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Abstract

Background: Identifying biological pathways that vary across the age spectrum can provide insight into fundamental
mechanisms that impact disease and frailty in the elderly. Few methodological approaches offer the means to explore this
question on as broad a scale as gene expression profiling. Here, we have evaluated mRNA expression profiles as a function
of age in two populations; one consisting of 191 individuals with ages-at-death ranging from 65–100 years and with post-
mortem brain mRNA measurements of 13,216 genes and a second with 1240 individuals ages 15–94 and lymphocyte mRNA
estimates for 18,519 genes.

Principal Findings: Among negatively correlated transcripts, an enrichment of mitochondrial genes was evident in both
populations, providing a replication of previous studies indicating this as a common signature of aging. Sample differences
were prominent, the most significant being a decrease in expression of genes involved in translation in lymphocytes and an
increase in genes involved in transcription in brain, suggesting that apart from energy metabolism other basic cell processes
are affected by age but in a tissue-specific manner. In assessing genomic architecture, intron/exon sequence length ratios
were larger among negatively regulated genes in both samples, suggesting that a decrease in the expression of non-
compact genes may also be a general effect of aging. Variance in gene expression itself has been theorized to change with
age due to accumulation of somatic mutations and/or increasingly heterogeneous environmental exposures, but we found
no evidence for such a trend here.

Significance: Results affirm that deteriorating mitochondrial gene expression is a common theme in senescence, but also
highlight novel pathways and features of gene architecture that may be important for understanding the molecular
consequences of aging.
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Introduction

A decline in cell function with advancing age is a ubiquitous

characteristic of all organisms. In humans, the effects of aging

become manifest on a variety of levels that extend from an

accumulation of DNA mutations to lipid oxidation, protein

modification, cell loss, and ultimately death that is primarily due

to increased susceptibility to age-related diseases [1]. Apart from

overt changes, such as declining muscle strength, extensive

metabolic alterations also occur with aging, one of the most

prominent being impaired glucose tolerance [2]. Two central

evolutionary theories hypothesize that the detrimental effects of

aging are due to an accumulation of mutations, or antagonistic

pleiotropy, whereby genes with beneficial effects early in life

become deleterious with age [3]. These are not necessarily

exclusive, and there is at present relatively strong evidence for

both in studies of model organisms and in natural pop-

ulations [3,4].
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Whatever the cause, there is value in charting the molecular

sequelae of aging on as broad a scale as possible. Few other

methodological approaches lend themselves as well to this as

mRNA expression profiling. There have been a handful of studies

that have attempted to catalogue how mRNA expression changes

with age, the largest of which have been performed in kidney [5]

and muscle samples [6]. An intriguing conclusion from the latter

study is that there may be a common set of genes that change

equivalently in different tissues. For example genes that make up

the mitochondrial electron transport chain appear to decrease with

age in different tissues, and this is supported in that decreases are

also evident in mice and flies [6]. Importantly however, these

studies remain relatively small in scale and few in number thus

meriting larger studies in additional populations and tissues.

The effects of aging are particularly pronounced in the human

brain where characteristic changes in morphology include a

reduction in both neuronal size and synaptic density [7,8]. On a

behavioral level, decreases in motor and cognitive function are

hallmarks of normal aging [9]. Dementia is the most prevalent

disorder of the human brain, affecting 20–25 million people

worldwide and representing a tremendous burden in terms of

years of suffering with disability [10]. To date, there has been only

one study, involving 30 individuals, on the effects of aging on gene

expression at a transcriptome-level in the normal human brain

[11]. There the authors described a number of pathways affected

by aging and also concluded that genes for which down-regulation

was evident had an over-representation of mutation in gene

promoters. A recent study examined the effects of gene

polymorphism on gene expression in a relatively large set of

human brain samples [12]. An attractive feature of that study was

that individuals, prior to death, were free of neurological disease.

Our primary focus in the present study has been to use the above

sample to investigate the question of whether general changes in

gene expression occur in the aging human brain. This has been

complemented with an analysis of lymphocyte mRNA expression

in order to explore for common molecular themes in different

tissues as well as to enable an assessment of a broader age range

than that typically available in post-mortem samples.

Results

We began by performing several validation steps towards the

initial goal of evaluating if age-related change in gene expression

could be detected in the human brain. First, evidence was sought

for systematic outlier effects among the 2,096,975 individual

expression level estimates. We identified all expression values that

were more than 3.4644 standard deviations from the mean

expression value for that particular transcript (see methods for an

explanation for choosing this threshold). With this, we expected to

see approximately 1,086 outliers by chance in the entire set

assuming normal distributions of the log10 transformed data.

There were 7,079 outliers identified in this way, and these were

eliminated from all further analyses. Second, the focus of the

original study was primarily upon brain cortex, with 5 subsets

being represented, 3 cortical, one group of 6 cerebellum samples

and an additional group of samples for which no specific region

could be assigned. We assessed whether these classifications

differed systematically with regards to transcript detection rates

and global expression levels using ANOVA (see methods). Across

the various brain region categories there were no significant

differences for any these covariates. Simple linear regression was

also performed for age-at-death and pmi versus global expression

level. For this, there was marginal evidence that age-at-death

correlated with global expression (P = 0.080, r2 = 0.016). For pmi

however, the trend was significant, but the direction of the curve

suggested that expression was increasing with increasing pmi

(P = 0.0039. r2 = 0.046). Of note, linear regression of the 2 global

expression covariates (see methods) and detection rate metrics (one

reflecting all 24,357 transcripts probed by the Illumina Human-

Refseq-8 chip and the other reflecting the 14,078 transcripts

detected in this brain sample) all showed strong correlation (r2 in

excess of 0.5 for all 6 comparisons). Based upon all of the above

tests, we resolved to use the global average expression level that

includes all 14,078 transcripts as a primary metric of quality as a

covariate for initial analyses.

For the brain sample, we regressed age-at-death on transcript

levels one at a time for all 14,078 transcripts that had been

detected in 5 or more individuals in the original study. The results

of this are shown in Tables 1 and 2, where we document 54

transcripts that exhibited significant change after Bonferroni

correction for 14,078 tests. For purposes of illustration, regression

lines for the top 6 scoring genes (3 up-regulated and 3 down-

regulated) are also displayed in Figure 1. For this analysis, the most

significant finding was for the SVOP gene (encoding a synaptic

vesicle protein), and the single strongest effect in terms of variance

explained was for the TAC3 gene (encoding tachykinin 3). The

smallest number of individuals for which a significant correlation

with age was detected was 133 (also for the TAC3 gene). We noted

that 3 of the top scoring 54 genes were also present in a list of 532

putative ‘‘housekeeping’’ genes (see [13]), these being PIN1, GUK1,

and ARPC2. This proportion is not significantly different from

what would be expected by chance (3 vs. 51 compared to 532 vs.

