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Abstract

Background: A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by
those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of
advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico
gene expression deconvolution methods are available for analyses of relative proportions of immune cell types.

Results: Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two
immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the
original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal
tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially
expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and
numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support
Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using
blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present
computations performed better than current state-of-the-art deconvolution methods.

Conclusions: Finally, we implemented the proposed method into R and tested extensibility and usability on Windows,
MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and
usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a.

Background
Cancers comprise a group of diseases that are character-
ized by uncontrolled growth of abnormal immortalized
cells that can spread to other parts of the body and finally
deplete resources. Hanahan and Weinberg suggested bio-
logical capabilities and hallmarks of a multistep process
toward the development of human tumors [1, 2]. Among

these, tumors have strategies for evading immune destruc-
tion. In contrast, the immune system sometimes over-
functions and incorrectly identifies normal cells, leading
to convalescence and autoimmune disease. Hence, as reg-
ulators of immunity, various immune checkpoints achieve
an equilibrium of system responses. Recently, cancer cells
were shown to interact with immune checkpoints and in-
hibit T cell activation as an immune evasion strategy [3].
Immunotherapy is a novel strategy in which immune

checkpoint components are manipulated, in particular
leading to blockade of T cell activation. Interactions be-
tween immune cell receptors and ligands are essential
targets of immune checkpoint blockade which involves
many immune cell types and distinct pathways that are
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incompletely understood. Therefore, understanding the
composition of immune cells in tissues is central to
studies of immune checkpoints with the ultimate aim of
developing immunotherapy. Flow cytometry and immu-
nohistochemistry analyses have long been developed to
define cell compositions but can’t be easily applied to re-
solve immune cell types from all kind of cancers. In con-
trast, whole transcriptome profiling methods such as
microarray and next generation sequencing can be de-
veloped as in silico methods for defining compositions
of a panel of cell types that are defined using mixed gene
profiling of cell-type specific genes.
Gene expression deconvolution methods have been

developed for several years and most methods regard de-
convolution as a linear problem. Strictly speaking, the
expression level of gene i in mixture j is the sum of its
expression in r cell types, as indicated by the following
equation:

Mij ¼ Σr
k¼1Sik Fkj ð1Þ

where Sik is specific gene expression in cell type k and
Fkj is the proportion of cell type k in mixture j. The gen-
eral model can be expressed as an approximate matrix
problem as follows: M ≈ S × F, and the problem can be
solved from the view of an equation-solving question.
Abbas et al. [4] and Clarke et al. [5] were the first to

propose deconvolution methods, and Gong et al. [6] and
Zhong et al. [7] used quadratic programming as an
optimization tool to solve the problem. In further stud-
ies, Gaujoux et al. [8] applied non-negative matrix
factorization to deconvolution and Qiao et al. [9] and
Liebner et al. [10] introduced statistics to solve the de-
convolution problem. Finally, Newman et al. [11] devel-
oped the novel strategy CIBERSORT to solve the linear
equation, and comparisons with the six deconvolution
methods listed above by benchmarking on mixture ex-
pression data showed that the method agreed with flow
cytometry data and outperformed other methods.
Tumor infiltrating lymphocytes (TILs) include various

cell types in variable proportions, and leave the blood-
stream to infiltrate into cancer tissues. TILs are associ-
ated with tumor growth, cancer progression, and patient
prognoses [12]. Thus, assessments of the composition of
TILs are fundamental for developing effective immuno-
therapies. In this study we analyzed the composition of
TILs from mixed tissue gene profiling data and revised
analyses for better performance.

Methods
The deconvolution method in this study is mainly ad-
justed from the strategy of CIBERSORT. Table 1 de-
scribes the datasets of 22 immune cell types collected by
Newman et al. [11] from 11 major leukocyte types. At

least two replicates for each cell types are included in
this study.

Implement resources
We develop the algorithms using R (version 3.1.1) and
the following packages: preprocessCore (version 1.34.0),
limma (version 3.28.31), geneplotter (version 1.50.0),
qvalue (version 2.4.2), genefilter (version 1.54.2), plyr
(version 1.8.4), and e1071 (version 1.6–7). The algo-
rithms are then exam on Windows 10 and Ubuntu
Linux 16.04 server. Note that the version of R and asso-
ciated packages may be varied between operating
systems.
To obtain usability and extensibility for a customized

workflow, we adopt the proposed algorithms to a plug-
gable tool, MySort, and integrate the tool into the Gal-
axy platform.

