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ABSTRACT
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative 
anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First 
isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to 
form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of 
which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, 
P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' 
(P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List 
of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been asso-
ciated with reports of both beneficial and pathogenic effects in human health. Herein, we review 
the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this 
bacterium, illustrating the effects of P. distasonis on human and animal health.
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1 Introduction

The intestinal gut is home to the largest collec-
tion of microbes, harboring trillions of bacteria 
and representing hundreds of species. Most of 
these species fall into two groups – Bacteroidetes 
and Firmicutes. These were among the first phyla 
that comprise most of the dominant gut com-
mensal bacteria to be defined. Within the 
Bacteroidetes phylum, the relatively new genus 
Parabacteroides (defined as separate from its 
predecessor, the very broad Bacteroides genus, 
in 20061), now contains at least ten 'valid spe-
cies,' which are recognized as being real species 
in clinical settings, and five 'non-valid species,' 
which are not recognized as being real species in 
clinical settings by the List of Prokaryotic names 
with Standing in Nomenclature. Several of these 

species were identified in isolates from clinical 
infections.

Recently, we isolated and fully sequenced multi- 
drug resistant P. distasonis from deep-gut wall tis-
sue lesions in patients with Crohn’s Disease that 
underwent surgical removal of the affected bowel 
further supporting a potential pathogenic role on 
gut wall health. Recent studies suggest that 
P. distasonis could exert protective effects against 
certain diseases, including multiple sclerosis, type II 
diabetes, colorectal cancer, and inflammatory 
bowel disease. Furthermore, some reports suggest 
that this bacterium could even have the potential to 
serve as a potential probiotic to promote digestive 
health in humans based on microbiome or animal 
studies. However, other experimental data show 
contradictory results, suggesting pathogenic effects 
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in various disease models. This suggests that 
P. distasonis may serve a dichotomous role depend-
ing on the context.

Herein, we hypothesize and illustrate that the 
pathologic role of these bacteria in human diseases 
may depend on the context, including the suscept-
ibility of the host to immune suppression, impaired 
bacterial clearance, and the promotion of hyperin-
flammatory responses, together with strain-to- 
strain differences that may account for differences 
in antimicrobial resistance to human therapies and 
P. distasonis potential for pathogenicity.

2 The new genus Parabacteroides

As with several other new genera reclassified from 
the initially broad genus Bacteroides fragilis group, 
including Alistipes1, Parabacteroides is a relatively 
new genus with distinctive features shared among 
other gut commensal bacteria. It is important to 
highlight that great progress in our understanding 
of this and other related genera has been facilitated 
by the taxonomic contributions made by Japanese 
microbiologists Mitsue Sakamoto and Yoshimi 
Benno who proposed the genus,2 and by other 
international groups cited below. According to the 
NCBI, the full taxonomy lineage for the genus 
Parabacteroides is: Bacteria; FCB group; 
Bacteroidetes/Chlorobi group; Bacteroidetes; 
Bacteroidia; Bacteroidales; Tannerellaceae; 
Parabacteroides. Of note, the family 
Tannerellaceae is composed of Parabacteroides 
and another new genus, Tannerella, with the spe-
cies T. forsythia and T. pachnodae.

As of May 1, 2021, the Parabacteroides genus 
(taxonomy ID: 375,288) comprises 15 species 
(https://lpsn.dsmz.de/search?word=parabacter 
oides), represented by 493 genome assemblies 
available in the NCBI. Of these species, 10 are listed 
as 'validly named', and 5 as 'not validly named' 
(shown in quotation marks)3: P. acidifaciens 
(human feces, China, 2019; type strain (TS): 
426–9; CGMCC 1.13558; NBRC 113,433),4 

“P. bouchesdurhonensis” (healthy human feces, 
France, 2018; TS: CSUR P3763; Marseille-P3763; 
),5 P. chartae (wastewater of a paper mill, China, 
2011, TS: DSM 24,967; JCM 17,797; NS31-3),6 

P. chinchillae (chinchilla feces in a zoo, Japan, 
2013; TS: CCUG 62,154; DSM 29,073; JCM 

17,104; ST166),7 P. chongii (blood from human 
with peritonitis, Republic of Korea, 2018; TS: 
B3181; KACC 19,034; LMG 3006),8 P. distasonis 
(unclear, human feces, or peritonitis as reported in 
PATRIC.org, USA, 1933; TS: ATCC 8503; CCUG 
4941; CIP 104,284; DSM 20,701; JCM 5825; NCTC 
11,152, named in honor to microbiologist 
A. Distaso),2 P. faecis (human feces; Japan, 2015; 
TS: 157; CCUG 66,681; JCM 18,682),9 P. goldsteinii 
(peritoneal fluid, appendix tissue, and intra- 
abdominal abscess, USA, 2005; TS: ATCC BAA- 
1180; CCUG 48,944; DSM 19,448; JCM 13,446; 
WAL 12,034, named in honor to infectious disease 
clinician Ellie J. C. Goldstein),2,10 P. gordonii 
(human blood clinical culture, USA, 1930s; TS: 
CCUG 57,478; DSM 23,371; JCM 15,724; MS-1, 
named in honor to microbiologist Jeffrey 
I. Gordon), P. johnsonii (human feces, Japan, 
2007; TS: DSM 18,315; JCM 13,406; M-165, 
named in honor to American molecular 
taxonomist John L. Johnson, who was the first to 
describe Bacteroides merdae (P. merdae)),9 

“Parabacteroides massiliensis” (healthy human 
feces, France, 2019; TS:SN4; named after Latin 
name of Marseille, Massilia),11 P. merdae (human 
feces, USA, 1978; TS: ATCC 43,184; CCUG 38,734; 
CIP 104,202; DSM 19,495; JCM 9497; NCTC 
13,052; VPI T4-1),2,12 “P. pacaensis” (healthy 
human feces, France, 2020; TS: Marseille-P4001; 
named after abbreviation for the region of 
Provence Alpes Côte d’Azur),13 “P. provencensis” 
(healthy human feces, France, 2020; TS: Marseille- 
P3668 T; nomenclature status listed as ‘not validly 
published’, named after the region of Provence),13 

and “P. timonensis” (human feces from healthy 
pigmy 39-year-old male, Congo, 2019; TS: CCUG 
71,183; CSUR P3236; Marseille-P3236; nomencla-
ture status listed as ‘not validly published’, named 
after French hospital La Timone).14

To provide an example of genetic similarity with 
other fecal commensals within the Bacteroidetes, 
based on 16s RNA gene sequence similarity, the 
three founding species of the Parabacteroides 
genus– P. distasonis JCM 5825 T, P. goldsteinii 
JCM 13,446 T, and P. merdae JCM 9497 T– are 
phylogenetically closely related to each other 
(>92.3% DNA sequence similarity) and related to 
T. forsythia with about 90% similarity. However, 
they are distant from their predecessor genus 
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Bacteroides (83.5–88.8%) and other comparable 
genera including Dysgonomonas (85.9–89.4%), 
Paludibacter (86.9–88.5%), Porphyromonas (82.2–-
86.9%), Prevotella (77.2–81.9%) and Proteiniphilum 
(85.9–87.3%).2

2.1 Parabacteroides distasonis as a referent species 
for the genus

Of all the species listed previously, P. distasonis is 
the reference type strain for the genus 
Parabacteroides. Since the completion of the first 
genome sequence for the species by investigators at 
Washington University in St. Louis in 2007, 
P. distasonis strain ATCC 8503 has become the 
strain comparator for all Parabacteroides species.15 

This type strain is an isolate deposited in 1933 and 
is a gram-negative, non-spore-forming, rod- 
shaped, strict anaerobic bacterium present in the 
gastrointestinal (GI) tract of humans and 
animals.2,16 A single P. distasonis ATCC 8503 cell 
is 0.8–1.6 × 1.2–12 μm in size. Its colonies on sheep 
blood agar plates are 1–2 mm in diameter, appear 
gray to off-white, and are circular, slightly convex, 
and smooth in shape.

Recently, studies on P. distasonis have displayed 
evidence in support of P. distasonis having 
a potentially beneficial and commensal nature, 
while others have displayed evidence for 
a potential pathogenic role. Although P. distasonis 
is part of the normal gastrointestinal microbiota, it 
has been isolated from extra-intestinal abdominal 
infections and abscesses in humans. More recently, 
P. distasonis has been shown to have ambivalent 
effects on models of inflammatory bowel disease 
(IBD) in rodents (“murine models”), with reports 
describing both pro-inflammatory (pathogenic) 
and anti-inflammatory (beneficial) effects.17 Thus, 
P. distasonis currently has unclear mechanistic 
associations with the main forms of inflammatory 
bowel disease (IBD), namely Crohn’s Disease (CD) 
and ulcerative colitis (UC), in both humans and 
animal models18.

As a result of this and other contradictory find-
ings, P. distasonis has become a highly controversial 
bacterium in the gastroenterological and microbio-
logical fields of study. In 2020 and early 2021 alone, 
over twenty studies were published involving 
P. distasonis, many of which produced 

controversial findings. Here, we delve into basic 
concepts on the history, biology, and ecology of 
the bacterium; its resistance to antibiotics; its geno-
mic features; and its potential clinical relevance in 
the context of human health. We highlight papers 
that support both sides of the debate over 
P. distasonis' pathogenicity and present 
a summary of potential future perspectives on our 
analysis of this microbe.