6968). At this stage, we also scrutinized this list of 54 genes more

closely for the potential impact of covariates. For this, multiple

regression models were fitted as above, but for each transcript in

turn we also included terms for pmi, brain region, or gender. All

54 genes remained highly significant when any of these were

individually tested (not shown). Among the top 54 transcripts, all

were detectable in more than 100 individuals, reinforcing the

importance of power in analyses such as this. There were however

a few cases where a small number of observations gave rise to

apparently large effects. The gene that ranked as the 139th most

significant finding (falling below the multiple test correction

threshold), ZIC3, had only 14 expression level observations and

an r2 = 0.76 (P = 2.661025). This highlighted the possibility that

genes with lower maximum expression levels might be changing to

a larger degree with age, but technologies with lower detection

thresholds and/or larger sample sizes would be required to identify

them.

We contrasted the individual transcript results of this analysis

with the first study to address the impact of aging on expression at

the transcriptome level [11]. In that study, 30 individuals were

included with an age range of 26–106. Our set was scrutinized for

the 148 genes previously highlighted to be associated with aging

(see specifically table 1 from [11]). Only one gene from our set that

survived strict multiple testing correction was also present in their

set, this being MRPL28. With a relaxed uncorrected significance

threshold in our set of 0.005, we found 26 overlapping genes. This

proportion is significant given that we observed 1,141 transcripts

in our set that were significant at the 0.005 threshold, suggesting

that some replication exists, albeit limited (26 vs. 122 compared to

1,141 vs. 12,937). In our set, the majority of significant genes

exhibited a decrease in expression with advancing age. An

intriguing aspect of this comparison was that among the 26

overlapping genes, there were 9 for which expression increased

with age in the original study, and for all 9 these were increased

with age in the present study. Due to the consistency in the

direction of the effects, this might be considered a stronger case for
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replication. Seven of these 9 genes were previously considered as a

class of stress response genes.

We explored an expanded list of genes that exceeded a relaxed

significance threshold (uncorrected P,0.05) for enrichment or

deficit based upon Gene Ontology (GO) terms and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. The

entire set of genes was divided into two groups based upon

whether expression was increasing or decreasing with age. We

then searched for over- or under-represented terms and pathways

in each list of genes using the DAVID web application [14]. For

this we created a diminished non-redundant set of 13,216 base

genes from the total set of 14,078 by eliminating multiple

transcripts representing the same gene (see methods). The

enriched terms (Bonferroni corrected P,0.05) are shown in

Tables 3 and 4, excluding the ancestor terms that became

significant mainly by an overrepresented descendant in the GO

structure. A larger list of all overrepresented terms and pathways

with a less stringent threshold (uncorrected P,0.01) is shown in

Tables S1 and S2. In summarizing these results, the genes whose

products are involved in DNA-binding were the most significantly

overrepresented group among genes whose expression increases

with age (Table 4). Genes with products involved in the regulation

of DNA-dependent transcription and genes encoding proteins

located in or a subcomponent of the nucleus were also significantly

enriched. Among all genes negatively correlated with age, the most

significantly enriched groups included genes involved in nervous

system development, mitochondrial genes, and those whose

products are constituents of the cytoplasm (Table 3). We also

highlighted the degree of enrichment in terms of a fold change (the

number of genes that give rise to this number are shown in Tables

S1 and S2). Thus, in quantitative terms the most enriched genes

occurred in the set of negatively correlated transcripts, where

Table 1. Genes whose expression decreases with age in the human brain.

Symbol Description Chr.Pos P valuea R2 b

SVOP SV2 related protein homolog (rat) 12q 4.3(1029) 0.14

HBQ1 hemoglobin, theta 1 16p 8.6(1028) 0.13

MRPL28 mitochondrial ribosomal protein L28 16p 1.0(1027) 0.14

TAC3 tachykinin 3 (neuromedin K, neurokinin beta) 12q 1.0(1027) 0.18

C6orf154 chromosome 6 open reading frame 154 6p 1.5(1027) 0.13

SLC25A6 solute carrier family 25, member A6 Xp/Yp 1.9(1027) 0.14

ST3GAL2 ST3 beta-galactoside alpha-2,3-sialyltransferase 2 16q 2.2(1027) 0.15

PIN1 peptidylprolyl cis/trans isomerase, NIMA-interacting 1 19p 3.2(1027) 0.13

ARPC2 actin related protein 2/3 complex, subunit 2, 34 kDa 2q 3.2(1027) 0.14

KCNF1 potassium voltage-gated channel, subfamily F, member 1 2p 4.1(1027) 0.12

GSS glutathione synthetase 20q 4.3(1027) 0.11

LOC255849 hypothetical LOC255849 4.5(1027) 0.12

HMGB3 high-mobility group box 3 Xq 4.8(1027) 0.13

TMEM121 transmembrane protein 121 14q 6.1(1027) 0.14

CAMK2N1 calcium/calmodulin-dependent protein kinase II inhibitor 1 1p 6.4(1027) 0.12

OLFM1 olfactomedin 1 9q 7.4(1027) 0.13

KCNIP1 Kv channel interacting protein 1 5q 9.2(1027) 0.12

FABP3 fatty acid binding protein 3 1p 1.1(1026) 0.08

GUK1 guanylate kinase 1 1q 1.2(1026) 0.13

COPS7A COP9 constitutive photomorphogenic homolog subunit 7A (Arabidopsis) 12p 1.3(1026) 0.07

VIP vasoactive intestinal peptide 6q 1.4(1026) 0.11

PQLC1 PQ loop repeat containing 1 18q 1.6(1026) 0.13

FLJ34048 hypothetical transcript 1.6(1026) 0.12

CYP46A1 cytochrome P450, family 46, subfamily A, polypeptide 1 14q 2.0(1026) 0.11

ATG7 ATG7 autophagy related 7 homolog (S. cerevisiae) 3p 2.1(1026) 0.11

CXCL14 chemokine (C-X-C motif) ligand 14 5q 2.3(1026) 0.13

NXPH1 neurexophilin 1 7p 2.6(1026) 0.11

C17orf76 chromosome 17 open reading frame 76 2.7(1026) 0.17

NPM3 nucleophosmin/nucleoplasmin, 3 10q 3.1(1026) 0.08

LHX6 LIM homeobox 6 9q 3.2(1026) 0.07

FRMPD2 FERM and PDZ domain containing 2 10q 3.4(1026) 0.07

HSD11B1L hydroxysteroid (11-beta) dehydrogenase 1-like 19p 3.5(1026) 0.12

SMAD3 SMAD family member 3 15q 3.5(1026) 0.09

aP-value with the null hypothesis b1 = 0 in linear regression model Y = b0+b1x1+b2x2+e, where Y is transcript expression, x1 age-at-death, x2 global expression, and e
random error. bCoefficient of determination of linear regression model Y = b0+b1x1+e, where each variable is as described above.

doi:10.1371/journal.pone.0003024.t001
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dendrite genes and genes associated with neuronal projections

were enriched more than 3 fold (Table 3). In contrast, although

highly significant in some cases, genes whose expression is

increasing with age are enriched a maximum of 1.80 fold

(Table 4). As a comparison, the probabilities for the enriched

terms to be underrepresented by chance within the opposite group

Table 2. Genes whose expression increases with age in the human brain.

