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Background: Obstructive sleep apnea (OSA) is the most common type of sleep apnea
that impacts the development or progression of many other disorders. Abnormal
expression of N6-methyladenosine (m6A) RNA modification regulators have been
found relating to a variety of human diseases. However, it is not yet known if m6A
regulators are involved in the occurrence and development of OSA. Herein, we aim to
explore the impact of m6A modification in severe OSA.

Methods: We detected the differentially expressed m6A regulators in severe OSA
microarray dataset GSE135917. The least absolute shrinkage and selection operator
(LASSO) and support vector machines (SVM) were used to identify the severe OSA-related
m6A regulators. Receiver operating characteristic (ROC) curves were performed to screen
and verify the diagnostic markers. Consensus clustering algorithm was used to identify
m6A patterns. And then, we explored the character of immune microenvironment,
molecular functionals, protein-protein interaction networks and miRNA-TF coregulatory
networks for each subcluster. Finally, the Connectivity Map (CMap) tools were used to
tailor customized treatment strategies for different severe OSA subclusters. An
independent dataset GSE38792 was used for validation.

Results: We found that HNRNPA2B1, KIAA1429, ALKBH5, YTHDF2, FMR1, IGF2BP1
and IGF2BP3 were dysregulated in severe OSA patients. Among them, IGF2BP3 has a
high diagnostic value in both independent datasets. Furthermore, severe OSA patients can
be accurately classified into three m6A patterns (subcluster1, subcluster2, subcluster3).
The immune response in subcluster3 was more active because it has high M0
Macrophages and M2 Macrophages infiltration and up-regulated human leukocyte
antigens (HLAs) expression. Functional analysis showed that representative genes for
each subcluster in severe OSA were assigned to histone methyltransferase, ATP synthesis
coupled electron transport, virus replication, RNA catabolic, multiple neurodegeneration
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diseases pathway, et al. Moreover, our finding demonstrated cyclooxygenase inhibitors,
several of adrenergic receptor antagonists and histamine receptor antagonists might have
a therapeutic effect on severe OSA.

Conclusion: Our study presents an overview of the expression pattern and crucial role of
m6A regulators in severe OSA, which may provide critical insights for future research and
help guide appropriate prevention and treatment options.

Keywords: obstructive sleep apnea, RNA methylation, immunity, consensus clustering, pharmacological
intervention

INTRODUCTION

Obstructive sleep apnea (OSA), a common chronic and
complicated disorder, is characterized by repeated complete
(apnea) or partial collapse of the upper airway (hypopnea)
during sleep, resulting in desaturation and recurring arousal
(Peppard et al., 2013). There are over 10% of the population
in the world suffering from OSA and will become more prevalent
as the population ages. In commonly, an apnea-hypopnea index
(AHI) of 30 h a day during sleep or greater is defined as severe
OSA. In addition to the obvious clinical symptoms, severe OSA
will also increase the risk of adverse medical consequences
including cardiovascular disease, diabetes mellitus, dementia,
depression, and even cancer (Cortese et al., 2015; Javaheri
et al., 2017; Whelton et al., 2018), which impose a huge
medical and socioeconomic burden. An increasing number of
studies have begun to reveal the potential pathogenesis of OSA,
such as upper airway collapsibility (Gleadhill et al., 1991), low
arousal threshold (Younes, 2008), inflammation (McNicholas,
2009), immune (Hamada et al., 2017), oxidative stress (Zhou
et al., 2016), and so on. However, the exact underlying
mechanism of OSA remains to be fully clarified. So far,
nocturnal pressure support such as continuous positive airway
pressure (CPAP) has been the gold standard for OSA treatment
(Sullivan et al., 1981). Although OSA and its adverse effects are
effectively alleviated with CPAP, many patients find it intolerable
(Mehrtash et al., 2019; Perger and Taranto-Montemurro, 2021),
which made pharmacotherapy for OSA a high priority.
Collectively, there remains a need for a comprehensive
understanding of the pathophysiological mechanisms for OSA
and uncovering an alternative pharmacological intervention.

Besides DNA methylation and histone modification being widely
known epigenetic mechanisms, post-transcriptional RNA
modifications, the crucial regulators of gene expression, have
attracted even more and more attention (Roundtree et al., 2017).
To date, over 150 unique modifications of RNA have been found in
all RNA species, including 5-methylcytosine (m5C), N1-
methyladenosine (m1A), Alternative Polyadenylation (APA), and
N6-methyladenosine (m6A). Among them, m6A is the most
prevalent. M6A modification is a methylated modification formed
by methyltransferase complex (MTC) methylation of the sixth
position N of adenine on mRNA (Deng et al., 2018), as is well
known. RNA binding proteins called “readers” are responsible for
recognizing the sites of m6A modification, methyltransferases called
“writers” involve in the production of m6A modification while