3 History, ecology, and identification

3.1 Historical overview and reclassification

Parabacteroides distasonis is a re-classified bacter-
ium named after A. Distaso, a Romanian bacteriol-
ogist who was involved in the description of the 
Bacteroides phylum species in the 1910s.18,19 

Originally, P. distasonis was considered part of the 
Bacteroides genus, where it bore the name 
Bacteroides distasonis. Prior to the 1980s, classifica-
tion of bacteria was based on phenotypic features, 
which meant that all gram-negative rods with cer-
tain phenotypic profiles were designated as being 
part of Bacteroides.20 For decades, only minor 
changes in taxonomy were implemented, even 
though the Bacteroides genus increasingly started 
to contain vast numbers of strains and species (>50) 
that greatly differed phenotypically from one 
another.21

This began to change in the 1980s, when Woese 
et al. introduced 16S rRNA gene sequencing.20 

After using this method in 1989, Shah & Collins 
formally proposed that the genus Bacteroides be 
restricted to Bacteroides fragilis and related taxa, 
resulting in the amendment of the description of 
the genus.21 This spawned several novel genera 
over the next decade and into the early 2000s, 
including Alistipes, Dialister, Dichelobacter, and 
Tannerella.2

Skepticism about the classification of what was 
then called 'B. distasonis' and another closely 
related species, B. merdae, arose in the mid-1990s 
and early 2000s, when 16S rRNA gene sequence 
analyses raised the idea that the two species may 
also have not been members of the Bacteroides 
genus . Shortly after the discovery of another spe-
cies closely related to B. distasonis and B. merdae, 
B. goldsteinii, Sakamoto and Benno analyzed the 
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16S rRNA gene sequences of all three species, using 
Tannerella forsynthesis as an outgroup. 
Phylogenetic analyses showed that the three species 
were closely related and therefore belonged to the 
same genus, with Tannerella being the most closely 
related genus. This was confirmed by analyses of 
the 16S-23S rRNA gene internal transcribed spacer 
(ITS) regions, which showed that B. distasonis was 
phylogenetically distinct from species of the genus 
Bacteroides, along with other former Bacteroides 
species including B. goldsteinii and B. merdae.2

In addition to genetic differences, Sakamoto and 
Benno demonstrated differences in chemo- 
taxonomic features. Ratios of anteiso-C15:0 to iso- 
C15:0 ranged from 3.1 to 10.3 in B. distasonis, 
B. goldsteinii, and B. merdae strains, while those 
for T. forsythensis ranged from 22.8 to 95.2. Major 
menaquinones of B. distasonis, B. goldsteinii, and 
B. merdae were MK-9 and MK-10, while the same 
for T. forsynthesis and Bacteroides species were 
MK-10 and MK-11. Taken together, the differences 
observed prompted Sakamoto and Benno to pro-
pose that these species be placed in their own genus, 
named Parabacteroides, meaning “adjacent to 
Bacteroides”.2

3.2 Ecology

P. distasonis has been detected in healthy and 
unhealthy patients, although the loads compared to 
other members of the Bacteroides group may vary 
across studies depending on the methods of detec-
tion used and factors like diet, which remain largely 
uncharacterized. Earlier studies utilizing immunoas-
says and monoclonal antibodies to identify 
Bacteroides species revealed that more than 30% of 
bacteria in human feces were Bacteroides species.

As a member of the distal gut microbiome, 
P. distasonis is present in fecal matter, which allows 
it to pollute waters and reach other environments 
passively. Consequentially, this bacterium has been 
proposed to be used as an indicator of fecal pollu-
tion in public environments, including recreational 
waters. In the waters of the Ohio River in the USA, 
Kreader et al.22 showed that P. distasonis can sur-
vive for up to two weeks if kept under 4°C; how-
ever, the bacterium can only survive for two days if 
kept at 24°C. Kreader et al.22 also showed that in 

filtered water or in the presence of cycloheximide (a 
protein synthesis inhibitor) the persistence of 
P. distasonis in water at 24°C was extended by at 
least 7 days.22 These are remarkable observations 
that support the fact that such a strict anaerobe can 
remain dormant in adverse conditions,22 as also 
observed in our laboratory. In another study, 
researchers using PCR-specific primers and 
Luminex® 100TM based technology (a suspension 
array that assays multiple analytes in a single well 
of a microtiter plate) detected P. distasonis in river 
samples, public water systems, and beach sand.23 

Innovative membrane filtration techniques have 
also shown that P. distasonis and similar 
Bacteroides species are commonly found in natural 
waters.24

The sources of fecal pollution in water for this 
abundant Bacteroidetes species could be traced to 
homeothermic hosts (including humans) with micro-
biome-based approaches; however, such methods 
often lack the resolution to classify sequenced bacteria 
down to the species level.25 A few examples for the 
genus may serve to illustrate the ecological range of 
this species. Recent high-throughput microbiome 
sequencing has shown that Parabacteroides is one of 
the main genera present in the GI, ceca, and feces of 
ducks raised with free access to swimming waters, but 
not in ducks raised with no access to swimming 
waters.26 Regarding abundance in this context, at the 
genus level, Parabacteroides was among the most 
abundant genera in ducks allowed to swim 
(Bacteroides, 25%; Escherichia-Shigella, 11%; 
Peptococcus, 7.7%; and Parabacteroides, 5.86%) com-
pared to the genera in ducks with no swimming access 
(Bacteroides, 18.1%; Erysipelatoclostridium,10.9%; 
Ruminococcaceae_unclassified, 10.4%;Lachnosp 
raceae_unclass., 5.2%; Coriobacteriales_unclass., 
5.89%; and Faecalibacterium, 4.2%).

The presence of this species in feces and their 
survival in natural waters supports our proposal 
that water and migratory birds could serve as an 
important avenue for Parabacteroides species dis-
semination between and across avian and mamma-
lian species, possibly increasing the risk of 
antimicrobial resistant strains appearing in clinical 
settings. If human-originated isolates of 
P. distasonis can appear in chicken or other ani-
mals, then this bacterium might be able to reach 
humans via food and livestock, as is common 
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among other aerobic or anaerobic foodborne or 
food-dwelling microbes.27

3.3 Phenotyping and identification

Numerous methods exist for culturing P. distasonis. 
As a saccharolytic bacterium, P. distasonis is cap-
able of metabolizing carbohydrates such as man-
nose and raffinose for energy production and can 
grow on a medium containing 20% bile.2 

Furthermore, the latter enables P. distasonis to 
selectively grow on Bacteroides bile esculin agar.28

P. distasonis is urease negative, but possesses 
genes that confer resistance to oxidative stress, 
such as the KatE gene and the OxyR gene. 
Deemed advantages of P. distasonis as an aeroto-
lerant commensal stem from the unique properties 
of its versions of catalase and superoxide 
dismutase.29 Catalase production enables a detox-
ifying role against oxidative stress mediated by 
hydrogen peroxide, which is often produced by 
inflammatory cells. The decomposition of H2O2 is 
vitally important for the survival of bacterial cells in 
conditions where oxygen is present. H2O2 is 
a major inhibitor of growth for gut bacteria that 
lack the ability to decompose H2O2 into less reac-
tive molecules. Catalase production is not 
a universal survival strategy among Bacteroides; 
P. distasonis and B. fragilis are catalase positive, 
while B. eggerthii, B. thetaiotaomicron, and 
B. ovatus have variable catalase production; and 
B. vulgatus and B. uniformis are catalase- 
negative.30 Molecular studies have shown that 
P. distasonis produces a catalase similar to that of 
B. fragilis, but in contrast, the enzyme is twice the 
size (250,000).30 Several variables may affect 
P. distasonis’ catalase production, including the 
type of medium used, the presence of agar, and 
the addition of hemin either pre- or post- 
autoclaving.31 Higher catalase levels occur after 
hemin is added post-autoclaving and with a high 
carbohydrate content in the selected medium.31

P. distasonis cannot hydrolyze gelatin in lique-
faction tests used to identify bacterial proteolytic 
enzymes, unlike Bacteroides species such as 
B. ovatus.2 Gelatin tests primarily seek to assess 
the presence of bacterial matrix metalloproteinases, 
which are also abundant in activated (gene expres-
sion upregulated) host cells. Although gelatin 

hydrolysis tests may yield false negatives, tests indi-
cate that P. distasonis’ mechanisms of intestinal 
modulation are not mediated by gelatinases (gelE 
gene co-transcribed with sprE, regulated by the 
fsrA, fsrB, and fsrC gene family) as they are in 
Enterococcus faecalis, which is important to help 
the bacteria translocate across polarized T84 
human colon cancer cell models.32

In addition to culturing, polymerase chain reac-
tion (PCR) methods enable the identification (with 
Sanger sequencing of the 16s rRNA gene), quanti-
fication of bacterial abundance in tissues when 
using quantitative reverse transcriptase (qRT- 
PCR), and differentiation of P. distasonis from 
other closely related bacteria including P. merdae 
and Odoribacter splanchnicus. Relative to anaerobic 
culturing methods, qRT-PCR is a highly accurate 
and rapid alternative when identifying Bacteroides 
species and related species, including P. distasonis, 
as shown in Figure 1.33 Probes designed for 
P. distasonis ATCC 8503 include the forward pri-
mer sequence 5ʹ–TGC CTA TCA GAG GGG GAT 
AAC- 3ʹ, the reverse primer sequence 5ʹ–GCA AAT 
ATT CCC ATG CGG GAT-3ʹ, and the probe 
sequence 5ʹFam–CGA AAG TCG GAC TAA TAC 
CGC ATG AAGC-3ʹTam.23

Another identification method for P. distasonis is 
Matrix-Assisted Laser Desorption Ionization Time- 
of-Flight Mass Spectrometry (MALDI-TOF MS), 
which is a fast and cost-effective method for accu-
rately identifying microorganisms based on the 
profiling of the ionized ribosomal proteins.34 

Unlike PCR methods, the clinical value of MALDI- 
TOF depends on the quality and breadth of cover-
age of the databases used to identify any given 
sample.