Symbol Description Chr.Pos P valuea R2 b

ELF2 E74-like factor 2 (ets domain transcription factor) 4q 5.3(1029) 0.16

C1orf162 chromosome 1 open reading frame 162 1p 6.0(1029) 0.13

LRCH4 leucine-rich repeats and calponin homology (CH) domain containing 4 7q 2.9(1028) 0.09

MTUS1 mitochondrial tumor suppressor 1 8p 6.8(1028) 0.12

RUFY1 RUN and FYVE domain containing 1 5q 7.0(1028) 0.10

RDH5 retinol dehydrogenase 5 (11-cis/9-cis) 12q 1.4(1027) 0.06

TYK2 tyrosine kinase 2 19p 1.8(1027) 0.10

CLK1 CDC-like kinase 1 2q 2.1(1027) 0.14

TXNIP thioredoxin interacting protein 1q 2.1(1027) 0.10

SLC16A9 solute carrier family 16 (monocarboxylic acid transporters), member 9 10q 4.8(1027) 0.06

ADORA3 adenosine A3 receptor 1p 5.1(1027) 0.10

UCKL1 uridine-cytidine kinase 1-like 1 20q 7.4(1027) 0.11

CTDSP2 nuclear LIM interactor-interacting factor 2 12q 1.1(1026) 0.05

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 6p 1.2(1026) 0.09

PATL1 protein associated with topoisomerase II homolog 1 (yeast) 11q 1.4(1026) 0.12

GDPD3 glycerophosphodiester phosphodiesterase domain containing 3 16p 1.4(1026) 0.07

BHLHB3 basic helix-loop-helix domain containing, class B, 3 12p 1.7(1026) 0.07

RNASE4 ribonuclease, RNase A family, 4 14q 1.9(1026) 0.06

PLEKHM1 pleckstrin homology domain containing, family M (with RUN domain) member 1 17q 2.5(1026) 0.04

FAM46A family with sequence similarity 46, member A 6q 3.4(1026) 0.06

CALCOCO1 calcium binding and coiled-coil domain 1 12q 3.5(1026) 0.09

aP-value with the null hypothesis b1 = 0 in linear regression model Y = b0+b1x1+b2x2+e, where Y is transcript expression, x1 age-at-death, x2 global expression, and e
random error. bCoefficient of determination of linear regression model Y = b0+b1x1+e, where each variable is as described above.

doi:10.1371/journal.pone.0003024.t002

Figure 1. Scatter plots and fitted linear regression lines of the most significantly associated down-regulated (a–c) and up-regulated
(d–f) genes with age-at-death in brain samples.
doi:10.1371/journal.pone.0003024.g001
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of genes are also shown in the last two columns of Tables 3 and 4.

For example, from Table 4, we show that the term ‘‘nucleus’’

which is significantly enriched in the set of genes that are

increasing with age is also in deficit in the set of genes that are

decreasing with age.

We extended the above analytical scheme to a second sample

consisting of 1240 individuals with lymphocyte mRNA measures

for 19,648 transcripts representing 18,519 genes. We note that a

rigorous standardization procedure had been applied to this set

previously [15] and we thus elected not to perform any additional

transformations, nor to include any additional covariates (see

methods). Linear regression was performed as above on all 19,648

transcripts versus age for this sample. Given its size, and compared

to the brain sample, there were many more transcripts that

exceeded a strict Bonferroni significance threshold, and we chose

to present only the top 50 (25 negatively and 25 positively

correlated with age) which are shown in Tables 5 and 6, arbitrarily

truncated from a total of 1080 (612 negative and 468 positive).

The top 3 scoring negatively regulated genes and top 3 scoring

positively regulated genes are shown in Figure 2. The most

significant finding in this set was for the LRRN3 (encoding a

membrane protein with unknown function), and this was also the

gene upon which age exhibited the largest effect (28% variance

explained). Interestingly, the second largest effect observed in this

set was 14% variance explained, representing in our view an

anomalous drop from the top ranking gene. As was done for the

brain sample, we again divided this list into up- and down-

regulated genes and performed term/pathway based analyses. An

arbitrary significance level of 0.01 was chosen from the linear

regression results to establish these 2 lists (this differed from the

Table 3. Terms in the Gene Ontology and KEGG pathway databases over-represented among genes that decreased expression
with advancing age in the human brain (1,450 genes in total 13,216).

Category Term P valuea Bonferroni Foldb Increasing groupc

Foldb P valued

GO Bio.Process nervous system development 7.8(1029) 3.8(1025) 1.73 0.76 6.7(1023)

synaptic transmission 7.4(1027) 3.5(1023) 2.07 0.28 3.1(1027)

oxidative phosphorylation 1.4(1026) 6.7(1023) 2.73 0.15 5.3(1025)

GO Cell.Component cytoplasmic part 9.0(10211) 7.2(1028) 1.29 0.76 4.2(10211)

mitochondrion 1.5(10210) 1.2(1027) 1.65 0.54 7.7(10210)

neuron projection 2.3(10210) 1.8(1027) 3.41 0.40 1.0(1022)

synapse 1.8(1029) 1.4(1026) 2.55 0.42 6.4(1024)

mitochondrial membrane part 8.7(1029) 6.9(1026) 2.95 0.14 1.8(1025)

mitochondrial inner membrane 3.1(1028) 2.5(1025) 2.11 0.45 5.4(1025)

mitochondrial respiratory chain 4.9(1026) 3.9(1023) 2.99 0.11 4.3(1024)

dendrite 5.2(1026) 4.2(1023) 3.60 0.17 1.1(1022)

GO Mol.Function hydrogen ion transmembrane transporter activity 1.8(1026) 4.7(1023) 2.70 0.58 5.1(1022)

KEGG Pathway Oxidative phosphorylation 1.9(1029) 3.8(1027) 2.66 0.25 1.4(1024)

aEASE-score, P-value of a modified Fisher’s exact test for overrepresentation [35]. bFold enrichment in each gene group compared to the base set. cGene group with
expression that increases with advancing age-at-death (same genes used in Table 4, 1943 genes). dHypergeometric test for underrepresentation using annotated genes
from a total set of 13,216 genes as base population [36].

doi:10.1371/journal.pone.0003024.t003

Table 4. Terms in the Gene Ontology and KEGG pathway databases over-represented among genes that increased expression
with advancing age in the human brain (1,943 genes in total 13,216).

