akt is of
primary importance in GLUT4 translocation [33-36]. In the
current study, we observed an enhancement of 2-deoxy-
glucose uptake in Pren™” cells even in the absence of
insulin stimulation, which was consistent with our obser-
vation of increased biotinylation of GLUT4 at the cell
surface, while GLUT1 levels were unaffected. However, we
detected no increase in phosphorylation of PKB/Akt in the
absence of insulin in Pren cells. Consistent with these
observations, a recent study in which Pten was specifically
knocked down by RNA interference reported slight but
significant enhancement of deoxyglucose uptake in adipo-
cytes, but no apparent increase in phosphorylation of PKB/
Akt [37]. These results could reflect a mechanism(s)
affecting glucose transport involving Pten/PIP; but inde-
pendent of PKB/Akt. Such a mechanism could involve the
atypical protein kinases C-A and -{ (PKC-A and PKC-{),

WT Pten*"

Time(h)—>= "0 1 2 3 4 5 B 0 1
Vinculin

PEB v o s o s o W -

p-PKB S473

Fig. 5 Phosphorylation of PKB and GSK3f3. Myocytes were serum-
starved for 12 h prior to incubation with 1 umol/l insulin for the
indicated times. Cell lysates were prepared, and proteins were
separated by PAGE followed by western immunoblot analysis for
vinculin, total PKB, phospho-PKB (p-PKB S473) and phospho-
GSK3p (p-GSK3f3) as indicated. This experiment was repeated three
times with typical results shown. W7, wild-type

p-GSK3B
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which, like PKB/Akt, are subject to control by PI3K via
PIP; and 3-phosphoinositide-dependent protein kinase-1
(PDK-1) [38-40]. A number of studies have implicated
PKC-MC in insulin-stimulated glucose transport and
GLUT4 translocation [38, 41-43]. These studies indicate
a role for PKC-A/{ which appears to be complementary or
parallel to that of PKB/Akt.

The importance of the PI3K pathway in insulin
signalling has raised interest in developing pharmaceutical
antagonists targeting PIP; phosphatases such as PTEN or
Sh2-containing inositol 5’-phosphatase 2 (SHIP2; also
known as Inppll) in an effort to enhance insulin respon-
siveness in type 2 diabetes [44]. While a study on Ship2-
null mice initially implicated Ship2 as a key regulator of
glucose uptake [45], it was subsequently recognised that
these mice also had deleted a neighbouring gene, Phox2a,
which may have contributed to the observed phenotype
(corrigendum appears in Nature vol. 431, p. 878). A new
gene-targeted mouse has since been generated in which
only the gene encoding Ship2 is deleted [46]. Interestingly,
this mouse does not exhibit insulin hypersensitivity but is
protected against diet-induced obesity, [46, 47]. In the light
of these new findings, our observations of dramatic
enhancement of insulin sensitivity and glucose uptake
resulting from Pten haploinsufficiency suggests that PTEN
plays a role in the desensitisation of insulin signalling, and
strengthens the hypothesis that PTEN is a key regulator of
insulin-stimulated glucose uptake.

Type 2 diabetes is associated with insulin deficiency and
resistance to insulin signalling [48, 49]. The current study
provides further support for PTEN as a candidate for drug
intervention in treating type 2 diabetes. However, enthusi-
asm for systemic PTEN inhibitors as a therapeutic approach
for treating type 2 diabetes is tempered by the potential
side-effects of such agents. Most notably, a modest
reduction of Pten in Pfen”” mice promotes tumour
formation in a wide variety of tissue, suggesting that
long-term chronic administration of systemic PTEN inhib-
itors may lead to enhanced cancer development and
progression. Furthermore, the PI3K pathway is an impor-
tant regulator of numerous normal cellular processes and
systemic PTEN inhibition may cause dysfunction of many
cells and tissues, leading to alterations in liver, kidney,
brain function, etc. For example, hepatocyte-specific Pten-
deficient mice exhibit hepatomegaly and liver steatosis [9].
Systemic inhibition of PTEN may therefore be unaccept-
able clinically because of these inherent potential toxicities
[44]. However, targeted delivery of PTEN antagonists to
muscle cells or adipocytes may overcome these limitations
and they hold promise as clinically viable agents in
treatment of type 2 diabetes [44]. This study shows that
partial inhibition of Pten is sufficient to enhance insulin
sensitivity. This observation is important from a therapeutic

@ Springer

standpoint, as most drugs are unlikely to completely inhibit
enzyme activity in vivo, nor would complete inhibition be
desirable given the potential for cancer development
resulting from chronic or overactivation of the PI3K/PKB
pathway [12, 14, 23].

In conclusion, Pfen haploinsufficiency results in insulin
hypersensitivity, which underscores the importance of
PTEN in attenuating insulin signals, and suggests that
small-molecule drugs that antagonise PTEN activity may
represent a novel class of insulin-sensitising agents and
targeted delivery of these agents to muscle cells or
adipocytes may have potential clinical utility in treating
insulin resistance observed in type 2 diabetes.
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