In a study by Veloo et al.,35 P. distasonis was the 
most commonly identified Parabacteroides species 
in human clinical specimens when using MALDI- 
TOF MS. The role of the MALDI-TOF MS system 
in correctly identifying emerging species that are 
either rare or difficult to grow in vitro is influenced 
by several factors that impair our ability to identify 
and correctly assign a pathogenic role to clinical 
specimens for such emergent species1. Using the 
identification dataset version 5 for MALDI-TOF 
MS, Veloo et al., on behalf of the numerous labora-
tories collaborating within the European Network 
for the Rapid Identification of Anaerobes (ENRIA) 
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project and using 6309 human clinical anaerobic 
bacterial strains, reported that only four well- 
established species were represented in the database 
with most clinical infections linked to P. distasonis 
(n = 45/54), P. goldsteinii (n = 3/54), P. johnsonii 
(n = 1/54), and P. merdae (n = 5/54). The MALDI- 
TOF MS database is regularly updated. Currently, 
P. faecis and P. gordonii are also represented in the 
database.

Of these species, P. distasonis was the species 
with the highest MALDI-TOF MS log-score values 
indicating a “more reliable identification” profile.35 

Current efforts of optimization that exist on 
MALDI-TOF MS databases show that 
P. distasonis can be accurately identified by this 
method, with log-score values of ≥ 2.0 in 44 of 45 
isolates.35 In a similar study by Rodíguez-Sánchez 
et al,34 six P. distasonis isolates were identified by 
the MALDI-TOF MS system at the species level. 
This was the same number of isolates detected 
using 16S rRNA sequencing at the genus level, 
meaning that all isolates were successfully identfied 
via the MALDI-TOF MS system. The Rapid ID 32A 
system, a phenotypic method, was also able to 
identify all six P. distasonis isolates at the species 
level.34

In another study, using both the MALDI-TOF MS 
system and the Rapid ID 32A system, the single 
P. distasonis isolate (abundance = 0.74%) involved 
was successfully detected.36 Together, these studies, 
indicate that P. distasonis is a species of higher 

abundance, is more readily cultivable, and is identifi-
able by several detection methods. This is perhaps 
the reason why it was the first species isolated to be 
assigned to the Parabacteroides genus. These meth-
ods prompt future studies to examine mechanisms 
by which this species mediates human health; how-
ever, emerging strains will need to be considered to 
help define the genetics behind the modulation of 
either effect.

4 Evolution, biochemical features, and 
metabolism

4.1 Evolution and symbiotic adaptation to the gut

According to phylogenetic analyses, P. distasonis 
diverged from a common ancestor shared with 
Bacteroides species, as confirmed via nucleotide 
sequencing of the complete 16S rRNA gene from 
distinct bacterial species.37 A study by Xu et al.37 

explored the driving forces behind the adaptation of 
Bacteroidetes in the distal gut environment and their 
importance to the evolution of human gut commen-
sals. To examine how the intestinal environment 
affects microbial genome evolution, Xu et al.37 

sequenced the genomes of two members of the distal 
human gut microbiota, B. vulgatus and P. distasonis. 
Through comparison with other sequenced gut and 
non-gut Bacteroidetes, and analyzing their niches and 
habitat adaptations, Xu et al. identified three general 
functions that could illustrate an evolutionary 

Figure 1. Correlation of PCR identification vs culture isolation from samples that were detected or undetected via qRT-PCR. 
Eleven Bacteroides and Parabacteroides species detected via qRT-PCR in 400 human surgical wound infection samples or closed 
abscesses. Target bacteria were detected from 31 samples (8%) via culture vs. 132 samples (33%) via qRT-PCR (p-value < 0.001). For 
each species, qRT-PCR detected higher counts than culture; this may reflect the detection of DNA of dead organisms by qRT-PCR. Plot 
created for this manuscript to illustrate the correlation between qRT-PCR and anerobic culture results for Bacteroides species isolated 
from wound samples using 132 isolates.33 a) y-axis corresponds to number of isolates detected by qRT-PCR; x-axis corresponds to 
number of isolates detected by both qRT-PCR and culture. b) y-axis corresponds to number of isolates detected by qRT-PCR; x-axis 
corresponds to number of isolates detected by culture. c) y-axis corresponds to number of isolates detected by qRT-PCR. Adapted from 
using data from Tong et al.33 with permission. Available from Anaerobe and used with permission from Elsevier.
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uniqueness for the Bacteroidetes phylum: polysac-
charide metabolism, environmental sensing and 
gene regulation, and membrane transport. These pro-
cesses are important in aiding with lateral gene trans-
fer, mobile elements, and gene amplification, all of 
which affect the ability of gut-dwelling Bacteroidetes 
to vary their cell surface, sense their environment, and 
harvest nutrients present in the distal colon.37 More 
recently, genome-based analyses have examined the 
metabolic features that are typical for a wide array of 
Bacteroides, which complements the taxonomic clas-
sification of the phylumspecies within.38–40

P. distasonis possesses a vast number of laterally 
transferred genes relative to similar species, which 
may help it thrive in the distal gut microbiome. 
Some genes that have been transferred allow hydrogen 
to be the final electron acceptor in the electron trans-
port chain rather than oxygen. This is an important 
trait for successful energy utilization in the anaerobic 
environment of the gut. In addition, P. distasonis con-
tains fewer environmental sensing and gene regulation 
genes compared to similar species and has a smaller 
number of carbon source degradation genes such as 
hemicellulases, pectinases, and other polysaccharides 
that help break down non-plant-based 
carbohydrates.37

In a study involving an individual that received 
ceftriaxone therapy, P. distasonis demonstrated 
monodominance in the gut microbiota community. 
Hildebrand et al.41 observed an extreme bloom of 
P. distasonis in the gut, where it was the second most 
abundant commensal with a 95% relative abundance. 
Here, Borkfalki ceftriaxensis was the most common 
conditionally monodominant taxa (CMT) that was 
not invasive. The initial colonization by this species 
was succeeded by P. distasonis.41 Thus, P. distasonis is 
a key member of the gut microbiota community, 
rendering it as a highly influential bacterium.

4.2 Lipopolysaccharide and S-layer to blend in with 
the gut environment

Parabacteroides distasonis’ lack of polysaccharide 
degradation genes is compensated for by the bac-
terium’s unique surface layer (S-layer) composed of 
glycoproteins. Fletcher et al.42 identified at least 
nine glycoproteins utilized by P. distasonis using 
the lectin-affinity purification technique. 
Intriguingly, the researchers found that seven of 

the nine glycoprotein promoters identified undergo 
DNA inversion, predominantly in their endogen-
ous human environment.42

In 1996, before P. distasonis was considered 
a member of the Parabacteroides genus, Corthier et -
al.43 utilized freeze etch electron microscopy to visua-
lize an S-layer in P. distasonis that was not present in 
most Bacteroides spp., including B. fragilis and 
B. thetaiotaomicron.43 This monomolecular layer 
allows both for the breakdown of complex polysac-
charides that cannot be broken down by human 
enzymes and for the acquisition and synthesis of poly-
saccharides to “blend in” with the surrounding intest-
inal tissue. This is possible through the use of an 
enzyme to coat the S-layer with sugar residues from 
the surrounding environment. It is thought that this 
ability to “blend in” with the surrounding gut tissue 
allows P. distasonis to avoid triggering a strong 
immune response from the host.42 In fact, in one 
study, after a lipopolysaccharide (LPS) challenge, the 
introduction of a membrane fraction of P. distasonis 
“reduced the release of TNF, IL-6, CCL2 (MCP-1) and 
CCL12 (MCP-5) by macrophages.”44

This unique S-layer could form the basis of 
P. distasonis’ effective pathogenic nature. 
Understanding the potentially pathogenic nature 
of P. distasonis is crucial for comprehending the 
interactions between the host or host’s environ-
ment and this bacterium.42,45–49

4.3 Hypothetical contribution to local 
anti-inflammatory methane production

It is thought that fermentation by P. distasonis 
results in the production of methane. It is 
unclear if direct production of methane occurs 
in P. distasonis; however, it is known that 
P. distasonis produces hydrogen, carbon dioxide, 
formic acid, acetic acid, carboxylic acid, and 
succinic acid.2 Other microbes may convert the 
carbon dioxide and acetic acid to methane. 
Acetogenic bacteria might then oxidize the 
acids, obtaining more acetic acid and either 
hydrogen or formic acid. Finally, in complex 
gut communities, methanogens may convert 
acetic acid to methane.

However, there is evidence that methane may 
also serve a pathogenic role. Methane production 
has been shown to be involved in the pathogenesis 
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of other intestinal diseases, such as constipation- 
predominant irritable bowel syndrome (C-IBS), 
diverticulosis, and colorectal cancer.50 

Furthermore, methane production may hinder 
ileal motility, providing an explanation for its abil-
ity to induce constipation.51

Whether P. distasonis contributes(likely indir-
ectly) to local production of methane is at this 
time speculative, but there is a need to consider 
that the ultimate beneficial or pathogenic role on 
any animal model of disease, or clinical disease, 
might also depend on other species present in the 
local microbiome.