methyltransferases called “erasers” can remove m6A modification
(Tong et al., 2018; Chen X.-Y. et al., 2019; Zhang et al., 2021), they
work together to keep m6A modification in a dynamic balance.
Growing evidence suggests that m6A methylation critically regulates
mRNA stability, splicing and protein translation, which in turn
impacts gene expression and pathological processes of several
human disorders, such as myocardial infarction, myocardial
hypertrophy, inflammatory diseases and tumors (Mathiyalagan
et al., 2019) (Karthiya and Khandelia, 2020). Researchers have
explored the epigenetic mechanisms underlying OSA but they
mainly focused on histone modification and DNA methylation
mechanisms (Marin et al., 2014; Chen YC. et al., 2019). Recently,
Yinghui Chao showed that intermittent hypoxia, a characteristic
feature of OSA, promotes the expression of ALKBH5 in lung
adenocarcinoma (Chao et al., 2020). A large-scale genome-wide
association study had found that rs9937053 near FTO is
associated with OSA (Strausz et al., 2021). Despite the fact that
the above findings suggest a new view on the mechanism of m6A
modification in OSA, the exact role of m6A regulators in OSA
remains largely unknown.

In this article, for the first time, we provide a systematic
investigation exploring the role of m6A epigenetic regulation
in severe OSA. We found that IGF2BP3 can be used to well
distinguish severe OSA patients from controls in both the
training set and validation set. Furthermore, we revealed three
distinct severe OSA subclusters with different immune
infiltration characteristics. In addition, functional analysis,
protein-protein interaction (PPI) networks and miRNA-TF
coregulatory networks were performed to uncover the
biological functions for each subcluster. Finally, Connectivity
Map (CMap) tools were used to search for small molecular
compounds that could potentially reverse the altered
expression of differentially expressed genes (DEGs) in different
clusters, which could provide novel insights for future clinical
therapies or adjuvant treatment of OSA.

MATERIALS AND METHODS

Data Collection
The mRNA expression profiling datasets GSE135917 and
GSE38792 represent interchange of gene expression in OSA
were downloaded from the GEO database (Barrett et al., 2007)
by using the R package “GEOquery” (Davis and Meltzer, 2007)
(version 2.60.0). GSE135917 (Gharib et al., 2020)was used as a
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training dataset which contains 66 subcutaneous adipose tissue
samples totally. Among them, 24 patients follow CPAP might
affect the transcriptome profiles and 10 individuals with
unknown severity of OSA were excluded, finally, eight healthy
controls and 24 patients with severe OSA were included for
analysis. GSE38792 (Gharib et al., 2013) consists of eight normal
subjects and 10 OSA visceral fat tissue samples were used for
validation. GPL6244 (Affymetrix Human Gene 1.0 ST Array) is
used for both datasets. We normalized the expression profiles,
and then standardize the data through the
“normalizeBetweenArrays” function of the “limma” package
(Ritchie et al., 2015) (version 3.48.3), so that the expression
value has a similar distribution (Supplementary Figure S1).
Gene probes were annotated with official gene symbol, and
mean values were taken if multiple gene probes matched to
the same gene. The workflow of this study is shown in Figure 1.

Alternations of m6A Regulators Between
Severe Obstructive Sleep Apnea and
Healthy
The 23 selected m6A regulators were involved in our study,
including 8 writers (CBLL1, METTL14, METTL3, ZC3H13,

RBM15B, WTAP, RBM15 and KIAA1429), 13 readers
(YTHFDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
HNRNPC, HNRNPA2B1, IGF2BP1, IGF2BP3, FMR1,
ELAVL1 and LRPPRC) and two erasers (FTO and
ALKBH5) (Zhang et al., 2020). We used the Wilcox test to
compare the expression differences of 23 m6A regulatory
factors between OSA patients and controls. Spearman
correlation analysis was used to determine the correlation
between m6A regulators with the R package “corrplot” (Wei
et al., 2013) (version 0.91). Moreover, two widely available
machine learning algorithms, LASSO and SVM, were used to
identify the severe OSA-related m6A regulators. LASSO uses
regularization to solve the over fitting in the process of curve
fitting and improve the accuracy of the model. We use the
“glmnet” package (Simon et al., 2011) (version 4.1–2) to build
the model with m6A regulators. SVM is a supervised machine
learning algorithm based on the structural risk minimization
principle from statistical learning theory. In our research, the
“e1071” (Meyer et al., 2015) (version 1.7–9) package was used
to plot every data point as a dot in n-dimensional spaces
(where n is the number of the m6A regulators) and find an
optimal hyperplane that differentiates the two classes (non-
OSA and severe OSA) very well. The severe OSA-related m6A

FIGURE 1 |Workflow and analysis strategy used in the current study. Abbreviations: LASSO, least absolute shrinkage and selection operator. SVM, support vector
machine. ROC, receiver operating characteristic curve. GSVA, gene set variation analysis. GO, Gene Ontology. KEGG, Kyoto encyclopedia of genes and genomes. PPI,
protein-protein interaction networks. TF: transcription factor.
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regulators obtained by the results of two algorithms
overlapped. And then, the R package “pROC” (Robin et al.,
2011) (version 1.18.0) was used to calculate the area under the
curve (AUC) and evaluate the distinguishing performance of
m6A regulators.