Research design
As mentioned previously, the deconvolution model can
be presented as a matrix function. We denote the

Table 1 A brief of the 113 microarrays used as the
deconvolution dataset

Major leukocyte
types

Subtypes Number of
replicates

B cells B cells naïve 7 *

B cells memory 8 *

PCs Plasma cells 7

CD8 T cells T cells CD8 4 *

CD4 T cells T cells CD4 naïve 3 *

T cells CD4 memory resting 3 *

T cells CD4 memory activated 3 *

T cells follicular helper 3

T cells regulatory (Tregs) 2

Gamma delta T cells T cells gamma delta 2 *

NK cells NK cells resting 4 **

NK cells activated 11 **

Monocytes and
Macrophages

Monocytes 11 *

Macrophages M0 12

Macrophages M1 3

Macrophages M2 3

Dendritic cells Dendritic cells resting 6

Dendritic cells activated 6

Mast cells Mast cells resting 2

Mast cells activated 2

Eos Eosinophils 2

PMNs Neutrophils 8

Remarks: * and ** are cell types that used in the validation datasets (PBMC
from 20 adults). Both activated and resting NK cells are counted as NK cells in
the prediction on the benchmark experiment
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transcriptome expression level of a cell type consists of i
genes. The transcription profile of a cancer biopsy will
be the summation of each gene expression level cross
the proportion of all cell types in the biopsy. Since we
are concerning only in the composition of a particular
panel of cell types, we pick t genes, a subset of genes
that are only expressed in the given cell panel, to build a
subset of gene expression matrix, namely signature
matrix, S. Thus, S is a matrix with dimension of t rows
and r columns where r represents the number of cell
types in the given cell panel, the immune cells in this
study. When S is defined, the vector F, the proportion of
each cell type in the given panel, can be solved out.
Hence, deconvolution can be divided into two parts:
constructing a signature matrix and solving linear equa-
tion for F (Fig. 1).

The signature matrix
The main strategy for choosing cell-type-specific genes
is to do differential gene expression analysis. The follow-
ing diagram explains the method of constructing signa-
ture matrix step by step (Fig. 2).
Data from the 22 cell types (the signature set, 113 ar-

rays) are quantile normalized before detecting differen-
tially expressed genes. In order to prevent the datasets
containing bias experiment result, clustering on gene
profiling is applied. The clustering method is complete
linkage and in the Euclidean distance. The inconsistency
of gene profiling clusters and cell type labels is further
analyzed for an advanced outlier judgment. Correlation
between arrays in the same cell type is calculated using
Pearson correlation. For each array of a certain cell type,
we judge the problematic cluster if any single array
shows low gene expression correlations (R < 0.85) to the
others in the same cell phenotype (i.e., more than 2/3 of
the related array-to-array pairs within a cluster).
To define a set of feature genes for deconvolution, we

first eliminate genes that are unsuitable for building
model. Two methods were adopted. We use datasets

and enrichment score (ES) described in Benita et al. [13]
to define genes that expressed in normal tissues by the
criteria of ES > 0 in more than 5% of observed tissue
types. Besides, genes that expressed in cancer cells are
collected from cancer cell line encyclopedia [14] in the
criteria of log2 transformed expression level > 7. The two
lists are used as black lists to remove genes expressed in
normal tissues and cancer cells from the candidate list.
To select genes that can be the representative features of a

cell type, we run the statistical analysis between each two im-
mune cell type pairs. Firstly, the differentially expressed genes
(DEGs) are detected using two-sided unequal variance T-test
with a significant criterion in q-value < 0.3. Secondly, we sort
the DEGs of each comparing pair by the absolute value of
log fold change of gene expression level in descending order.
Third, a top G (G= 5 to 100) ranked DEGs are selected from
each pair to build a union set of a signature gene list (top G
signature gene list) and to derive top G signature matrix, the
expression profiles for each top G signature gene list. Condi-
tion number [15] which is associated with the linear equation
is introduced to define the choice of G and calculated with
“kappa” function in R.

Fig. 1 The deconvolution model

Fig. 2 Steps of constructing signature matrix
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ν-support vector regression
First, gene expression profiles from both the signa-
ture set and the validation set (described in bench-
mark method) are quantile normalized. To avoid
inconsistency of data range, a preprocessing proced-
ure is introduced. We use a standardized score by
converting the data to z score (mean = 0, variance =
1). Furthermore, genes in the signature matrix may
be not always included in the mixture data set. We
use the overlaps of genes as the final features for
building the model.
The strategy to solve this regression problem is a ma-

chine learning method called ν − support vector regres-
sion (ν-SVR). In this study, support vectors represent a
particular subset of genes in the signature matrix. υ-SVR
is adopted in this study by “svm” function of R in

package, “e1071”, with linear kernel. Furthermore, F
have the best result with υ = {0.25,0.5,0.75}, where the
evaluation method is to estimate the lowest root mean
square error between M and S × F. Negative coefficients
for regression solved by SVR are set to be 0, and then all
coefficients are normalized to be summed to 1. Finally,
the estimation of relative proportions for cell types is
solved out, and correlations and root mean squares be-
tween M and S × F for each sample are evaluated.