4.4 Succinic acid as proinflammatory signaling 
molecule

Comprehensive analysis of the end-products of 
fermentation have indicated that P. distasonis 
and other Bacteroides and Prevotella spp. pri-
marily produce acetic acid and succinic acid, in 
contrast to other microbes that produce other 
acids in a less specific manner.2 Succinate 
serves as an inflammatory signal in immune 
cells to induce IL-1β through HIF-1α (tran-
scription factor induced by hypoxia), 
a downstream target of succinate.52–54 

Succinate can stimulate reactive oxygen species 
(ROS),55,56 and succinate accumulation in 
immune cells acts as an inflammatory signal 
for macrophages via HIF-1α.52 HIF-1α activa-
tion attenuates Treg development, induces IL- 
17 production, and increases RORyt transcrip-
tion, favoring differentiation of T lymphocytes 
into pro-inflammatory TH17 cells.57 Succinate is 
also a ligand for succinate-receptor 1 (SUCNR1; 
formally GPCR91) expressed by dendritic 
cells53 and can enhance both the pro- 
inflammatory cytokine (TNFα and Il-1β) pro-
duction and the antigen presentation capacity 
of dendritic cells, thereby inducing adaptive 
immune responses.53,58 In the colonic mucosa 
of rats, succinic acid leads to reduced crypt size 
and inhibition of epithelial cell proliferation 
rate.59 Notably, leptin is also a well-known 
HIF-1α-inducible modulator,60 with HIF-1α 
overexpression observed in obese adipose tis-
sue, and reduction during weight loss.61

5 Antimicrobial resistance

5.1 Antibiotics

Since the isolation of P. distasonis from fecal sam-
ples, sites of infection, abscess formation, or the gut 
wall in IBD patients is potentially linked to clinical 
outcomes affected by antimicrobial resistance, the 
sections below provide an overview of studies 
examining the resistance patterns of P. distasonis 
to various classes of antibiotics.

5.2 Beta-lactams

Bacteroides spp. and Parabacteroides spp. are 
becoming increasingly more resistant to certain 
antibiotics62 because of an increase in the number 
of antimicrobial resistance-related virulence genes. 
Within the genus Parabacteroides, P. distasonis has 
a wide spectrum of resistance to various beta- 
lactams, being particularly resistant to the penicillin 
class.63–67 Nakano et al.67 demonstrated that up to 
99% of P. distasonis isolates were resistant to peni-
cillin and the first generation cephalosporin, cepha-
lexin, while more than 85% of the P. distasonis 
isolates could be resistant to amoxicillin and ampi-
cillin. Resistance to the second generation of cepha-
losporin, cefoxitin, was less frequent; it was found 
in only 12% of isolates tested.67 Differential resis-
tance to cephalosporins, including cefotetan, 
cephalothin,63,68 cephalexin,67 cefoxitin,64,68 

cefotaxime,64 cefazolin,68 and cefotetan,69 have 
also been reported, with resistances higher in ear-
lier generations.

The overall resistance to the antibiotic classes 
penicillin and cephalosporin can be attributed to 
the presence of various genes encoding beta- 
lactamases. These include, but are not limited to, 
cfxA,64,66 cfiA,67 and cepA.66,67 While almost all 
P. distasonis strains produce beta-lactamase, there 
are unique strains expressing beta-lactamase genes 
at significantly elevated rates. Some additional pro-
tection from imipenem can be also attributed to the 
outer membrane of P. distasonis.70,71

P. distasonis is generally susceptible to carbape-
nems such as meropenem and imipenem.72,73 

However, recently it was found that a small percen-
tage of clinical isolates of P. distasonis are resistant 
to imipenem, ranging from 4%66 to 11%.69 This is 
clinically relevant considering the apparent current 
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trends of increasing antimicrobial resistance in 
P. distasonis over time, a pattern that has been 
reported in the Bacteroides fragilis group in 
Europe, where high-level resistance to ampicillin 
(MIC 64 mg/L) increased from 16% to 44.5% over 
20 years.69

5.3 Lincosamides

Several studies have reported the various rates of 
clindamycin resistant isolates of P. distasonis: from 
9%74 in the 1990s to about 30% in the 2000s,67,75,76 

and even up to 50% in the early 2010s.76 This 
suggests that a growing proportion of P. distasonis 
strains have reduced susceptibility to 
clindamycin.62 It is possible that the indiscriminate 
use of this antibiotic in clinical settings, especially 
for members of the Bacteroides and Parabacteroides 
genera, exerts selective pressure, leading to 
increased resistance of P. distasonis to clindamycin 
over time.77

One of the potential underlying mechanisms for 
clindamycin resistance in P. distasonis is the pre-
sence of the resistance gene ermF, known to be 
frequently found in various anaerobes.78,79 This 
gene encodes the ribosomal methylase that modi-
fies peptidyl transferase in the ribosome, resulting 
in resistance to lincosamides, macrolides, and 
streptogramin drugs.80 However, the data on the 
frequency of this gene in different P. distasonis iso-
lates remain controversial – it varies from being 
completely absent in isolates66 to being detected 
in 37.5% of all samples.67 Further confirmation 
for the potential role of ermF in clindamycin resis-
tance comes from a study by Kierzkowska et al,77 in 
which 88.9% (8 out of 9) of clindamycin-resistant 
isolates were found to harbor the ermF gene.77

5.4 Other antibiotics and antimicrobial agents

P. distasonis demonstrates considerable resistance to 
tetracycline – up to 87.5% among tested clinical 
isolates.68 The high frequency of tetracycline resis-
tance among Parabacteroides isolates has been attrib-
uted to the presence of the tetQ gene.68,81 The 
conjugative transposon that tetQ resides on harbors 
ermF, and exposure to low concentrations of tetracy-
cline can trigger horizontal gene transfer, thereby also 
triggering the transfer of other transposons present in 

the genome, like Tn4555 which harbors cfxA. Thus, 
this has the potential to be horizontally transferred to 
other susceptible intestinal species of the Bacteroides 
and Parabacteroides genera.68

An enzyme found in P. distasonis, Pd_dinase (short 
for P. distasonis protease) has diaminopeptidase activ-
ity. This enzyme can hydrolyze some human antimi-
crobial peptides normally present in the gut, such as 
keratin-derived antimicrobial peptides (KAMPs), 
human β-defensin 2, and human neutrophil peptide 
3. If secreted into the extracellular milieu of the gut, 
Pd_dinase may promote intestinal colonization by 
P. distasonis via the inactivation of the aforementioned 
host antimicrobial peptides.82

6 Resistance in clinical vs. intestinal isolates

In a study by Sóki et al. conducted in 2020,83 the 
resistance of intestinal isolates of different bac-
terial species, including P. distasonis, was evalu-
ated against several antimicrobials. The relevant 
MIC values were compared between clinical and 
intestinal isolates. Several notable observations 
can be made from their findings, summarized 
in Table 1. For example, in the clinical and 
intestinal isolates of all species examined, ampi-
cillin resistance is almost 100%; moxifloxacin, 
cefoxitin, and clindamycin resistance is inter-
mediate (13–44%); and amoxicillin/clavulanate, 
imipenem, metronidazole, and tigecycline resis-
tance is very low (0–4%).83

However, two findings in particular stand out: 
first, the significantly greater resistance of 
P. distasonis to most classes of antibiotics tested 
compared to other Bacteroides species; 
and second, the significantly higher resistance 
of clinical isolates to antibiotics compared to 
their intestinal counterparts.83 Specifically, for 
ampicillin, amoxicillin/clavulanic acid, cefoxitin, 
and in the intestinal isolates, moxifloxacin and 
tetracycline, resistance was significantly higher in 
P. distasonis compared to almost all other iso-
lates. In addition, the MIC50 and MIC90 values 
for P. distasonis in both clinical and intestinal 
isolates were significantly higher than that of 
other isolates for cefoxitin and amoxicillin/cla-
vulanic acid. P. distasonis was the most resistant 
or second-most resistant species in tests with 
ampicillin, amoxicillin/clavulanic acid, and 

GUT MICROBES e1922241-9



cefoxitin for both the clinical and intestinal iso-
lates, and was often significantly more resistant 
across antibiotics compared to the average of all 
isolates.83

These results highlight the possibility and impor-
tance of differential antimicrobial resistance in 
samples of clinical origin compared to commensal 
intestinal isolates. In addition, these results also 
indicate a need for greater study of antimicrobial 
resistance at the strain level, since multiple genetic 
factors may confer resistance to antibiotics and/or 
enable bacteria to induce chronic illness. Culture- 
based studies and genomic analyses of strains well- 
defined with respect to the source region (healthy 
vs diseased) are warranted to understand the dri-
vers that enable some isolates or strains to become 
pathogenic compared to others that remain as 
commensals.

7 Diseases

7.1 Dichotomous role in inflammatory bowel 
disease

Inflammatory bowel disease (IBD) is a spectrum of 
life-long chronic conditions that affect the digestive 
tract of humans and animals in a slow, progressive 
matter. In humans, the prototypic forms of IBD are 
Crohn’s disease (CD) and ulcerative colitis. Crohn’s 
disease affects the entirety of the gastrointestinal tract, 
and patients have chronic, debilitating symptoms. 
These include abdominal pain, severe diarrhea, stools 
containing blood, weight loss, and fatigue. In general, 
IBD has aberrant exaggerated host immune and 
inflammatory responses to luminal antigens that 
reveal recurring themes in IBD pathogenesis: first, 
lesions in IBD predominate in areas of highest bacter-
ial exposure; and second, manipulation of luminal 

Table 1. Antimicrobial Activity against Parabacteroides distasonis and other species*.