Three Distinct M6A Patterns Identified by
Severe Obstructive Sleep Apnea-Related
m6A Regulators
Consistent clustering is commonly used to detect disease-related
molecular subtypes and determine the number of possible cluster
members in view of gene expression profiles. Unsupervised
consensus clustering was conducted to classify OSA into
different groups based on the expression profiles of seven
severe OSA-related m6A regulators by using the
“ConsensuClusterPlus” (Wilkerson and Hayes, 2010) (version
1.56.0) package. In this process, the parameters were pam
algorithm with the spearman distance and sampling was
repeated for 1,000 times to make the stratification more stable.
The number of clusters was identified through the cumulative
distribution function. “Rtsne” (Van and Hinton, 2008) (version
0.15) package was used to display the distribution of different
subcluster samples. The m6A regulator expression among the
three distinct modification patterns were compared by the
Kruskal-Wallis test.

Estimation of Immune Characteristics of
Different m6A Patterns
CIBERSORT is a widely used algorithm that uses support
vector regression modeling to deconvolute cell types and has
been applied to several diseases (Newman et al., 2019). We
used CIBERSORT to profile 22 immune cell types (T cells
CD8, T cells CD4 naïve, T cells CD4 memory resting, T cells
CD4 memory activated, B cells naïve, B cells memory, NK
cells resting, NK cells activated, macrophages M0,
macrophages M1, macrophages M2, dendritic cells resting,
dendritic cells activated, mast cells resting, mast cells
activated, neutrophils and eosinophils) in severe OSA
patients based on the expression matrix. The infiltrating
immunocyte abundance score and HLA genes expression
among three distinct m6A patterns were compared by the
Kruskal-Wallis test. p < 0.05 was considered statistically
significant.

Differential Expression Analysis of Genes
Among Different m6A Patterns
The “limma” package was used to identify the DEGs. Cut-off
criteria was obtained between normal group and severe OSA
subclusters using adjusted p-value<0.05 and absolute value of
log2-fold change >1. Additionally, p < 0.05 was used as the
threshold value for DEGs between different subclusters. The
representative genes for each OSA subclusters were
determined by a Venn plot method. For example, to
determine the representative genes of cluster1, a Venn plot

of (cluster1 vs. cluster2) vs. (cluster1 vs. cluster3) was drawn to
get the overlap of DEGs.

Biological Enrichment Analysis Among
Different m6A Patterns
GSVA (gene set variation analysis) is an unsupervised
enrichment analysis method to evaluate the pathway activity
variation. By transforming the genes expression matrix of
different subjects into the matrix of pathway activation score,
we can evaluate whether different metabolic pathways are
enriched in different OSA subclusters by“GSVA”
(Hänzelmann et al., 2013) (version 1.40.1) and “limma”
packages. The gene set of “c2.all.v7.4.symbols”was downloaded
from the MSigDB database for running GSVA analysis and p <
0.01 was regarded as the threshold of the differential analysis. We
visualized the significantly changed pathways among OSA
subclusters with the R package “pathview” (Luo and Brouwer,
2013) (version 1.32.0), which can visualize metabolic pathways
using predefined layout maps for a subset of reactions. To provide
a deeper understanding of the biological functions of the
representative genes for each OSA subcluster, we performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment and gene ontology (GO) analysis with R package
“clusterProfiler” (Yu et al., 2012) (version 4.0.5). The parameter
“ont” was set to “all,” which included biological process (BP),
molecular function (MF) and cellular component (CC)
categories. The functional analysis was set to adjust the
p-value <0.05 as the cut-off criterion.

Construction of Protein-Protein Interaction
Network and MiRNA-TF Coregulatory
Network
Search Tool for the Retrieval of Interacting Genes
(STRING)(Szklarczyk et al., 2019) is a database that searches
for the interaction between known proteins and predicted
proteins. It delivers the results obtained from experimental
data, text mining from PubMed summary and predicted by
bioinformatics methods. Representative genes for each
subcluster were inserted in the STRING for generating the PPI
network and the confidence score was set at 0.8. PPIs were
exported from the STRING database and then entered into
Cytoscape for a better visual representation and analysis of
hub genes. Molecular complex detection (MCODE), a plugin
of Cytoscape, is always used to identify highly interconnected
parts and help researchers distinguish profound genes. We
performed cluster analysis of the PPI network by using
MCODE to detect key modules, and genes in the essential
module with the highest MCODE score were regarded as hub
genes. NetworkAnalyst (Xia et al., 2014; Xia et al., 2015) is a
comprehensive website that allows users to undertake gene
expression analysis for a variety of species as well as meta-
analysis. We used this tool to collect data from the
RegNetwork repository (Liu et al., 2015) to build the TF-
miRNA coregulatory networks, which help us understand the
regulatory mechanism of hub genes at the transcriptional and
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post-transcriptional level. Moreover, Cytoscape was used to
visualize the interaction network among miRNA, TFs and
hub genes.