Benchmark method
The deconvolution method was benchmarked with
flow cytometry results of twenty adult blood biopsies
used in CIBERSORT study [11]. Since there are only
nine cell types were labeled, we extract the prediction

Fig. 3 Hierarchical clustering for 113 arrays to detect the consistency between cell phenotypes and gene expression pattern. Arrays with
problematic grouping are boxed in red

Fig. 4 The condition number of iteration for G
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of these types and rescale the sum of the nine predic-
tion value to 1. We use the cell type frequencies de-
termined by flow cytometry as the standard and
calculate correlation (Pearson correlation) and root
mean square error (RMSE) of the derived expression
level of signature genes to the true value to evaluate
the performance of prediction.

Results
The agreement of cell phenotypes to gene expression
profile clustering
Initially, we retrieved data for building a deconvolution
model. After a data preprocessing step, we clustered the
deconvolution dataset (113 arrays) according to gene ex-
pression profiles. Although replicates of each cell type
were expected to be clustered into the same group, one
array of resting NK cells was inserted into the activated

NK cells group and one array of monocytes is far from
its group (Fig. 3), and arrays of resting and activated
mast cells were arranged without clear segregation.
Therefore, we performed Pearson correlations between
arrays of cell types to identify outlying arrays. One array
from monocytes and another from resting NK cells were
excluded according to weaker correlations than those
between others within the group. In addition, we de-
cided to merge two cell types, resting and activated mast
cells, into a single mast cell category due to the sparse of
evidence on segregation.

Construct signature matrix
After filtration processes, pairwise comparisons of cell
types were performed using t-tests. The top G ranked
DEGs (G = 5~ 100) were then joined to give the top G
gene list for each G value. Subsequently, we calculated
the numbers of conditions for each top G gene list and
defined the final gene list to build the signature matrix
as the list with the lowest number of conditions. The
final results were G = 30, number of conditions = 10.99,
and number of signature genes = 603 (Fig. 4).
The top G gene list (G = 30) was then compared to the

LM22 as defined using CIBERSORT. In the Venn-
diagram for numbers of genes in Fig. 5, two-thirds of
our signature genes overlapped with LM22, although
201 genes were uniquely defined by us and 145 were
uniquely defined by CIBERSORT.

Benchmark method
We used cell composition data from reported peripheral
blood mononuclear cells as a validation to benchmark the
performance of deconvolution methods, and as mentioned
in the methods, nine cell types were resolved by flow

Fig. 5 Venn-diagram for a number of genes of two signature gene
sets. (LM22 is signature matrix of CIBERSORT)

Fig. 6 Workflow of the deconvolution method
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cytometry in the validation dataset. We then recalculated
relative proportions of all cell types, but recalculated the
relative portion of nine relevant types to a sum of 1. Simi-
larly, neither mast cells nor subtyped resting and activated
mast cells from CIBERSORT were typed in the validation
dataset. The process is illustrated in Fig. 6.
We compared our prediction with the result provided

in CIBERSORT and estimated performance according to
RMSE (Table 2) and Pearson correlations (Table 3) for
each cell type. These comparisons indicate that the
present deconvolution method outperforms CIBER-
SORT. The differences between our approach and
CIBERSORT are summarized in Table 4.

Galaxy plugin
Our validation experiments show that the present work-
flow outperforms previous models for most cell types.
To improve access to the research community interest-
ing in detecting infiltrating immune cells, we have im-
plemented the present algorithms MySort in R and
wrapped as a Galaxy platform pluggable tool and pro-
vide usage details in the Galaxy toolshed https://testtool-
shed.g2.bx.psu.edu/ view/moneycat/mysort/e3afe097e80a
(Fig. 7). Using mixture expression profiling data
(uploaded by the user, indexed in gene symbols with
samples arranged by column) and the signature matrix
(provided by this study) as inputs, MySort generates the
immune cell compositions for each expression profile in
csv format and a combined diagram to present the re-
solved cell proportion in a bar chart plot and a hierarch-
ical clustering plot for relatedness among submitted
samples.