Category Term P valuea Bonferroni Foldb Decreasing groupc

Foldb P valued

GO Bio.Process regulation of transcription, DNA-dependent 2.1(10213) 1.0(1029) 1.43 0.56 6.1(10213)

chromosome organization and biogenesis 1.4(1027) 6.8(1024) 1.80 0.53 1.4(1023)

DNA packaging 4.7(1026) 2.2(1022) 1.78 0.49 1.9(1023)

DNA metabolic process 6.4(1026) 3.0(1022) 1.45 0.59 7.6(1025)

GO Cel.Component nucleus 1.2(10213) 9.6(10211) 1.26 0.75 3.7(10211)

GO Mol.Function DNA binding 6.8(10214) 1.7(10210) 1.44 0.52 1.1(10214)

zinc ion binding 1.7(10211) 4.3(1028) 1.39 0.64 6.3(1029)

transcription regulator activity 1.1(1026) 2.7(1023) 1.38 0.65 1.8(1025)

aEASE-score, P-value of a modified Fisher’s exact test for overrepresentation [35]. bFold enrichment in each gene group compared to the base set. cGene group with
expression that decreases with advancing age-at-death (same genes used in Table 3, 1450 genes). dHypergeometric test for underrepresentation using annotated
genes from a total set of 13,216 genes as base population [36].

doi:10.1371/journal.pone.0003024.t004
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brain sample for which a threshold of 0.05 was set due to the

number of genes exceeding significance in lymphocytes and a 2000

gene limit set by the DAVID web tool). The total set of 19,648

transcripts for which regression was performed, was reduced to

13,231 for which annotations could be obtained towards analysis

using the DAVID web application. The results of this are shown in

Tables 7 and 8 where Bonferroni corrected (P,0.05) enriched

terms and pathways are documented. As was done for the brain

sample, an expanded list of enriched terms and pathways

according to relaxed uncorrected significance threshold of

P,0.01 is shown in Tables S3 and S4. The main highlight in

our view is the highly significant enrichment of mitochondrial

genes in the negatively regulated group (Table 7), providing a

replication of what was seen in the brain. In general, the

magnitude of the fold-change in term/pathway enrichment was

larger in the set of negatively regulated genes, also in agreement

with what was seen in brain.

Based upon the identified lists of age-related genes for both

brain and lymphocyte samples, we also explored for differences in

basic genomic architecture. Our guide for this was a detailed

analysis recently presented on characteristics of housekeeping

genes [13]. The results of this analysis are presented in Tables 9

and 10, where we document the differences between the up and

down-regulated sets in comparison with the characteristics of the

non-regulated genes. In summarizing these results, while we found

some striking differences, for example with coding sequence length

in brain, we note that this was not replicated in lymphocytes.

Instead we highlight a single category that does appear to be

replicating, namely the ratio of average intron to average exon

sequence length. We used second-order factorial ANOVA models

to perform combined analyses for all variables. For this, the

intron/exon sequence ratio is highly significant (F2,24158 = 41.57,

P = 9.5610219) with no evidence of interaction between the two

sets (P = 0.69). This can be taken in context with the same analysis

for coding sequence length, where the tissue by group (group

defined by up, down, or non-regulated genes) interaction term was

highly significant (P,0.0001). For all other combined analyses, the

main group effect was either non-significant or the interaction

term was highly significant (P,0.0001).

Finally, we used these two samples to pursue the question of

whether variance in gene expression itself changes with age. Our

hypothesis was that variance might increase with age as a

consequence of accumulating somatic mutation [11] and/or

increasingly heterogeneous environmental exposures. For the brain

sample, an F-test for equality of variances was conducted on all

14,078 transcripts by dividing the sample in two groups according to

the median age. We observed only 10 genes that exceeded a strict

multiple test correction threshold and in each case there was

evidence that the distributions of these genes deviated from

normality. There was no overlap in this set for the highest scoring

candidates with genes found to change with age in the linear

regression analyses. There were 6 cases where an age-related gene

Table 5. Genes whose expression decreases with age in human lymphocytes.

Symbol Description Chr.Pos P valuea R2

LRRN3 leucine rich repeat neuronal 3 7q 5.1(10294) 0.29

FCGBP Fc fragment of IgG binding protein 19q 7.5(10244) 0.14

FBLN2 fibulin 2 3p 8.1(10244) 0.14

NRCAM neuronal cell adhesion molecule 7q 3.3(10243) 0.14

ITM2C integral membrane protein 2C 2q 1.8(10239) 0.13

PDE9A phosphodiesterase 9A 21q 4.9(10237) 0.12

ZNF154 zinc finger protein 154 19q 5.3(10236) 0.12

ZSCAN18 zinc finger and SCAN domain containing 18 19q 4.7(10235) 0.12

SATB1 SATB homeobox 1 3p 9.8(10235) 0.11

FLNB filamin B, beta (actin binding protein 278) 3p 1.1(10234) 0.11

FAM134B family with sequence similarity 134, member B 5p 3.1(10234) 0.11

SCD stearoyl-CoA desaturase (delta-9-desaturase) 10q 8.8(10234) 0.11

SREBF1 sterol regulatory element binding transcription factor 1 17p 4.5(10233) 0.11

CCR7 chemokine (C-C motif) receptor 7 17q 6.3(10233) 0.11

PHGDH phosphoglycerate dehydrogenase 1p 1.1(10232) 0.11

LEF1 lymphoid enhancer-binding factor 1 4q 5.3(10232) 0.11

NPM3 nucleophosmin/nucleoplasmin, 3 10q 9.8(10232) 0.11

OXNAD1 oxidoreductase NAD-binding domain containing 1 3p 2.1(10231) 0.10

TNNT3 troponin T type 3 (skeletal, fast) 11p 3.4(10230) 0.10

PLEKHG4 16q 5.8(10230) 0.10

MGC9913 hypothetical protein MGC9913 1.5(10229) 0.10

SLC7A6 solute carrier family 7 (cationic amino acid transporter, y+ system), member 6 16q 4.4(10229) 0.10

CD27 CD27 molecule 12p 6.1(10229) 0.10

AEBP1 AE binding protein 1 7p 1.0(10228) 0.10

MGC29506 hypothetical protein MGC29506 5q 1.2(10228) 0.09

aP-value with the null hypothesis b1 = 0 in linear regression model Y = b0+b1x1+e, where Y is transcript expression, x1 age, and e random error.
doi:10.1371/journal.pone.0003024.t005
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Table 6. Genes whose expression increases with age in human lymphocytes.