Compounds Targeting With Different
Obstructive Sleep Apnea Subclusters
To determine which molecular compounds might be useful
against different OSA subclusters, we used the CMap tools
(Lamb et al., 2006). The CMap collected 164 small molecules
compounds and four cell lines (PC3, HL60, MCF and
SKMEL5) expression profiles, and discussed the interaction
network among compounds, genes and disease status. We
predict compounds that can activate or inhibit based on the
differentially expressed genes between normal group and

severe OSA subclusters. Due to the limitation Of the
Connectivity Map tool that matches gene symbol and HG-
U133A (Malta et al., 2018), we transformed the gene symbol of
DEGs into GPL96 platform ID. Moreover, we performed
particular analysis to learn more about the mechanism of
action (MoA) of the compounds (Subramanian et al., 2017).

Statistical Analysis
All statistical analyses were performed using R version 4.0.2.
The independent-sample t-test and Mann–Whitney U-test
were applied for the comparison between groups as
appropriate. Different m6A modification subclusters were
compared using the Kruskal-Wallis test. All analyses were
based on two-tailed tests, p < 0.05 was considered to be
statistical significance.

FIGURE 2 | The expression pattern of m6A regulators in severe OSA and control individuals based on the GSE135917 dataset. (A) Heatmap and (B) boxplot of 23
m6A genes expression between normal and severe OSA subjects. (C) Chromosomal positions and expression of the 23 m6A regulators. (D) Correlations of 23 m6A
regulators in normal and OSA samples. The two scatter plots demonstrated the changes of correlations of ZC3H13 and ALKBH5 between severe OSA and normal
subjects.
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RESULTS

The Landscape of m6A Regulators and Its
Dysregulated Expression in Severe
Obstructive Sleep Apnea
We explored the expression differences of the selected 23 m6A
regulators between healthy and severe OSA patients, and the
results revealed that seven m6A regulators were significantly
dysregulated. Specifically, the expression of HNRNPA2B1,
KIAA1429 and ALKBH5 were lower in severe OSA patients
than in normal controls, while YTHDF2, FMR1, IGF2BP1 and
IGF2BP3 were upregulated (Figures 2A,B). And we also
visualized the chromosomal position of the 23 m6A regulators
(Figure 2C). To explore whether m6A regulators functioned
crucially in the development of the severe OSA, we evaluated
correlations between m6A regulators based on transcriptome
profiles in severe OSA and controls separately. Interestingly,
the correlation of m6A regulators between two groups has a
significant change (Figure 2D). RBM15 and METTL3 are the
most correlated m6A regulators in normal group (with
correlation R values of 0.92) but the correlation is weak in
severe OSA patients (with correlation R values of 0.14). In
addition, ZC3H13 and ALKBH5 were positively correlated in
controls (with correlation R values of 0.53) but negatively

correlated in severe OSA (with correlation R values of −0.63)
(Figure 2D), implying that m6A regulators played a major role in
the development of severe OSA.

Identification of the Severe Obstructive
Sleep Apnea-Related m6A Regulators
A series of machine learning methods were used to screen severe
OSA-related m6A regulators. We performed LASSO regression
on the 23 m6A regulators for feature selection and dimension
reduction (Figures 3A,B), 9 m6A regulators were found to be
important for OSA. At the same time, SVM was used to find the
best variables by deleting SVM-generated Eigenvectors, and 13
m6A regulators were identified (Figure 3C). The severe OSA-
related m6A regulators were obtained by the results of two
algorithms overlapped (Figure 3D), and finally seven m6A
regulators remained, including HNRNPA2B1, METTL3,
KIAA1429, YTHDF2, FMR1, IGF2BP1 and IGF2BP3. To
further test the diagnostic efficacy of these m6A regulators, we
performed ROC analysis and validated it with the GSE38792
dataset. The results illustrated IGF2BP3 can be used to well
distinguish severe OSA patients from normal healthy (AUC =
0.825) (Figure 3E) and also reached a higher level in the
validation set (AUC = 0.766) (Figure 3F), indicating that
IGF2BP3 had a high diagnostic value.