Discussions
Signature genes play important roles in gene expression de-
convolution computations. Additionally, outlier detection,
gene list filtration, and support vector regression were cen-
tral to the positive outcomes of our model. We also revised
the deconvolution process and discovered issues that were
not properly dealt with previously, including uncertain ac-
curacy of representative data matrixes for each immune cell
type and unequal contributions of DEG pairs that are used
to build signature matrixes.
Removing the outliers is an important preliminary step

for any in silico model. We revised the cell phenotype to
the profiling clustering result and identified possible out-
liers and improper typing groups. Subsequently, we ex-
cluded two arrays and merged two classes in the
signature set. In addition, we identified limitations of
data replicates in some cell types as a cause of decreased
confidence in DEGs with weak statistical power. Further
technical difficulties, such as inconsistency of cell type
definitions in different laboratories may introduce add-
itional problems for data analysis. For example, gamma
delta T cells are apparently difficult to identify with cer-
tainty, and as stated in the CIBERSORT study, few mi-
croarrays of gamma delta T cells contain more than two
replicates.
We assumed that the present deconvolution model is

linear. Thus, to realize and simplify the model, we se-
lected features as genes that are specifically expressed in
certain cell types. In addition, we used support vector re-
gression (SVR) to resolve the regression problem of cell
compositions. SVR was developed from a support vector
machine as an optimization approach for binary

Table 2 The performance of our deconvolution method and in CIBERSORT, evaluated by RMSE of signature genes

Method in better performance (lower RMSE) is marked yellow

Table 3 The performance of our deconvolution method and in CIBERSORT, evaluated by Pearson correlation of cell proportion

Method in better performance (higher correlation) is marked yellow
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Table 4 Comparison the difference of our approach with CIBERSORT. Major differences are marked gray and underlined

Major differences are marked gray and underlined

Fig. 7 The implementation of galaxy plugin for the deconvolution method
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classification problems. This method defines hyperplanes
that separate classes with the largest possible margin by
maximizing the distance from the hyperplane to the
nearest data point. In contrast, SVR seeks a hyperplane
that fits the data points in a tube of width 2ε. Hence, in
ε-based SVR (ε-SVR), data points at most ε values devi-
ate from the hyperplane. Consequently, ε-SVR does not
focus on data points with the ε-tube, points out of the
tube are support vectors (SVs), and distances from SV’s
to the boundary of the tube are evaluated by the loss
function. Similar to ε-SVR,υ-SVR uses υ to provide a
more convenient control over the number of SVs and
training errors. However, the required SV chosen by the
SVR model are some important genes are selected for
solving the regression function. These properties of SVR
are key to the enhanced performance of the present
model in comparison with other traditional methods for
solving regression problems.
Gene list filtration directly introduces a black list of

unrelated genes that are either expressed in cell types
other than those of interest or may interfere with the de-
convolution strategy. Although this is an effective strat-
egy for building deconvolution models, the timing of
filtration can alter the selection of signature genes
greatly. Thus, we used the filtration step before selecting
top G ranked DEGs, whereas CIBERSORT filtered genes
in the black list after selecting top G ranked DEGs. Con-
sequently, our model achieved G = 30 with 10.99 best
conditions and 603 union gene sets, whereas CIBER-
SORT achieved G = 102 with 11.4 best conditions and
547 union gene sets. Moreover, the processes in CIBER-
SORT lead to the use of unequal numbers of genes to
distinguish cell types.

Conclusions
Gene expression deconvolution methods can be used to
reveal defined cell types from transcriptomes of samples
with mixed cell types, and are demonstrably powerful
strategies for identifying TILs in cancer tissues through
reanalyzes of accumulated microarray databanks. Due to
the heavy task of reanalysis, we implemented the algo-
rithm, improved its performance, and then packed it as
a portable application.
The present version in MySort regards the deconvolu-

tion model as a linear model. However, nonlinear
methods may be applied to gene expression deconvolu-
tion, and machine learning has recently been shown to
have good predictive performance. Furthermore, deep
learning is an advanced method for nonlinear problems.
Hence, further studies are required to develop machine
learning and deep learning methods to decipher large
databases, and to train the model using the data to make
good predictions in gene expression deconvolution.

Finally, new high-throughput technologies such as
next generation sequencing and single cell technologies
are considered advanced techniques for gene profiling.
Theoretically, all cell components could be resolved with
knowledge of expression profiles of all cell types. More-
over, greater numbers of profiled cell types will necessi-
tate strategies for classifying them. Subsequently,
resolving gene profiling at the single cell level will drive
deconvolution methods to a new level if more compre-
hensive and accurate cell type information can be in-
cluded during model building.
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