*For the intestinal isolates, the study examined 202 Bacteroides and Parabacteroides strains (11.9%, were B. fragilis) collected between 2014 and 2016 in Europe 
and compared resistance levels between clinical and commensal isolates. Isolates were recovered from feces using Bacteroides Chromogenic Agar (BCA) 
method and tested via agar dilution for ten antibiotics. For clinical isolates, the study used published data from a 20-year survey of isolates in Europe.69 These 
results were similar to previous European clinical Bacteroides antibiotic susceptibility survey, all the variations existed across countries and antibiotics.83 

Adapted from Table 2 from Sóki et al.83 with permission. Available from Anaerobe and used with permission from Elsevier. Note that that metronidazole, 
imipenem, cefoxitin, and amoxicillin/clavulanic acid MIC ranges were significantly greater in clinical isolates compared to intestinal isolates. Notably, however, 
intestinal isolates of P. distasonis are significantly more resistant (p = 0.048 via X2 test) to moxifloxacin than their clinical counterparts.83
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content using selective antibiotics reduces inflamma-
tion in IBD patients. Thus, it remains to be deter-
mined if IBD is triggered by the presence of an 
imbalanced microbiota composition and if such com-
position can be corrected with probiotic-like 
enhanced anti-inflammatory bacteria like 
P. distasonis.17

BALB/c mice inoculated with a whole cell lysate of 
P. distasonis prior to the onset of DSS-induced colitis 
demonstrated a significant decrease in inflammation 
compared to the control,17 thus providing some 
evidence supporting the anti-inflammatory role of 
P. distasonis in the intestinal microbiome. Several 
strains of P. distasonis showed anti-inflammatory 
effects both in vitro and in vivo and were able to 
restore both the epithelial barrier in a cell culture 
model and strengthen the gut barrier in a mouse 
model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)- 

induced colitis. Intriguingly, P. distasonis stimulated 
CD4+ T cells to differentiate toward the CD4+ 

FoxP3+ IL-10+ regulatory phenotype.84 These results 
correlate with other studies illustrating the potential 
role of P. distasonis in stimulating regulatory T cell 
differentiation.85 A study by Koh et al.86 also corro-
borated similar findings in regard to P. distasonis’ 
ability to restore the epithelial barrier: the expression 
of the tight junction proteins Zonula occludens-1 
(p < .001) and occludin (p < .001) were significantly 
increased in mice fed a diet containing 0.04% freeze- 
dried P. distasonis both at the transcriptional 
(2-3-fold, p < .01) and post-translational (30–50%, 
p < .05) levels, regardless of when P. distasonis was 
introduced into the diet of the mice, but so long as it 
was introduced.86 In another study, P. distasonis and 
several Bacteroides species were identified to attenu-
ate E. coli lipopolysaccharide-induced IL-8 release 

Table 2. Examples of studies reporting effects of Parabacteroides distasonis (PD) on intestinal health.

Disease Study Model Study Design
Clinical 
Effect

Familiar 
Mediterranean 
Fever99 

Inflammation

Human blood serum and fecal samples. ELISA analysis of 
varying antibodies that correspond to different bacterial 
antigens in both FMF patients and healthy controls. DNA 
extraction was performed with Wizard Genomic DNA 
Purification kit and sequencing of the 16S rRNA 
performed with regions V1, V2, V3.

PD, along with other common gut flora, elicited an 
enhanced nonspecific humoral response to nonspecific 
antigens present on bacteria in the presence of FMF.

Aggravator

Colorectal cancer86 

Cancer/ 
Inflammation

Six-week-old male A/J mouse models treated with different 
chow diets laced with PD.

Increase in colonic IL-10, TGF-β β and tight junction proteins 
Zonula occludens and occludin expression in mouse 
models given the PD long term in comparison to the 
control diet. Results support a protective role of PD in 
colonic tumorigenesis.

Protective

Colorectal cancer100 

Cancer/ 
Inflammation

6-w-old male A/J mice fed low-fat (LF) diet, high-fat (HF) 
diet or a HF + whole freeze-dried PD diet (HF + Pd). Mice 
received 4 weekly injections of azoxymethane after 
1 week on diet. PD analyzed with 16s rRNA gene 
sequencing.

PD membrane fraction (PdMB) largely suppressed 
production of pro-inflammatory cytokines, lowered 
MyD88 and pAkt abundance, and induced apoptosis in 
colon cancer cell lines, suggesting anti-inflammatory and 
anti-cancer effects.

Protective

Colitis84 

Inflammation
Murine Model of 2,4,6-Trinitrobenzenesulfonic Acid (TNBS)- 

Induced Colitis based on BALB/C ByJ mice. PD sequenced 
using V3-V4 16s rRNA regions.

PD reinforces the gut barrier and promotes pro-anti- 
inflammatory profile. This has a positive association with 
reducing colitis in tested mouse models. In vitro benefits 
relied heavily reliant on the strain.

Protective

Colitis17 

Inflammation
DSS-induced BALB/c mice – oral treatment of PD. PD 

analyzed via 16s rRNA sequencing.
PD membrane components decreases the severity of gut 

inflammation in the non-immunocompromised mouse 
models that had induced acute and chronic colitis. Also, 
increased PD serum antibodies and decreased pro- 
inflammatory cytokines.

Protective

Colorectal  
carcinogenesis101 

Cancer/ 
Inflammation

Shotgun metagenomic sequencing analysis between feces 
of wild-type mice and mice with defects in TGFB 
signaling. Analysis of microbiota changes prior to colon 
tumors development. Shotgun metagenomics 
sequencing was performed using 150 BP, pair-ended 
sequences through Illumina sequencing.

PD abundance decreased when there were defects in 
transformation growth factor beta (TGFB) signaling 
pathway in mouse models. TGFB-deficient mice have 
more colorectal cancer and lower PD abundance.

Protective

Crohn’s Disease and 
Ulcerative 
Colitis89 

Inflammation

WT and antibiotic-depleted intestinal microflora mouse 
models. Pyrosequencing was performed on the variable 
regions of bacterial 16s rRNA. The sequences were 
classified with GreenGenes and compared with using 
QIIME.

Low PD abundance in patients with CD and UC. Higher PD 
abundance in gut microbiota of the Pglyrp-deficient 
mouse models promote colitis.

Aggravator
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from HT-29 cells and to lack genes to synthesize 
hexa-acylated, proinflammatory lipid A, exhibiting 
anti-inflammatory properties. P. distasonis was also 
found to exert enterocyte monolayer reinforcing 
action, reinforcing the gut barrier. The study sug-
gested that P. distasonis and the other tested 
Bacteroides species could be used as “next- 
generation probiotics.”87

In past literature, it is consistently reported that 
there is a lack of species diversity in the inflamed 
regions of the gut overall. Strikingly, however, 
P. distasonis was identified as a recurring bacterium 
in the stools of CD patients.88 Notably, there are 
currently very few studies in humans that provide 
evidence for the idea that P. distasonis is a bacterium 
associated with any of the main forms of IBD, and 
potential evidence of the possible contribution of 
P. distasonis to IBD pathogenesis remains inconclu-
sive; however, the results from studies in animal mod-
els still raise alarm. In one study, researchers 
demonstrated that in a DSS-induced colitis mouse 
model, P. distasonis had an anti-inflammatory effect 
on the gut; however, there is some evidence that, in 
mice with preexisting abnormal conditions such as 
SHIP or PGRP gene deficiency, P. distasonis seems 
to promote intestinal inflammation rather than 
attenuate it.89 This may be due to P. distasonis ability 
to protect itself against human immune responses.86 

Furthermore, in a murine model of acute and chronic 
DSS-induced ulcerative colitis, P. distasonis abun-
dance was significantly increased compared to healthy 
controls.90 More evidence for the potential proinflam-
matory role of P. distasonis in CD comes from one of 
our own studies. Here, germ-free senescence- 
accelerated prone mice (SAMP) were inoculated 
with P. distasonis. In mice already with Crohn’s dis-
ease, myeloperoxidase (MPO) activity was signifi-
cantly increased, causing further inflammation in the 
gut.91

Peptidoglycan recognition proteins (PGRPs) are 
known to control inflammation in the gut, partly by 
reducing IFN-γ induction and NK cell migration.92 

Mice deficient in any of the four types of PGRPs 
demonstrate markedly increased severity of DSS- 
induced experimental colitis and a more pro- 
inflammatory gut microbiome.92 Dziarski et al.93 

demonstrated that, in PGRP-deficient mice, gut levels 

of P. distasonis were consistently elevated, indicating 
a possible lack of immune control for P. distasonis 
through PGRPs. Additionally, the gavage of wild 
type mice with P. distasonis enhanced DSS-induced 
colitis and possibly predisposed mice to IBD.89

A study by Gonzalez-Paez et al.93 found that C11 
proteases could promote host immune responses 
and bacterial pathogenesis, especially via activation 
of bacterial pathogenic toxins from the likes of 
P. distasonis. Here, P. distasonis was found to pro-
mote intestinal inflammation in mouse models, 
degrading mucosal barrier health, and thus poten-
tially contributing to the development of IBD. 
Additionally, the researchers reported that there 
was a correlation between elevated proteolytic 
activity and amino acids with the dysbiosis of the 
distal gut microbiome in patients. P. distasonis was 
found to influence gastrointestinal homeostasis and 
the responding immune activity, especially in the 
form of enteric cysteine proteases. These proteases 
were hypothesized to either be tethered to 
a bacterial cell wall; packaged into outer membrane 
vesicles (OMVs) that hydrolyze substrates from the 
parental bacterium surface, other bacteria, or host 
epithelial cells; or both.93

As previously mentioned, P. distasonis can pro-
duce catalase to enable its detoxifying role against 
oxidative stress mediated by hydrogen peroxide, 
often produced by inflammatory cells. However, it 
is suspected that these oxidative agents may be 
inflammatory triggers for CD.94,95 This is because 
catalases produced by various species of bacteria, 
including P. distasonis, catabolize reactive oxygen 
species (ROS), which may exacerbate 
inflammation.29

While there are few studies involving humans 
concerning the potential pathogenicity of 
P. distasonis in relation to IBD, those published 
present similarly alarming results. Nagayama et al.96 

demonstrated that P. distasonis, along with nine 
other anaerobic bacteria cultured from the small 
intestinal mucosa of CD patients, enhanced TH1 
and TH17 cell accumulation and intestinal 
inflammation.96 Furthermore, we have recently 
identified P. distasonis in the deep-gut wall tissues 
from patients that underwent surgery for the 
removal of chronically inflamed bowel segments, 
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specifically patients afflicted with CD,97 supporting 
a probable pathologic role for this species in CD. 
This corroberates the observed enrichment of 
Bacteroidetes in the gut metagenome of the SAMP 
mouse line, which is naturally prone to CD-like 
ileitis.98

Taken together, these often-conflicting reports 
underscore the potential importance of 
P. distasonis in gut health and the need to elucidate 
its pathogenic effects so that clinically relevant solu-
tions can be developed to address such effects. An 
overview of studies reporting an experimental or 
observational effect on IBD and intestinal health is 
presented in Table 2.