FIGURE 3 | IGF2BP3 can well distinguish severe OSA from normal individuals. (A) LASSO coefficient profiles of m6A regulators. (B) 10-fold cross-validation for
tuning parameter selection in the LASSO regression. (C) The point highlighted indicates the lowest error rate, and the corresponding m6A regulators at this point are the
best signature selected by SVM. (D) Venn diagram demonstrating sevenOSA-related genes shared by the LASSO and SVM algorithms. (E,F) The discrimination ability of
IGF2BP3 was evaluated by ROC curve and AUC value based on training set GSE135917 (E) and validation set GSE38792 (F). AUC: area under the curve.
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Distinct m6A RNA Methylation Modification
Patterns Identified by the Severe
Obstructive Sleep Apnea-Related m6A
Regulators
Unsupervised consensus clustering analysis was conducted to
identify distinct m6A patterns based on the expression of seven
severe OSA-related m6A regulators. Three distinct subclusters of
severe OSA were identified (Figures 4A–C), including 9 cases in
cluster1, 10 cases in cluster2, and 5 cases in cluster3 (Figure 4D).
We explored the general expression pattern of m6A regulators to
uncover the differences among the three subclusters. The result
showed that FTO, LRPPRC, ZC3H13, KIAA1429, METTL14
were significantly downregulated in cluster3 (Figure 4E),
FMR1 expression level was lowest in cluster1, validating the
existence of diversity m6A modification patterns in severe OSA.

Infiltration Characteristics of Immune
Microenvironment Among Distinct m6A
Modification Patterns
In order to explore the differences in immune microenvironment
characteristics, the CIBERSORT algorithm was used to evaluate
infiltrating immunocytes among different subclusters. The relative
proportion of immune cell subtypes of different individuals was

displayed in the stacked barplot (Figure 5A) and boxplot
(Figure 5B). The infiltration level of M0 Macrophages had
great variation among three subclusters (Figure 5C). M0
Macrophages are enriched most in cluster3, while least in
cluster2. Although not statistically significant, we observed a
higher infiltrated level of M2 Macrophages but a lower
infiltrated level of T cells in cluster3, suggesting that patients in
cluster3 have a potential regulatory role in macrophage
polarization. As for HLA genes expression, HLA-A, HLA-B,
HLA-C, HLA-G, HLA-DPB1, HLA-F, HLA-DOA, HLA-DPB2
expression level was remarkably highest in cluster3 (Figure 5D),
suggesting patients in cluster3 might mediate an active immune
response. Cluster1 and cluster2 have comparable expression levels
of HLA genes. The results showed that there is obvious
heterogeneity in severe OSA patients, and m6A regulators had a
crucial role in shaping different immune microenvironments in
severe OSA.

Functional Enrichment Analysis of Three
m6A Modification Patterns
To investigate the biological functions in the three m6A
modification patterns, we applied KEGG pathway analysis and
GSVA enrichment analysis to reveal significant differential gene
sets between severe OSA subtypes. KEGG views of the most

FIGURE 4 | Consensus clustering analysis of severe OSA subjects based on mRNA levels of OSA-related m6A regulators. (A) Consensus clustering cumulative
distribution function (CDF) for k = 2–7. (B) Relative change in area under CDF curve fork = 2–7. (C) OSA subjects were divided into three clusters when k = 3. (D) The
tSNE plot of the transcriptome profiles of 3 m6A subtypes. (E) The different expression status of 23 m6A regulators among three m6A subtypes.
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FIGURE 5 | Immune microenvironment characteristics among distinct severe OSA subtypes. (A) Relative proportions of immune cell infiltration in severe OSA
individuals. (B) Correlation matrix of the 22 immune cell proportions. (C) Differences in immune cell infiltration abundances among three m6A modifications. (D) The
expression differences of each HLA gene in three m6A modification patterns.
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enriched pathways were generated, including Oxidative
phosphorylation (Figure 6A), Pathways of
neurodegeneration—multiple diseases (Figure 6C) and PI3K-
Akt signaling pathway (Figure 6E) for each pairwise comparison,
respectively. Compared with cluster2, “BETA OXIDATION OF
BUTANOYL COA TO ACETYL COA” and “FORMATION OF
XYLULOSE 5 PHOSPHATE” pathways were significantly active
in cluster1 (Figure 5B). “REGULATION OF CYTOSKELETAL

REMODELING AND CELL SPREADING BY IPP COMPLEX
COMPONENTS” was inhibited in cluster1 when compared with
cluster3 (Figure 6D). “PPARG PATHWAY” was enriched in
cluster3 and “SYNTHESIS OF GDP MANNOSE” pathway was
inhibited (Figure 6F). To further understand the molecular
mechanisms in each OSA pattern, we used the Venn plot to
identified the subclusters’ representative genes (Figure 7A).
Cluster1, 2, 3 contained 768, 427 and 2060 representative