Symbol Description Chr.Pos P valuea R2

IGFBP3 insulin-like growth factor binding protein 3 7p 1.7(10270) 0.22

SYT11 synaptotagmin XI 1q 7.4(10260) 0.19

GZMH granzyme H (cathepsin G-like 2, protein h-CCPX) 14q 2.0(10248) 0.16

JAKMIP1 janus kinase and microtubule interacting protein 1 4p 5.4(10245) 0.15

RCAN2 regulator of calcineurin 2 6p 1.5(10243) 0.14

CRIP1 cysteine-rich protein 1 (intestinal) 14q 1.9(10239) 0.13

PATL2 protein associated with topoisomerase II homolog 2 (yeast) 1.2(10238) 0.13

MSC musculin (activated B-cell factor-1) 8q 5.9(10232) 0.11

GDPD5 glycerophosphodiester phosphodiesterase domain containing 5 11q 3.1(10230) 0.10

APOBEC3H apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3H 22q 2.3(10229) 0.10

CCL5 chemokine (C-C motif) ligand 5 17q 7.1(10229) 0.10

GFI1 growth factor independent 1 transcription repressor 1p 2.4(10228) 0.09

MANEAL mannosidase, endo-alpha-like 1p 2.9(10228) 0.09

KIF21A kinesin family member 21A 12q 3.1(10227) 0.09

GPR137B G protein-coupled receptor 137B 1q 5.4(10227) 0.09

PDGFRB platelet-derived growth factor receptor, beta polypeptide 5q 3.7(10226) 0.09

PCBP4 poly(rC) binding protein 4 3p 8.1(10226) 0.09

B3GAT1 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P) 11q 1.1(10225) 0.08

LLGL2 lethal giant larvae homolog 2 (Drosophila) 17q 4.7(10225) 0.08

LAG3 lymphocyte-activation gene 3 12p 5.1(10225) 0.08

PPP2R2B beta isoform of regulatory subunit B55, protein phosphatase 2 isoform b 5q 1.5(10224) 0.08

hypothetical gene supported by BC040060 9.1(10224) 0.08

PRSS23 protease, serine, 23 11q 1.5(10223) 0.08

B4GALT5 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 20q 1.9(10222) 0.07

MXRA7 matrix-remodelling associated 7 17q 3.0(10222) 0.07

aP-value with the null hypothesis b1 = 0 in linear regression model Y = b0+b1x1+e, where Y is transcript expression, x1 age, and e random error.
doi:10.1371/journal.pone.0003024.t006

Figure 2. Scatter plots and fitted linear regression lines of the most significantly associated down-regulated (a–c) and up-regulated
(d–f) genes with age in lymphocyte samples.
doi:10.1371/journal.pone.0003024.g002
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also had a borderline significant F-test (P,0.05). This proportion

was not significantly different than what could be found in the entire

set (not shown). For the lymphocyte set, we took a slightly different

approach due to its size and rather than dividing the sample at the

median chose to examine decile bins and applied a Levene’s robust

variance test to explore for differences across age groups. There was

again no strong evidence that variance differed across these

groupings, the most significant finding being for the NLP gene

(P = 2.361026), and with only 2 genes in total attaining significance

after multiple test correction. As a final closing note, we enumerated

the number of statistical tests used in this study in its entirety,

arriving at an approximate number of 110,000. This may be used as

a reference for any of the un-corrected P-values that are presented.

Discussion

We consider the most important finding in this study to be that

expression levels of genes involved in mitochondrial processes are

decreasing with age, as originally proposed by Zahn et al. and also

supported by Miller et al. [6,16]. In the former study, a key

observation was that this is apparent in multiple tissues as well as

in species other than humans. The present analysis provides a

confirmation of this as a common characteristic of aging, in that

this evident in both brain and lymphocytes. For these two samples

there are also tissue specific themes that have emerged that we

consider a validation of the quality of the expression phenotypes

originally obtained. In the brain sample, consistent with previous

results [11], a decrease in genes involved in synaptic function was

observed, which follows from the documented changes in synaptic

function that occur with age [8]. In lymphocytes, there was

evidence that genes involved in the immune response increase

expression with age, which might be regarded as a reflection of

chronic persisting viruses such as cytomegalovirus (CMV) [17].

While we acknowledge central differences in these samples that

include ethnicity, the age ranges, sample size, and the cell types

represented, in this discussion we highlight these and other

pathways with a comparison of the two different tissues as a

guide.

Table 7. Terms in the Gene Ontology and KEGG pathway databases over-represented among genes that decreased expression
with advancing age in human lymphocytes (1,878 genes in total 13,232).

Category Term P valuea Bonferroni Foldb Increasing groupc

Foldb P valued

GO Bio.Process translation 4.2(10221) 2.0(10217) 2.19 0.60 8.7(1024)

cellular biosynthetic process 6.7(10221) 3.2(10217) 1.83 0.79 1.5(1022)

gene expression 4.0(10218) 1.9(10214) 1.36 0.70 3.1(10211)

ribosome biogenesis and assembly 1.5(1028) 7.2(1025) 2.90 0.23 5.9(1023)

tRNA metabolic process 2.9(1028) 1.4(1024) 2.57 0.52 4.7(1022)

RNA metabolic process 2.2(1027) 1.0(1023) 1.24 0.71 6.9(1029)

RNA processing 8.9(1027) 4.2(1023) 1.61 0.23 2.5(10211)

tRNA processing 4.3(1026) 2.0(1022) 2.82 0.63 2.2(1021)

rRNA processing 8.4(1026) 3.9(1022) 2.80 0.16 1.1(1022)

GO Cell.Component ribosome 2.0(10223) 1.5(10220) 3.02 0.09 1.1(1028)

ribosomal subunit 4.2(10221) 3.3(10218) 3.59 0.08 1.1(1025)

ribonucleoprotein complex 1.6(10220) 1.3(10217) 2.19 0.22 3.5(10212)

organelle lumen 9.0(10216) 7.0(10213) 1.71 0.55 2.2(1027)

mitochondrion 5.0(10212) 3.9(1029) 1.62 0.60 7.4(1026)

small ribosomal subunit 2.7(10211) 2.2(1028) 3.72 0.00 1.1(1023)

large ribosomal subunit 1.4(10210) 1.1(1027) 3.45 0.14 4.6(1023)

cytosolic part 3.1(10210) 2.5(1027) 2.60 0.63 8.0(1022)

nucleolus 5.6(10210) 4.4(1027) 2.42 0.47 8.7(1023)

intracellular organelle part 4.9(1029) 3.8(1026) 1.24 0.83 1.4(1024)

mitochondrial part 6.4(1029) 5.0(1026) 1.72 0.63 1.9(1023)

mitochondrial matrix 1.5(1028) 1.2(1025) 2.25 0.39 1.8(1023)

mitochondrial small ribosomal subunit 4.5(1025) 3.4(1022) 4.25 0.00 1.1(1021)

GO Mol.Function structural constituent of ribosome 9.4(10222) 2.4(10218) 3.08 0.10 1.2(1027)

nucleic acid binding 2.4(10219) 6.0(10216) 1.40 0.64 1.1(10214)

RNA binding 2.6(10219) 6.7(10216) 1.95 0.34 1.3(10211)

methyltransferase activity 3.0(1026) 7.6(1023) 2.11 0.33 1.3(1023)

oxidoreductase activity (NAD or NADP) 5.2(1026) 1.3(1022) 2.60 0.76 3.1(1021)

KEGG Pathway Ribosome 1.1(10217) 2.2(10215) 3.97 0.00 3.4(1025)

aEASE-score, P-value of a modified Fisher’s exact test for overrepresentation [35]. bFold enrichment in each gene group compared to the base set. cGene group with
expression that increases with advancing age (same genes used in Table 8, 1430 genes). dHypergeometric test for underrepresentation using annotated genes from a
total set of 13,232 genes as a base population [36].

doi:10.1371/journal.pone.0003024.t007
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A key distinction in contrasting the study by Zahn et al. was the

specific focus on genes of the mitochondrial respiratory chain [6].