7.2 Protective role in colorectal cancer

To date, P. distasonis has only been shown to have 
beneficial effects on colorectal cancer. Multiple 
researchers have identified that levels of 
P. distasonis in stool are inversely correlated to the 
presence of intestinal tumors.101 Koh et al.86 deter-
mined that P. distasonis membrane fractions were 
responsible for suppressing the production of pro- 
inflammatory cytokines in a colon cancer cell line. 
Studies by other researchers have suggested that 
P. distasonis has anti-inflammatory and anti- 
tumor properties mediated by the reduction of 
signaling via TLR4, MYD88, and Akt and the sti-
mulation of apoptosis.86 These results are in agree-
ment with observations of reduced microbiome 
levels of P. distasonis in mouse models of colorectal 
cancer.44 In a study by Koh et al.86 that was pre-
viously noted for revealing P. distasonis effect on 
the expression of tight junction proteins, the same 
mice were later treated with the carcinogen azox-
ymethane (AOM). The investigators stated that 
TLR4, IL-4, and TNF-α expression were 40% (p < 
.01 using a one-way ANOVA), 58% (p < .05), and 
55% (p < .001) lower in mice fed a chow diet 
containing P. distasonis throughout the investiga-
tion than mice that were never fed a diet containing 
P. distasonis. In mice fed a diet containing 
P. distasonis after switching from a chow diet, the 
IL-10 and TGF-β expression were 217% (p = .05) 
and 185% (p < .001) higher compared to mice fed 
a chow diet without P. distasonis.86 Furthermore, 
Gu et al.101 found that the abundance of 
P. distasonis, in addition to that of Bacteroides 

vulgatus, decreased in response to CEACAM pro-
teins disrupting TGF-β signaling. This alteration in 
the intestinal microbiome in turn promoted color-
ectal carcinogenesis, thus providing further evi-
dence of P. distasonis potential role in preventing 
colorectal carcinogenesis.101

The evidence for the potential anti-inflammatory 
effects of P. distasonis in colorectal cancer is further 
supported by the inverse correlation between 
P. distasonis levels and IL-1β production in the 
gut.44 A comparison of the fecal microbiota compo-
sition between patients with spontaneous colorectal 
adenocarcinomas and patients without any prolif-
erative lesions in the colon revealed a lack of 
P. distasonis in the patients with tumors.102 

Collectively, these studies suggest that P. distasonis 
has anti-tumorigenic and anti-inflammatory poten-
tial in colorectal cancer patients.

7.3 Protective role in obesity

Further potential benefits of P. distasonis have been 
identified, particularly in relation to obesity. Xu 
et al.103 found that mice with high-fat diet- 
induced obesity (DIO) had higher relative abun-
dances of P. distasonis and Akkermansia mucini-
phila in the gut, resulting in a gut microbiota that 
was significantly more capable of reducing host 
adiposity. Here, this change in gut microbiome 
composition was induced by Panax notoginseng 
saponins (PNS), often used as a form of traditional 
Chinese medicine. This suggests a potential ability 
for PNS and, in turn, P. distasonis, to be used in the 
treatment of obesity.103 This also raises the poten-
tial for P. distasonis to be important in modulating 
host adiposity. Furthermore, a study by Gallardo- 
Becerra et al.104 found that the abundance of 
P. distasonis in the gut microbiota of Mexican chil-
dren with obesity and metabolic syndrome (MetS), 
a multicomponent condition associated with obe-
sity, was reduced compared to Mexican children of 
normal weight. This, the investigators noted, was 
“correlated with clinical and anthropometric para-
meters associated with obesity and metabolic 
syndrome”.104 A study by Haro et al.105 illustrated 
a link between the gut microbiota, diet, and patients 
diagnosed with MetS. The study’s assertion implied 
that P. distasonis was originally diminished in MetS 
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patients who were then presented with 
a Mediterranean diet for 2 years, partially restoring 
P. distasonis populations. The data from the MetS 
patients exhibited a negative relationship between 
waist circumference and the relative abundance of 
P. distasonis (R = −0.213). The patients on this 
Mediterranean diet, which was enriched with anti-
oxidant phenolic-compound-rich foods, saw 
a statistically significant increase in the abundance 
of P. distasonis (p = .025 via ANOVA). These 
results suggest that the Mediterranean diet could 
potentially be utilized to correct microbial imbal-
ances especially in reference to P. distasonis, pro-
viding further evidence that P. distasonis may be 
involved in mitigating obesity.105

Recently, Wang et al.106 demonstrated that 
P. distasonis alleviated obesity, hyperglycemia, and 
hepatic steatosis in ob/ob and high-fat diet mice via 
the production of secondary bile acids and 
a previously mentioned byproduct of fermentation: 
succinate. Here, succinate was found to bind to 
fructose-1,6-bisphosphatase, a rate-limiting enzyme 
involved in intestinal gluconeogenesis (IGN), 
decreasing hyperglycemia in ob/ob mice. 
Furthermore, treatment with live P. distasonis dra-
matically altered the bile acid profiles of the mice, 
increasing the levels of lithocholic acid (LCA) and 
ursodeoxycholic acid (UDCA), in turn reducing 
hyperlipidemia by activating the FXR pathway and, 
as a result, repairing gut barrier integrity, highlight-
ing additional suspected benefits of P. distasonis in 
relation to obesity and gut barrier integrity.106 Of 
interest, the abundance of P. goldsteinii in feces has 
been reported to also have an inverse (protective) 
correlation with obesity in rats.107

7.4 Dichotomous role in diabetes

As with IBD, P. distasonis has been shown to have 
both beneficial and detrimental effects on diabetes, 
complicating its definition as a beneficial commen-
sal or pathogenic bacterium. However, research on 
P. distasonis’ effects on diabetes is currently very 
limited. Cai et al.108 found that supplementing 
extract of propolis (EEP) in high-fat diet mice 
increased the abundance of P. distasonis, which 
was identified as an ‘anti-obesity and anti- 
inflammatory bacterium,’ in line with associated 
metabolic parameters of insulin resistance.106 

Based on these findings, one may conclude that 
P. distasonis could play a role in decreasing insulin 
resistance and preventing diabetes.

However, some evidence that P. distasonis may be 
involved in the pathogenesis of diabetes has begun to 
emerge. Hasain et al,109 citing several metagenomics 
studies, concluded that P. distasonis, which has been 
shown to be enriched in women with gestational 
diabetes mellitus (GDM), could serve as a gut micro-
biota signature in women with GDM.109 This sug-
gests that P. distasonis may play a role in the 
pathogenesis of certain types of diabetes rather 
than prevent it, as Cai et al.’s106 findings suggest, 
underscoring the importance of further investigation 
into P. distasonis’ effects on diabetes.

7.5 Gut microbiome and dichotomous role on 
autoimmune diseases
Several studies have suggested that P. distasonis 
may play a role in various forms of autoimmu-
nity. For example, in a recent study addressing 
the potential functional relationship between gut 
bacteria and T cell responses in multiple sclero-
sis (MS), P. distasonis levels were shown to be 
lower in human MS patients compared to 
healthy controls.110 P. distasonis was shown to 
drive T cell differentiation toward an increased 
percentage of anti-inflammatory CD25+ T cells 
relative to the total CD3+ CD4+ T cell popula-
tion. There was also an abundance of CD25+ IL- 
10+ FoxP3− Tr1 cells, which are strongly asso-
ciated with the immunoregulatory phenotype.111 

Interestingly, these results are corroborated by 
the elevated proportion of FoxP3+ T regulatory 
cells in the overall population of CD4+ T cells 
found in the colonic lamina propria of C57BL/ 
6 J mice monocolonized with P. distasonis.85 

Transplantation of the gut microbiome from 
the MS patients into germ-free mice augmented 
the severity of experimental autoimmune ence-
phalomyelitis symptoms in comparison to their 
counterparts that received the microbiome trans-
plant from healthy human donors.110

P. distasonis abundance was significantly ele-
vated in fecal samples from patients with ankylos-
ing spondylitis (AS), a chronic inflammatory 
disease affecting the spine and the sacroiliac joint. 
This suggests a possible role for P. distasonis in the 
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development of more diverse autoimmune 
responses.112,113 In vitro experiments showed that 
P. distasonis, along with other AS-enriched species 
including Bacteroides coprophilus, Eubacterium sir-
aeum, Acidaminococcus fermentans, and Prevotella 
copri, increased the amount of IFN-γ-producing 
cells through a bacterial peptide of these species, 
mimicking type II collagen and likely serving as 
“triggers of autoimmunity by molecular 
mimicry”.105,110,114

In psoriatic patients, P. distasonis presence was 
found to be significantly decreased relative to non- 
psoriatic patients.115 In mouse models of imiqui-
mod-induced skin inflammation (IISI), animals 
treated with the antibiotic metronidazole showed 
a significantly higher abundance of P. distasonis in 
their intestines and demonstrated reduced severity 
of skin inflammation via downregulation of the TH 
17 immune response.116 These findings suggest that 
the intestinal microbiota may play an important 
role in the regulation of IISI.