FIGURE 6 | Three m6A modification patterns differ in their underlying biological function characteristics. (A,C,E) Integrated KEGG pathway analysis and
visualization of both gene expression and metabolomics data. Gene expression levels are indicated as significantly higher (red), unchanged (gray), or lower (green). The
differences of hsa00190 Oxidative phosphorylation pathway between m6A modification pattern 1 and pattern 2 (A). The differences of hsa05022: Pathways of
neurodegeneration - multiple diseases between m6A modification pattern 1 and pattern 3 (C). The differences of hsa04151: PI3K-Akt signaling pathway between
m6A modification pattern 2 and pattern 3 (E). (B,D,F) Gene set variation analysis (GSVA) for significantly enriched pathways between subcluster 1 and subcluster 2 (B),
subcluster 1 and subcluster 3 (D), subcluster 2 and subcluster 3 (F).
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differentially expressed genes, respectively (Figure 7B). GO
analysis showed that representative genes from cluster1 mainly
related to histone methyltransferase and ATP synthesis coupled
electron transport (Figure 7C), and cluster2 involved in
mitochondrial energy metabolism (Figure 7D). Cluster3’s
representative genes are enriched in RNA catabolic, cell
adhesion and mitochondrial protein complex terms
(Figure 7E). As we can see, the three m6A modification
patterns have both unique and shared biological functions.
The common enriched terms of these clusters were
mitochondrial ATP synthesis coupled electron transport
process and multiple neurodegeneration diseases pathway,

suggesting they may result from an early insult that leads to
severe OSA.

Construct Protein-Protein Interaction
Network and MiRNA-TF Coregulatory
Network for Each m6A Pattern
Representative genes for eachm6A pattern were provided as an input
in the STRING and the results were reintroduced into Cytoscape
software for visual representation and further module analysis. We
identified the keymodules and hub genes by using theMCODEplug-
in. At the same time, the miRNA-TF coregulatory network was used

FIGURE 7 | The representative genes and functional analysis for each severe OSA subtype. (A) The differential genes were calculated for each of the two
subclusters and intersected using the Venn plot. Cluster1, cluster2 and cluster3 consisted of 768, 427 and 2060 representative genes, respectively. (B) Heatmap of top
10 represented genes in all three subtypes. (C–E) GO and KEGG analysis of representative genes for each subcluster.
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FIGURE 8 | Hub genes analysis and miRNA-TF coregulatory networks of representative genes of each subtype. Modules with the highest MCODE scores from
representative genes of cluster1 (A), cluater2 (C) and cluster3 (E) are illustrated. Networks for hub-genes miRNA-TF interaction with representative genes of cluster1 (B),
cluater2 (D), and cluster3 (F) are shown. The highlighted yellow color nodes represent the hub genes, purple color nodes represent the miRNA and green nodes
represent TF-genes.
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to reveal gene regulatory networks. In cluster1, there were 263 nodes
and 633 edges included in the PPI network (Supplementary Figure
S2A), the top 10 genes with the most interactions and the number of
protein-protein interaction pairs were shown in the barplot
(Supplementary Figure S2B). Hub genes of cluster1 were
illustrated in Figure 8A. The miRNA-TF coregulatory network
comprised of 105 nodes and 143 edges (Figure 8B), RPS29
enriched of miRNA regulators and was regulated by 24 miRNAs.
Transcription factors MYC and MAX hold the key position that
connected eight hub genes. In cluster2, there are 139 nodes, 313 edges
in the PPI networks (Supplementary Figures S2C, S2D), and 11 hub
genes were shown inFigure 8C themiRNA-TF coregulatory network
consisted of 68 nodes and 75 edges, among them, NDUFS2 was

regulated by 15 transcription factors (Figure 8D). In cluster3, there
are 446 proteins and 1,174 protein interaction pairs (Supplementary
Figures S2D, S2E), and 16 hub genes were identified (Figure 8E). the
miRNA-TF coregulatory network consisted of 115 nodes and 166
edges, where EEF1A1 had the most interactions with these miRNA
and transcription regulators (Figure 8F), suggesting it might play an
important role in severe OSA cluster3.

Identifies Potential Compounds Capable of
Targeting With Different m6A Patterns
The CMap tools measure the connectivity between disease gene
expression signatures and compound-induced gene expression

FIGURE 9 | Connectivity Map tools predict the small molecules compounds target different severe OSA subclusters. (A) Heatmap showing enrichment score
(positive in blue, negative in red) of each compound from the CMap for each OSA subtypes. (B) Heatmap showing each compound (perturbagen) from the CMap that
shares mechanisms of action (rows) and sorted by descending number of compounds with shared mechanisms of action.
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profiles. We detected differentially expressed genes between
normal healthy and subclusters (Supplementary Figure S3).
And then, CMap was used to find prospective medicines that
can effectively reverse the differential gene expression of different
severe OSA subclusters. Totally, we found 133 compounds
showed a significant impact on the expression profile in at
least one severe OSA subtype. 24 compounds were
significantly enriched in all three OSA subclusters
(Figure 9A), and 43 compounds enriched in two of the
subclusters. According to the MoA analysis, the above
compounds have 38 mechanisms of action in common
(Figure 9B). The results showed that five drugs (carteolol,
nadolol, terazosin, timolol and trazodone) shared the MoA of
Adrenergic receptor antagonist, another five compounds
(digitoxigenin, digoxin, helveticoside, ouabain and
proscillaridin) shared the MoA of ATPase inhibitor. We also
found indoprofen, isoxicam and naproxen shared the MoA as
cyclooxygenase inhibitor, thioperamide, trimethobenzamide
share the MoA as histamine receptor antagonists, and bepridil,
felodipine shared theMoA as calcium channel blocker. The above
ATPase inhibitors and calcium channel blockers can aggravate
the expression changes and may worsen the situation in patients
with severe OSA, while cyclooxygenase inhibitors and histamine
receptor antagonists have a therapeutic effect. Of note, the result
also showed that different compounds that act on adrenergic
receptors have a different response to severe OSA patients,
carteolol, nadolol, terazosin, timolol might be beneficial to
severe OSA patients.