While many of these are included in our emergent lists of genes of

the mitochondrion (see Tables S1 and S3), results indicate that the

effects of age on mitochondrial function may be broader. For

example, in the brain the most significant finding across all

pathways was for cytoplasm genes (Table 3). Although this

categorization includes all genes of the mitochondrion, and indeed

our results suggest it is the latter grouping that contributes to the

strength of the statistic, there remain additional genes that may be

Table 8. Terms in the Gene Ontology and KEGG pathway databases over-represented among genes that increased expression
with advancing age in human lymphocytes (1,430 genes in total 13,232).

Category Term P valuea Bonferroni Foldb Decreasing groupd

Foldb P valuee

GO Bio.Process signal transduction 2.1(10210) 1.0(1026) 1.34 0.72 8.8(10211)

immune response 9.2(10210) 4.3(1026) 1.84 1.02 6.0(1021)

defense response 7.0(1029) 3.3(1025) 1.90 0.76 2.7(1022)

response to external stimulus 1.3(1028) 6.2(1025) 1.84 0.66 1.4(1023)

cytoskeleton organization and biogenesis 6.8(1027) 3.2(1023) 1.78 0.58 2.4(1024)

positive regulation of cellular process 9.6(1027) 4.5(1023) 1.51 0.97 4.1(1021)

response to wounding 7.2(1026) 3.3(1022) 1.80 0.62 3.0(1023)

cell adhesion 7.6(1026) 3.5(1022) 1.64 0.71 6.0(1023)

GO Cel.Component plasma membrane 7.0(10211) 5.5(1028) 1.42 0.62 1.0(10213)

membrane part 1.1(1027) 8.9(1025) 1.21 0.79 3.5(10210)

cytoskeleton 1.4(1027) 1.1(1024) 1.56 0.69 1.5(1024)

integral to plasma membrane 2.3(1026) 1.8(1023) 1.49 0.69 1.0(1024)

GO Mol.Function protein binding 9.6(10210) 2.4(1026) 1.16 0.93 3.3(1023)

actin binding 9.1(1027) 2.3(1023) 2.07 0.57 4.4(1023)

signal transducer activity 1.3(1026) 3.2(1023) 1.37 0.79 4.8(1024)

GTPase activity 1.4(1026) 3.5(1023) 2.24 0.62 2.7(1022)

receptor binding 1.5(1026) 3.7(1023) 1.68 0.76 1.8(1022)

GTP binding 1.5(1025) 3.9(1022) 1.79 0.86 2.0(1021)

KEGG Pathway Regulation of actin cytoskeleton 3.1(1029) 6.0(1027) 2.44 0.52 6.4(1023)

Natural killer cell mediated cytotoxicity 1.3(1025) 2.6(1023) 2.25 0.26 2.3(1024)

Focal adhesion 3.2(1025) 6.4(1023) 2.02 0.55 1.2(1022)

aEASE-score, P-value of a modified Fisher’s exact test for overrepresentation [35]. bFold enrichment in each gene group compared to the base set. cGene group with
expression that decreases with advancing age (same genes used in Table 7, 1878 genes). eHypergeometric test for underrepresentation using annotated genes from a
total set of 13,232 genes as a base population [36].

doi:10.1371/journal.pone.0003024.t008

Table 9. Genomic architecture comparisons for age associated genes in human brain samples.

Negative asso.a Positive asso.b Unregulated P-value

(n = 1,369) (n = 1,746) (n = 9,405)

pre-mRNA length 7565264560 5368362018 6234461186 1.9(1021)

Coding sequence length 1311628 2057644 1722618 7.0(10260)

Number of exons 9.260.2 13.060.3 11.260.1 1.1(10222)

Total intron length 7466264636 5123762033 6062261202 1.4(1021)

59 UTR length 21566 22766 21062 3.0(1022)

39 UTR length 1155634 1219629 1202613 3.6(1021)

Average intron of ea. transcript 86516485 53126249 66486144 1.5(1029)

Average exon of ea. transcript 424614 435613 42965 9.9(1021)

Average intron / average exon 28.761.5 16.460.7 21.960.5 5.7(10210)

All data are base pair 6SEM. P-values were calculated from log10 transformed data using ANOVA. aNegatively associated genes were those whose expression decreases
with age-at-death (P,0.05). bPositively associated genes were those for which expression increased with age-at-death (P,0.05). Unregulated genes were those not
significantly correlated with age.
doi:10.1371/journal.pone.0003024.t009
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enriched in this set (see Table S1). Oxidative phosphorylation itself

did emerge as a highly significant term associated with aging in the

brain sample, but not in lymphocytes, indicating that there are

likely to be tissue specific differences in the component genes

related to mitochondrial function (Tables 3 and 7). Nonetheless,

these data together with previous studies provide an intriguing

foundation to investigate if this is a primary event in the aging

process or derivative of a general decrease in energy metabolism

and activity that accompanies old age (e.g. [18]).

That transcript levels are both decreasing and increasing is an

important indication that the aging process does not lead to a

unidirectional decline in expression. While this was evident in both

brain and lymphocytes, in each case the relative fold-enrichment

of gene categories was higher among negatively correlated

transcripts. Thus, the up-regulated categories consisted of more

unique transcripts in general than those that were down-regulated.

In brain we noted several pathways that appear to have

component genes that increase in expression with advancing

age, the foremost among these encompassing genes that encode

nuclear proteins. The most significant categorizations that

emerged included a large contingent of genes related to DNA-

binding and transcription, the most abundant being zinc-finger

proteins. Although genes related to transcription were highlighted

previously, results suggested a mix of both positive and negative

regulation [11]. In contrast however, Miller et al. did observe an

overlap of genes related to transcription that were increasing in

relation to both ageing and to Alzheimer’s disease (AD) [16].

In lymphocytes, immune response was the most significant

category associated with increasing expression. However, there are

several issues that are impossible to resolve for this latter result,

especially regarding which cell types are represented in this sample

(e.g. [19]). For example, this might relate to an accumulation of

highly differentiated T cells due to acceleration by persistent CMV

infection but this would require extensive further study [17]. There

were also some interesting highlights among the many individual

genes that were up-regulated with age in lymphocytes. In

particular the most significant up-regulated gene IGFBP3 is

intriguing in the context that another member of the insulin-like

growth factor binding protein family, IGFBP7 has recently been

implicated as an inducer of apoptosis in human melanoma cell

lines [20,21]. IGFBP3 itself has also been shown to be increased in

senescent human fibroblasts [22]. Those findings together with

results of the present study provide support for the role of insulin-

like growth factor signaling in cellular senescence.

For the brain sample, we were intrigued by the emergent

pattern that expression of cytoplasm genes may be decreasing with

age, while expression of nuclear genes may be increasing with age.