Notably, Moreno-Arrones et al.117 found that 
patients with alopecia areata – an autoimmune disease 
mediated by T cells – had higher abundances of 
P. distasonis in their gut microbiota (LDA score > 2). 
In conjunction with Clostridiales vadin BB60 group, 
P. distasonis could correctly predict alopecia areata 
status in 80% of patients, indicating that P. distasonis 
could be involved in the pathophysiology of alopecia 
areata.117 However, whether these findings indicate 
a causative relationship between the abundance of 
P. distasonis in the gut and alopecia areata and if the 
bacterium presence serves as a biomarker for the dis-
ease remains to be elucidated. At the genus level, 
elevated systemic antibodies toward commensal gut 
P. distasonis and P. merdae have been reported to be 
consistently increased in Familial Mediterranean fever 
(FMF, which is an autoinflammatory condition char-
acterized by acute, self-limiting episodes of fever and 
serositis and chronic subclinical inflammation in 
remission), irrespective of disease activity (remission, 
2180 ± 1150 and 2508 ± 1241; vs. flare, 2383 ± 1207 
and 2393 ± 1069) compared to controls (658 ± 161 
and 995 ± 363, for P. distasonis and P. merdae, 
respectively).99 The relevance of these findings are 
not well understood because in IBD, increased IgA 
antibody concentrations have been found to work 
against other commensal microbes, including 
Lactobacillus casei.118

7.6 Dichotomous role in cardiovascular disease

P. distasonis has also been implicated in the patho-
genesis of cardiovascular disease (CVD). However, 
as with its impact on diabetes, research on 
P. distasonis impact on CVD is limited. A study 
focused on exploring the relationship between the 
gut microbiota and CVD in patients with cardiac 
valve calcifications and coronary artery disease 
found P. distasonis and other bacterial species to 
be potential pathogens contributing to CVD.114

Conversely, a study on the role of the intestinal 
microbial flora in vascular inflammation in rats 
found a potential anti-inflammatory role for 
P. distasonis, contributing to potentially beneficial 
effects on CVD. Here, the relative abundance of 
P. distasonis was inversely correlated to the neoin-
timal hyperplasia and composite intima+media 
area after a carotid artery angioplasty.119 Thus, the 
role of P. distasonis in the pathogenesis of CVD is 
yet to be determined and remains another point of 
controversy surrounding this bacterium. It is clear 
that more research will be needed to determine 
P. distasonis role in relation to CVD.

7.7 Established pathogen in intestinal and 
non-intestinal abscess formation

Abscesses are a prime hotspot for numerous infectious 
bacteria to manifest and thrive. Clinical studies have 
reported finding culturable P. distasonis isolates in 
abscesses. Clinical studies and case reports have 
implied a possible role for P. distasonis in abscess 
formation in various tissues, including the 
spleen,120,121 liver,122 and wounds.33 For example, 
Gunalan et al.120 reported a case of splenic abscess in 
a 40-year-old man presenting to the hospital with 
fever, left-side abdominal pain, altered sensorium, 
and vomiting. After the patient received antimicrobial 
therapy and underwent a splenectomy, it was discov-
ered that pus aspirated from the splenic abscess grew 
P. distasonis. Gunalan et al.120 noted that this is one of 
only a few recorded cases of P. distasonis causing 
splenic abscess in humans; nonetheless, such 
a finding is alarming and supportive of a pathogenic 
role of P. distasonis in human infections.120 

Furthermore, CD4+ T-cells were shown to play a key 
role in the formation of P. distasonis-induced intra- 
abdominal abscesses in rodent models.123
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The mechanism behind P. distasonis pathology 
regarding abscess formation is still under investiga-
tion. One study examined the abscedative and 
intra-abdominal sepsis role of P. distasonis infec-
tions using rats that were intraperitoneally infected 
with different bacterial pathogens, namely, 
Staphylococcus aureus, Bacteroides fragilis, and 
a combination of Enterococcus faecium and 
P. distasonis.123 The study aimed to define the 
mechanisms by which i) T-cells mediate abscess 
induction secondary to intra-abdominal sepsis, ii) 
the contribution of T-cell activation and iii) the role 
of co-stimulation of antigen-presenting cells via 
CD28-B7 pathways. Researchers found that T cells 
activated with zwitterionic bacterial polysacchar-
ides in vitro required CD28-B7 co-stimulation to 
induce abscesses when adoptively transferred to the 
peritoneal cavity of naïve rats, promoting abscess 
formation. Although not exclusively specific to 
P. distasonis pathogenesis, the study demonstrated 
that blockade of T-cell activation via the CD28-B7 
with CTLA4Ig prevented abscess formation, while 
an alarming 82.4% (n = 28) of 34 induced abscess 
yielded P. distasonis.123

7.8 Cervical cancer, ketogenic diet and glutamate 
and gamma-aminobutyric acid

It has become apparent that P. distasonis might 
have a modulatory effect on the predisposition to 
or protection against numerous other types of dis-
eases. For example, elevated levels of P. distasonis 
were positively associated with the progression of 
cervical cancer.124 However, the number of patients 
in this particular study was rather small, so these 
results should be interpreted with caution. More 
possible positive roles for P. distasonis and 
P. merdae were described in another recent study. 
Both of these Parabacteroides species were shown 
to promote the beneficial anti-seizure effects of the 
ketogenic diet. Presence of these bacterial species 
strongly correlated with protection against seizures, 
potentially via increasing levels of glutamate and 
gamma-aminobutyric acid (GABA) in the 
hippocampus.125 Reduced levels of GABA are well- 
known to exacerbate seizures.126 Furthermore, 
a whole metagenome sequence analysis demon-
strated a lower abundance of P. distasonis in 

children with autism spectrum disorder (ASD) 
compared to their neurotypical counterparts. 
Here, metagenomic analysis revealed decreases in 
the expression of genes linked to the production of 
melatonin, butyric acid, and GABA.127 A summary 
of these and additional studies reporting an experi-
mental or observational effect on non-intestinal 
diseases is presented in Table 3.

8 Genomics, phages, and genetic engineering

Among the Parabacteroides species associated with 
the human gut, P. distasonis has the smallest genome 
(<5Mb, vs >6.5Mb) and the smallest repertoire of 
genes that are members of the environmental sen-
sing and gene regulation categories. P. distasonis 
type strain ATCC 8503 possesses a 4,811,369-bp 
genome, 3,867 protein-coding genes, and shares 
1,416 sets of orthologous protein-coding genes with 
other gut Bacteroidetes. Figure 2 illustrates the geno-
mic relatedness of the Parabacteroides genus with 
that of other relatively new reclassified genera within 
the Bacteroidetes phylum. Additionally, P. distasonis 
has the smallest number of genes associated with 
carbon source degradation; however, P. distasonis 
has two classes of carbohydrate-processing enzymes 
that are more abundant in its proteome than in the 
proteomes of other gut Bacteroidetes.37 According to 
the PATRIC database, all P. distasonis sequences 
strains correspond to single chromosome isolates, 
with only one phage reported in the system 
(Parabacteroides phage YZ-2015a, NCBI Taxon ID 
1,655,644)131.

Recently, a comparative genomic study of 
Microviridae, a family of bacteria-infecting 
ssDNA viruses (deemed as a poorly characterized 
bacteriophage group, even though it includes phage 
PhiX174, which is one of the main models in vir-
ology for genomic and capsid structure studies) 
across 17 peatlands showed that two new distinct 
prophages were identified in the genomes of 
P. merdae and P. distasonis representing 
a potential new subfamily of Microviridae that 
matches the protein similarity of the viron capsu-
latr protein VP1, in viromes of French wetlands.132

Elegantly, Quaiser et al.132 showed through Blast 
searches that the major capsid protein VP1 
sequences from the assembled viral wetland 
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genomes showed similarities to VP1 proteins 
encoded in the P. merdae and P. distasonis genomes.2 

The Parabacteroides VP1 genes show that genes 
encoding for homolog VP2 and VP4 genes (other 
capsular phage proteins) were juxtaposed next to the 
bacterial VP1 genes, supporting the presence of 
a prophage Microviridae in both Parabacteroides 
species. Comparing their organization, the identified 
prophage regions flanking the VP1 gene (5 kbp) 
were extracted from the genomes and considered 
circular for analysis, using the VP1 gene as an arbi-
trary start. Synteny analysis showed, remarkably, 
that the prophages have the same gene order in 
such bacteria (P. distasonis: VP1-ORF1-ORF2- 

ORF3-VP2-VP4, and P. merdae: VP1-ORF1-VP2- 
VP4) suggesting that both have a common func-
tional prophage ancestor. The gene coding for the 
arbitrarily assigned protein ORF1 downstream of 
VP1 in both bacteria were specific to each prophage 
and did not match to genes from other Microviridae 
or in NCBI non-redundant databases. This strength-
ens the hypothesis that these prophages represent 
a distinct subfamily of Microviridae, suggesting the 
relevance of this genus and species in water sources 
previously described.