DISCUSSION

OSA is a complex multifactorial disease with the interaction of
multiple genes and environmental factors, leading to interindividual
variability in the development of OSA. It is becoming increasingly
clear that m6A modification plays an important regulatory role in
the occurrence, development and prognosis ofmany human diseases
(Tong et al., 2018; Zhang et al., 2020). However, researches of m6A
regulators in OSA are still in its infancy. Satu Strausz conducted a
large-scale genome-wide association study and found that rs9937053
near FTO associated with OSA (Strausz et al., 2021), which provided
a great insight to investigate the relationship between m6A
regulators and OSA. Herein, for the first time, we systematically
investigate the impact of the m6A regulators in severe OSA, and a
series of analyses were carried out to provide novel directions for the
future studies and potentially effective therapies.

First of all, we compared the expression profiles between severe
OSA patients and normal healthy subjects. The results showed that
one “erasers” (ALKBH5), one “writers” (KIAA1429) and five
“readers” (HNRNPA2B1, YTHDF2, FMR1, IGF2BP1 and
IGF2BP3) m6A regulators statistically differentially expressed
among 23 m6A regulators, implying their possible functional
importance in severe OSA. Since m6A regulators have been
showing have expression correlations or protein-protein
interactions properties (Zhang et al., 2021), we further screened
the correlations between m6A regulators and found that m6A
regulators associated with each other quite differently in severe

OSA and normal subjects. Especially, ZC3H13 and ALKBH5
were positively correlated in the normal group but negatively
correlated in patients, which indicated that m6A regulators
jointly influenced the occurrence and progression of severe OSA.
Recently, using machine learning methods are effective ways to
decide the important features or variables related to outcome of
interest. We identified seven severe OSA-related m6A regulators by
adopting LASSO and SVM algorithms, including HNRNPA2B1,
METTL3, KIAA1429, YTHDF2, FMR1, IGF2BP1 and IGF2BP3.
Among them, IGF2BP3 could be used to distinguish severe OSA
patients from normal people in both training set and verification set
GSE38792, which might be used as a diagnostic marker of severe
OSA in the future.

Secondly, the general definition of OSA is classified according to
its degree of AHI (mild, moderate, and severe), and they did not
subdivide into more subclusters despite of the heterogeneity of
patients. In this study, we used unsupervised consensus clustering
for severe OSA based on the severe OSA-related m6A expression.
The results showed that 24 severe OSA patients can be clustered into
three subtypes with different expression patterns of m6A regulators,
which proves the importance of m6A regulators in severe OSA
again. Some studies have revealed that m6A regulators were tightly
related to immune regulation (Li et al., 2017), sowe speculate that the
immune microenvironment characteristics of different severe OSA
subtypes are also different. Our findings showed that the immune
response in the RNA modification pattern of cluster3 was more
active because it has the highest infiltrating level of M0Macrophages
and an increased trend infiltrating level of M2 Macrophages among
three subclusters. Previously, Meng Qin Ge found that intermittent
hypoxia (IH) could induces a pro-inflammatory phenotype of the
subcutaneous adipose tissue with M1 macrophage polarization (Ge
et al., 2019; Schaefer et al., 2017). Here, we showed that there is
indeed a subcluster of severe OSA with obvious activation of M2
macrophages, which promote a better understanding of immune
microenvironment of severe OSA. HLA genes andMHCs have been
extensively studied due to their crucial role in immune responses.
Suleiman M Momany found that HLA-DQB1*0602 allele was
significantly associated with OSA (Momany et al., 2017).
However, relationships between other HLA genes and severe
OSA have not been studied. In this study, we observed eight
HLA genes expression levels were upregulated in subcluster3. The
results we have obtained shed new light on the immune properties of
OSA, the classification strategy for severe OSA revealed a better
understanding of the underlying regulatory mechanisms.