While this might reflect the large number of mitochondrial and

transcription genes in these particular sets, we cannot ignore the

possibility that a basic change in cell morphology might be at play.

One explanation may be that neuronal number remains stable

with age, but synaptic vesicle density decreases [7,8]. This relative

change might give rise to our observations here. In support of this,

genes related to neuronal projections (which includes dendrite

genes) and synapse genes are major categories that appear to

decrease with age (see Table 3). Also in support of this, the highest

ranking individual gene, SVOP, encoding the SV2 related protein,

is localized to the synaptic vesicle and appears to be an ion

transporter. We had anticipated that more neuronal specific genes

would exhibit a decreasing pattern, but noted that even some

common neuronal reference genes, such as ENO2 (ranking

7597th), were not associated with age. Thus, in contrast to the

enrichment of neuronal projection genes mentioned above (and

see Table 3), this might support the concept that a decrease in

neuronal number is not a major feature of aging [23]. A

potentially important source of confounding in analyses of post-

mortem brain samples is the mode of death, which we have not

examined in more detail in this study. In particular, agonal state

and pH have been highlighted as contributors to brain mRNA

expression [24–26]. The present study has strong similarities with

the study by Li et al., (2004)[25]. However, the relationship

between pH and age was previously explored, but there was no

evidence of a significant correlation [24,27]. Interestingly,

although it was a small sample Vawter et al. also noted significant

correlations of age with mitochondrial genes regardless of agonal

state (see specifically supplementary table 4 from [24]). Nonethe-

less, one explanation might be that transcription factor activation

and mitochondrial deactivation is a natural response to hypoxic

stress which may be more common in elderly individuals (e.g.

[25,28]). Another possibility might be that both aging and

extended hypoxia dependent on the mode of death share

similarities in terms of gene regulation.

For the lymphocyte sample, the most significantly enriched

terms were found in the class of negatively regulated genes, where

Table 10. Genomic architecture comparisons for age associated genes in human lymphocyte samples.

Negative asso.a Positive asso.b Unregulated P-value

(n = 2,364) (n = 1,980) (n = 7,898)

pre-mRNA length 5190861755 4948961880 5487961115 1.2(1026)

Coding sequence length 1724652 1628651 1710618 6.9(1023)

Number of exons 11.560.2 10.760.2 11.160.1 2.1(1025)

Total intron length 4970561764 4754961893 5336461135 7.5(1029)

59 UTR length 19564 21165 20862 1.0(1023)

39 UTR length 1104625 1134628 1185615 3.9(1024)

Average intron of ea. transcript 54976209 54636256 56516110 1.5(1026)

Average exon of ea. transcript 381610 420611 43566 7.7(10211)

Average intron / average exon 20.561.0 17.760.7 19.260.4 7.1(10210)

All data are base pair 6SEM. P-values were calculated from log10 transformed data using ANOVA. aNegatively associated genes were those whose expression decreases
with age (P,0.05). bPositively associated genes were those for which expression increased with age (P,0.05). Unregulated genes were those not significantly correlated
with age.
doi:10.1371/journal.pone.0003024.t010
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the ribosomal and translation machinery appears to be strongly

affected by age. This could potentially contribute to ‘‘immuno-

senescence’’, whereby the immune system decays with time,

rendering elderly individuals more susceptible to infectious

diseases [29]. While changes at the expression level for this class

of genes have to our knowledge not been previously reported on

this scale, the concept that protein synthesis is involved in

immunosenescence is not new [30]. This result is in our view the

most striking difference between lymphocytes and brain.

Although this suggests a more general decreases in metabolism

in aging lymphocytes, we consider this an important reminder

that tissue specificity can play a major role in gene expression

profiling [31].

Another important feature of this study is the relative degree of

stability in gene expression across the age spectrum. To put this in

context, the strongest effects of age on any genes were 18%

variance explained for TAC3 in brain and 29% for LRRN3 in

lymphocytes, but in examining Tables 1, 2, 5 and 6, it is apparent

that effect sizes drop off rapidly. For each of these top-ranked

genes there was an approximately 2-fold change in average

expression levels over the age ranges. This is comparable to well

documented changes in hormone levels with age, such as for IGF1

[2,32]. Also of note, genes claimed to be changing with age

previously exhibited differences between young and older groups

in the range of 2–3 fold [11]. This again might suggest that cell-

loss and/or changes in organ function/morphology are more

important than broad changes in gene expression in the decrease

in health that typically accompanies increasing age. The possibility

however cannot be excluded that relatively small changes in gene

expression have a large impact on cell function. As an example,

disorders such as Parkinson’s disease (PD) can be caused by simple

gene dosage effects, as has now been shown for the SNCA gene

which encodes alpha-synuclein [33]. Although rare, we noted

several genes that may be changing to a larger degree, but which

fell below a strict significance threshold, for example ZIC3 in

brain. However, there were no similar cases in the much more

powerful lymphocyte sample.

Finally, we also explored basic gene architecture characteristics

in an attempt to provide some insight into why expression might

vary with age. The only parameter that emerged as significant and

equivalent in both brain and lymphocytes was the intron/exon

length ratio, this representing a metric of gene ‘‘compactness’’

[13]. This might be interpreted as suggesting that non-compact

genes are more susceptible to mutations that disrupt regulation,

and thus lead to decreasing expression with advancing age.

However, we cannot exclude the possibility that what we are

seeing is simply a result of the gene pathways that are over-

represented, these being enriched for compact or non-compact

genes. In other words, if specific pathways are affected by age, the

genes that represent those pathways may have similar features. We

consider this nonetheless an intriguing finding in that it is

replicating in different tissues.

In summary, we validate previous findings that a decrease in

mitochondrial gene expression appears to be a common theme in

the aging process. Whether this is a primary event that causes a

decline in health with advancing age or a result of a general

decrease in metabolism in the elderly remains a topic for further

investigation. We also highlight additional novel pathways that

may be age dependent but with dramatic differences between

tissues, in particular with genes related to transcription and to

translation. These results may provide a valuable foundation for

understanding the molecular consequences of aging and empha-

size the development of catalogues of senescence-related genes in

additional tissues.

Materials and Methods

Human Samples
The primary sample used in this study consisted of 191

individuals with ages-at-death data ranging from 65–100 years for

which brain autopsy tissue was obtained. Expression level data

were obtained using the Illumina HumanRefSeq-8 expression

BeadChip platform for a total of 14,078 transcripts in which

expression was detected in 5 or more individuals. Detailed

descriptions of the human samples as well as the expression

profiling protocol are provided in the original publication for

which this sample was presented [12]. To create a working dataset,

expression phenotypes and covariate data were merged that

included age-at-death, post-mortem interval (pmi), gender, brain

region, and transcript detection rates. From this, we generated 2

additional covariates for 1) total average expression level from all

transcripts and 2) total average expression level for all transcripts

that were detected in all individuals (5269 transcripts fulfilled the

latter criteria). All individual transcript levels, the global average

transcript levels, and pmi were log10 transformed prior to inclusion

in analyses.