P. distasonis can make deacetylated products 
available for itself and other components of the 
microbiota, devoting a greater proportion of its 

Table 3. Examples of studies reporting effects of Parabacteroides distasonis (PD) on non-intestinal health.
Disease of Interest Study Model Study Effect/Type of Association Effect/PMID

Necrotizing fasciitis 
(NF)128 

Muscular

Patient of study diagnosed with HIV. Fournier’s 
Gangrene Polymicrobial mixture isolated from 
a patient’s tissue culture. Computerized 
tomographic imaging

Opportunistic/polymicrobial mixture found in perineal 
and scrotal abscess included PD.

Aggravator

Oral Health and Patients 
with Acrylic partial 
dentures129 

Digestive

Patients lacking teeth and using prosthetic treatments. 
Microbial culture using Schaedler K3 solid medium 
with 5% sheep blood at 37°C after use of active 
toothpaste containing propolis and tee tree oil- 
containing hygienic agent versus control group.

PD isolated from some patients before and on day 7 of 
trial using tested toothpaste. Authors stated that PD 
was “eliminated” after use of active toothpaste.

N/A

Obesity, Hyperlipidemia, 
hepatic steatosis, 
Intestinal 
Gluconeogenesis106 

Digestive/Endocrine

Obese mouse models modulating gut microbiota. In 
vivo assays that validate beneficial effects of PD. The 
bacterial 16s rRNA regions V3 and V4 were 
sequenced using Illumina HiSeq PE250. The primers 
F341 and R806 were used.

PD associated with reduced weight gain, decrease of 
hyperglycemia, and hepatic steatosis in obese and 
high-fat (HDF)-fed mice. PD is lower in patients that 
are obese. Improved glucose homeostasis and 
obesity-related abnormalities.

Protective

Gestational diabetes 
mellitus and 
gestational 
diabetes109

Human, fecal samples GDM is associated with metabolic disorder phenotypes 
(obesity, low-grade inflammation, insulin 
resistance). PD has high abundance in women with 
GDM. Suggested as part of gut microbiota signature 
for GDM.

Positive 
Correlation 
(Aggravator?)

Amyotrophic lateral 
sclerosis (ALS)130 

Nervous System

ALS-prone Sod1 transgenic (Sod1-Tg) mouse models. 
16s rDNA sequencing was performed on region V4 
using a Illumina MiSeq kit with 2 × 250 BP pair- 
ended sequencing.

PD reportedly exacerbates ALS symptoms whereas 
other bacteria such as Akkermansia muciniphila (AM) 
improves ALS symptoms.

Aggravator

Multiple Sclerosis110 

Inflammation/ 
Neurological

Germ-free mouse models. PD was of less abundance in multiple sclerosis patients. 
However when introduced to mouse model. PD 
stimulated anti-inflammatory IL-10-expressing 
human CD4+ CD25 + T cells and IL-10+ FoxP3+ 
Tregs in mouse models.

Protective

Ankylosing spondylitis113 

Inflammation/ 
Autoimmune disorder

Fecal microbial metagenomic analysis of patients. PD along with other microbiota found in Ankylosing 
spondylitis (AS) patients. May be a trigger of 
autoimmunity via molecular mimicry.

Aggravator

Alopecia Areata117 

Autoimmune disorder
16S rRNA sequencing of stool samples. Alopecia areata is T-cell mediated autoimmune disease 

and gut microbiota has been identified as key 
modulator of this disease. PD could be used as 
potential diagnostic tools due to its enriched 
presence in stool samples.

Aggravator

Autism spectrum 
disorders127 

Developmental 
Disorder

Metagenomic analysis of fecal specimens of children. There were decreases in the average abundance of gut 
microbiota in children with autism spectrum 
disorder (ASD), including PD. Gut microbiota can be 
a neurometabolic signature for ASD transcriptional 
and metabolomic activity.

N/A
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Figure 2. Protein phylogram of 155 complete genomes of the Bacteroidetes phylum to illustrate the potential functional 
distinction of Parabacteroides distasonis from other species within the genus. The pipeline for genomic phylograms is described in 
detail based on information from PATRIC, the Pathosystems Resource Integration Center, https://docs.patricbrc.org. In short, the order- 
level pre-built trees in PATRIC are constructed by an automated pipeline that begins with amino acid sequence files for each genome. 
For each order-level tree the genomes from that order are used along with a small set of potential outgroup genomes. Branch values 
are not bootstrap values, which can be overly optimistic for long genomes. Instead, trees are built from random samples of 50% of the 
homology groups used for the main tree (gene-wise jackknifing). One hundred of these 50% gene-wise jackknife trees are made using 
FastTree, and the support values shown indicate the number of times a particular branch was observed in the support trees. As of 
January 12, 2021, there were 133 P. distasonis genomes available, of which 8 are complete (pie charts).131
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genome to protein degradation than other 
Bacteroidetes such as B. thetaiotaomicron.37 This 
supports the postulate that in vitro tests that quan-
tify the proteolytic activity of this and other poten-
tially pathogenic microbes are not predictive of the 
genomic potential that exists among gut 
Bacteroidetes. For example, gelatin hydrolysis and 
collagenase tests may suggest a lack of proteolytic 
activity in P. distasonis, but, as previously men-
tioned, we have recovered this species from micro 
cavitating (fistulizing) lesions in the gut wall of 
Crohn’s disease resected bowels, supporting the 
potential for proinflammatory activity in IBD.97 

Additional tests and growth assays will be per-
formed to confirm this observation.

As of January 12, 2021, there are 133 genomes 
for P. distasonis registered in the bioinformatics 
resource database PATRIC ver. 3.6.8, which pro-
vides integrated data and analysis tools to support 
biomedical research on infectious diseases, includ-
ing data on genome sequencing efforts.131 At least 
seven of these genome sequencing efforts are com-
plete assemblies of strains derived from sources 
described “feces,” “clinical isolates,” a “peritonitis 
case,” “sphagnum-peat soil,” and “intramural gut 
wall lesions from Crohn’s disease patients.”131 Most 
other registered genomes originate from isolates 
sourced from feces, while at least seven genomes 
originate from unspecified regions of the human 
gut and two additional genomes originate from 
unspecified parts of the rat gut. At least five gen-
omes originate from sources specified as “tissues.” 
Numerous isolates originate from mice. 
Unfortunately, however, most isolates have non-
specific descriptions with respect to the source.131

Other identified P. distasonis strains of interest 
include P. distasonis ATCC 82G9, P. distasonis 
NBRC 113,806, P. distasonis ATCC 8503, 
P. distasonis CavFT-Har46, and P. distasonis 
FDAARGOS_615. The complete genome sequence 
of P. distasonis CavFT-Har46 was completed by our 
team and is of great clinical interest as this strain 
was isolated from a gut wall-cavitating microlesion 
in a patient with severe Crohn’s Disease. We have 
identified that this strain exhibits an 80% match to 
other P. distasonis strains, including strains 
P. distasonis ATCC 8503 and 82G9, both isolated 
from the feces of patients.97

Due to horizontal gene transfer of antimicrobial 
resistance genes, Bacteroides and Parabacteroides 
isolates from European and American patients 
now show tetracycline and erythromycin resis-
tance, complicating genetic selection processes. 
Furthermore, while genetic manipulation via 
CRISPR-Cas9 can be done on Bacteroidales, off- 
target mutations, inefficient transformation, and 
the need for strain-specific modifications prevent 
CRISPR-Cas9 from being an effective method for 
molecular-level genetic manipulation.133 Recently, 
however, a new avenue for the genetic manipula-
tion of P. merdae and diverse Bacteroides isolates 
from the human gut microbiota has been identified 
by García-Bayona & Comstock. This avenue con-
sists of placing a selection cassette based on the 
dietary fiber inulin (the selection of which 
P. merdae is thought to be amenable to) into 
pNBU2, a “pir-dependent suicide vector,” resulting 
in facilitated transconjugation in P. merdae. This 
signifies that this combination, dubbed “pLGB28,” 
could be utilized in the genetic engineering of 
P. distasonis, thus providing a facilitated method 
of genetic manipulation for the species.133

9 Conclusions and future directions

P. distasonis is a unique bacterium that is involved in 
many of the biochemical processes of numerous 
human diseases. While there are apparent associa-
tions between P. distasonis, related IBDs, and 
numerous other diseases, there is a lack of an estab-
lished consensus on P. distasonis’ role in modulating 
the human gut microbiota and, more importantly, 
the pathogenicity of the bacterium. Going forward, 
the directive for new studies is to understand and 
identify the mechanisms of P. distasonis, its patho-
genesis, its antimicrobial resistance, and its com-
mensal relationship with the gut mucosal wall. 
Additionally, it is imperative to understand its 
impact on our intestinal microbiota.

Ultimately, it may be that P. distasonis does not 
cleanly fit into either the beneficial commensal bacter-
ium or pathogenic bacterium categories: perhaps 
P. distasonis, and potentially, other species of bacteria, 
straddle both definitions. If this were the case, it could 
have major implications for research on the gut 
microbiome, including prompting further 
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investigation into other bacteria thought to be bene-
ficial commensals for potential pathogenicity. 
However, more research is needed to determine 
whether P. distasonis truly straddles both the patho-
genic and beneficial commensal definitions.
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This is a review of the controversial and intriguing roles of 
Parabacteroides distasonis (PD) on human and animal health. 
This is a re-classified bacterium, originally called Bacteroides 
distasonis, and a part of the Bacteroidetes phylum. This well- 
established and extensively described bacterium was identified 
and isolated from patients with clinical infections as well as 
from microscopic cavitating lesions in the gut wall of a patient 
with Crohn’s disease, a major prototype of inflammatory bowel 
disease (IBD). These observations contrast those made by other 

investigators who have reported potential probiotic effects of 
P. distasonis for a multitude of diseases, including IBD.
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