Thirdly, to further demonstrate the potential pathogenesis
mechanisms involved in severe OSA, we explored the biological
function of dysregulated genes by pairwise comparisons among
different m6A patterns, as well as subclusters’ representative
genes for each cluster. We found that three clusters have both
unique and shared biological functions. The common enriched
terms of these clusters were related to mitochondrial energy
metabolism processes and multiple neurodegeneration
diseases, which had been reported to accelerate the onset and
development of OSA. For instance, chronic repetitive hypoxia in
OSA caused dysfunctional mitochondria, damage in the electron
transport chain (Lee et al., 2012; Zhou et al., 2016), and then could
trigger neuron injury especially in the hippocampus and cerebral
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cortex regions (Zhou et al., 2016), which may be closely related to
cognitive impairment. Additionally, reduced genioglossus muscle
tone that controlled by the hypoglossal nerve (Perger and
Taranto-Montemurro, 2021) is regarded as one of the major
causes of OSA. Furtherly, we build the protein-protein interaction
by using representative genes of each cluster. Genes that are
associated with similar phenotypes are in proximity to each other
in PPI networks (Kong et al., 2020), and the module analysis
filtered out several hub genes. We also analyzed and visualized the
miRNA-TF coregulatory network to understand the regulatory
mechanism of hub genes at the transcriptional and post-
transcriptional levels. However, very few studies have
evaluated the relationship between these genes and OSA. The
networks we established could provide novel clues for exploring
the underlying regulatory mechanisms of key m6A regulators in
the formation of OSA.

Finally, since there is still a lack of pharmacotherapy for OSA,
specific small molecular compounds potentially acting on severe OSA
were analyzed. The results showed thatOSA subclusters were different
in response to different smallmolecule drugs, highlighting the need for
more targeted, subcluster-specific treatment. We found that ATPase
inhibitors can aggravate the changes in genes expression of all severe
OSA subtypes, while application of cyclooxygenase inhibitors and
histamine receptor antagonists are conducive to reversing these
changes. Different compounds act on adrenergic receptor
antagonists having different responses to severe OSA patients and
should be chosen carefully in the future. Very interestingly, our
findings were consistent with previous research. Recently, a study
of mice experiment has shown that histaminergic H3 receptor
antagonists could partly ameliorate the negative effects on the
hypoglossal nucleus and tuberomammillary nucleus caused by CIH
(Xie et al., 2021). Abdulaziz A Alzahrani demonstrated that β-
adrenoceptor blockade propranolol decreased respiratory frequency
and abolished the CIH-mediated increase in vascular sympathetic
nerve density. Similarly, several studies have shown that
cyclooxygenase inhibitors can attenuate inflammatory responses by
decreasing oxidative stress (Cheng et al., 2021). For example, Tissot
Low showed that IH-induced lung inflammation could be completely
abolished by daily intraperitoneal injection of ibuprofen (a
cyclooxygenase inhibitor) (Cheng et al., 2021). Therefore, we
speculate that cyclooxygenase inhibitors can improve OSA by
inhibiting oxidative stress which needs to be demonstrated
experimentally. Moreover, patients with OSA always have
mitochondrial function damage (Yan et al., 2021) and inhibition of
ATPase activities may have adverse effects. These studies have proved
the validity of this bioinformatics analysis, and our results might
facilitate the development of new and better therapies for severe OSA.
Additionally, it was intriguing to note that several studies started
shedding light on suitable drugs for OSA patients through clinical
trials. Two randomized, placebo-controlled, double-blind crossover
trials showed that the noradrenergic agent combined with the anti-
muscarinic hyoscine could greatly reduce OSA severity (Lim et al.,
2021; Taranto-Montemurro et al., 2019) by improving the measures
of upper airway collapsibility. Ludovico Messineo and colleagues
found that addition of zolpidem to combination therapy with
atomoxetine-oxybutynin could even improve the sleep qualities of
the OSA patients (Messineo et al., 2021). These studies have

intervened from the activation of pharyngeal muscle to achieve the
purpose of treatment, while nowadays transcriptomic data has been
used to construct disease-drug correlations, which may lead to new
drug repositioning theories (Sirota et al., 2011). Collectively, our work
provides novel ideas for future clinical therapies or adjuvant treatment.

Several limitations should be acknowledged. First of all, this
article is based on the bioinformatics analysis, which could
provide a novel direction and ideas for future research,
however, further experiments should be conducted to explore
the specific molecular mechanisms. Next, this study only included
severe OSA patients and the samples size is small, we tried to
merge other GEO data sets but failed because of different chip
platforms or tissue sources. Future studies can expand the sample
size and contain patients with different conditions for typing in
order to achieve a better understanding of the mechanisms
underlying OSA. Besides, we are unable to obtain detailed
clinical data of patients so we cannot evaluate the clinical
symptoms and complications of patients with different subtypes.

CONCLUSION

In conclusion, our study is the first one to investigate the
crucial role of m6A methylation in severe OSA. We found that
different m6A patterns in severe OSA have distinct immune
microenvironment infiltration characterization and
underlying molecular mechanisms, it fills the gap in the
epigenetics of severe OSA, and opens up a new direction for
carrying out more research in this field. Furthermore, the
drugs and corresponding mechanisms were predicted
logically as they were derived through analysis of DEGs
between severe OSA and controls, which are important for
pharmacotherapy development for OSA.
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