The second sample consisted of 1240 individuals ranging in age

from 15-94 in which fresh blood lymphocytes had been obtained

and mRNA extracted. Expression phenotyping was conducted

using the Illumina Sentrix Human Whole Genome (WG-6) Series

I BeadChip platform. In total there were 19,648 individual

transcript measures, representing approximately 18,500 genes.

Details of the sample and expression protocols have been provided

previously in the original publication describing this sample [15].

For our analysis, we used the normalized expression phenotypes

without further transformation.

Correlation of Age and Transcript Level
We classified the extremes as outliers that are expected to be

observed once or more in 1930 individual log transformed

transcript estimates with assumption of independence and normal

distribution of 193 measures for each transcript.

a0~1{ 1{að Þ1=k

where a9 is the alpha level for each measure, a is 0.05 and k 193.

Based on normal distribution assumption,

W{1 a0ð Þ~z&3:4644

where W is standard normal cumulative distribution fuction, z is z-

score of each measure.

The normality of log transformed observed values for each

transcript was tested by means of a Shapiro-Wilk W test. To assess

differences of transcript detection rates or global expression levels

across brain regions, as well as to test differences in characteristics

of genomic architecture between age-related gene sets, ANOVA

was used. Contingency tables (for example comparing the

proportions of housekeeping genes) were evaluated by means of

a standard chi-square test. All statistical analyses not related to

pathway based tests were performed using STATA se 9.0. For the

brain sample, the dependency of expression level on age-at-death

was tested by fitting a linear regression model for each transcript:

Y~b0zb1x1zb2x2ze:

where Y is the log10 transformed expression level of the transcript,

x1 age-at-death, x2 log10 of global expression, b0 intercept, b1 and
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b2 slope of each independent variable, and e random error. For

the lymphocyte sample, the same test was applied but without the

global expression covariate according to the following:

Y~b0zb1x1ze

where Y is the normalized expression level of each transcript, x1

age, b0 intercept, b1 slope of age, and e random error. We also

allowed for non-independence of expression measures given the

relatedness of family members in the lymphocyte sample [34].

Gene Ontology and KEGG Pathway Analyses
The Entrez Gene IDs, symbols, and descriptions of genes for all

tested transcripts were attained by Entrez Programming Utilities

(eUtils) using GI number with the aid of a Perl script. This

facilitated a search for replaced sequence identifiers and extracted

information of interest by scanning the output text files from

Entrez eUtils on the transcripts. Using the attained Entrez Gene

IDs as identifiers of genes, we obtained the total lists of both Gene

Ontology terms and KEGG pathway descriptors, with which our

selected set of genes was annotated and analyzed using the

DAVID functional annotation tool [14] with the most recent data

update (January, 2008). The EASE scores [35] from the DAVID

tool were used in trimming to over-represented term lists, with

Bonferroni corrections of the scores from the tool as an inclusion

criteria of Tables 3, 4, 7 and 8. We scrutinized ancestor-

descendant relationships in the Gene Ontology structure among

the terms in the enrichment lists on the basis of is_a, part_of, and

regulates relationship by scanning the master ontology file which

was updated in April, 2008. Our goal with this was to determine if

ancestor terms had emerged as significant primarily because of

enrichment of one of their descendant terms. We detail our

strategy for this in Figure S1. Among the GO terms in the list,

those which had no descendants were labeled as ‘end-terms’. For

every term excluding end-terms, we created the artificial

descendants. These were intended to represent the complement

of the set of genes annotated with a descendant term in the list with

respect to all genes in the ancestor. The artificial term for every

descendant of every ancestor in the list was then tested to

determine if it was over-represented by applying a hypergeometric

test [36]. The ancestors for which all artificial descendant terms

were over-represented at P,0.005 were labeled ‘significant

ancestor terms’. The terms whose artificial descendants for end-

terms or significant ancestors were over-represented were added to

the set of ‘significant ancestor terms’. After modifying the set, the

terms in the set were checked if they fulfilled inclusion criteria

(enriched complement at P,0.005) and the set was updated

iteratively until there was no change. The end-terms and

significant ancestor terms are listed in Tables S1, S2, S3, S4.

The remaining terms in the enrichment list follow in the same

tables that are significantly over-represented mainly by a highly

enriched descendant. P-values of the enrichment test for the

artificial terms are also shown in the Tables S1, S2, S3, S4.

Genomic Architecture of Age-related Gene Sets
The genomic positions of start and end points of transcripts,

their coding sequences, and their exons and introns in both brain

and lymphocyte gene sets were collected from the UCSC genome

browser using Genbank accession numbers (e.g. NM_018711) as

identifiers. Information on some of the transcripts that were

detected in both samples was not available from the UCSC

browser due to the records being suppressed. Therefore, the

number of transcripts in the genomic architecture analysis was

reduced to 12,520 and 12,242 for brain and lymphocyte samples,

respectively. Based on the positional data, lengths of pre-mRNA

sequences, coding sequence, total intron, 59UTR, 39UTR, average

intron and average exon of each transcript, as well as the number

of exons and the ratio of intron per coding sequence length were

calculated and transformed on a log10 scale. For comparative

analyses of gene characteristics, the transcripts were divided into 3

groups, up-regulated genes (positively correlated with age at a

P,0.05 threshold), down-regulated (negatively correlated with age

at a P,0.05 threshold), and a set of genes that were not

significantly altered over the age spectrum. Differences between

groups were assessed using ANOVA. Combined analyses were

performed on both sets using second order factorial ANOVA with

sample source as a covariate.

URLs
Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db =

gene; Entrez eUtils: http://eutils.ncbi.nlm.nih.gov/entrez/eutils;

DAVID 2008: http://david.abcc.ncifcrf.gov/; Gene Ontology

(GO): http://www.geneontology.org/; UCSC genome browser:

http://genome.ucsc.edu/

Supporting Information

Figure S1 Overrepresented GO term analysis

Found at: doi:10.1371/journal.pone.0003024.s001 (0.06 MB

PDF)

Table S1 Terms in the Gene Ontology and KEGG pathway

databases enriched among genes that decreased expression with

advancing age in brain (1450 genes in total 13,216)

Found at: doi:10.1371/journal.pone.0003024.s002 (0.15 MB

PDF)

Table S2 Terms in the Gene Ontology and KEGG pathway

databases enriched among genes that increased expression with

advancing age in brain (1943 genes in total 13,216)

Found at: doi:10.1371/journal.pone.0003024.s003 (0.09 MB

PDF)

Table S3 Terms in the Gene Ontology and KEGG pathway

databases enriched among genes that decreased expression with

advancing age in the human lymphocytes (1878 genes in total

13,232)

Found at: doi:10.1371/journal.pone.0003024.s004 (0.13 MB

PDF)

Table S4 Terms in the Gene Ontology and KEGG pathway

databases enriched among genes that increased expression with

advancing age in the human lymphocytes (1430 genes in total

13,232)

Found at: doi:10.1371/journal.pone.0003024.s005 (0.12 MB

PDF)
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