RESEARCH Open Access

Epidemiology and risk factors of fungal pathogens in sepsis: a prospective nationwide multicenter cohort study

Jeong Eun Lee¹, Da Hyun Kang¹, Hyekyeong Ju¹, Dong Kyu Oh², Su Yeon Lee³, Mi Hyeon Park³, Chae-Man Lim³, Song I Lee^{1*} and On behalf of the Korean sepsis Alliance (KSA) investigators

Abstract

Background The incidence of sepsis with identified fungal pathogens is increasing and is associated with higher morbidity and mortality. Co-infection with fungal infections in COVID-19 patients is attracting clinical attention. This study examines the epidemiology, risk factors, and outcomes among sepsis patients with identified fungal pathogens.

Methods We conducted a nationwide cohort study of adult patients with sepsis from the Korean Sepsis Alliance Database in South Korea between September 2019 and December 2021. We identified 407 patients with documented fungal pathogens, categorized according to the presence of hemato-oncologic malignancies.

Results Of the 11,981 patients with sepsis, fungal pathogens were identified in 3.4% of cases. Among these patients, 38.3% had co-existing hematologic or solid organ cancer. Older age, higher clinical frailty scale scores, and underlying conditions, such as chronic kidney disease, cerebrovascular disease, and dementia, were more prevalent in patients without hemato-oncologic malignancies. The most common fungal pathogens were *Candida albicans* (47.9%), *Candida glabrata* (20.6%), and *Candida tropicalis* (13.5%). Only 6.6% of the patients with confirmed fungal pathogens received antifungal treatment. The presence of hemato-oncologic malignancies did not significantly affect patient outcomes. Factors associated with the presence of identified fungal pathogens included chronic kidney disease (Odds ratio [OR] 1.662; 95% confidence interval [Cl] 1.216–2.273; p = 0.001), connective tissue disease (OR 1.885; 95% Cl 1.058–3.358; p = 0.032), immunocompromised status (OR 2.284; 95% Cl 2.186–3.753; p = 0.001), and invasive mechanical ventilation (OR 2.864; 95% Cl 2.186–3.753; p < 0.001).

Conclusions Sepsis identified fungal pathogen are associated with chronic kidney disease, immunocompromised status and other risk factors, demonstrating the need for early detection, targeted management and improved antifungal strategies to improve patient outcomes.

Keywords Disease, Fungus, Epidemiology, Sepsis

*Correspondence: Song I Lee songi_cnu@cnu.ac.kr Full list of author information is available at the end of the article

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 2 of 10

Introduction

Sepsis, a life-threatening condition caused by an infection, remains a major challenge for the healthcare community. Sepsis can also be caused by fungal pathogens, which are known to be associated with high morbidity and mortality [1, 2]. The incidence of fungal sepsis is higher than expected, particularly in certain high-risk populations [3, 4]. These issues have been further highlighted in the context of the COVID-19 pandemic [5–7], where co-infections, including those caused by fungal pathogens, have emerged as a serious concern.

The causes and risk factors for fungal infections in sepsis are diverse and complex [8]. *Candida* and *Aspergillus species* are among the most identified fungal pathogens in patients [4, 9, 10]. While hematologic malignancies and immunocompromised states are well-established risk factors [11, 12], there is growing recognition that nontraditional factors such as older age, intensive care unit (ICU) admission, frailty, and chronic comorbidities (e.g., kidney disease and diabetes) also contribute to the development and outcome of fungal infections [13].

Therefore, a better understanding of the epidemiology of sepsis associated with fungal organisms is needed. This includes identifying the most common fungal pathogens, understanding their distribution in different patient populations, and recognizing the factors that contribute to their presence and their impact on patient outcomes. Rather than distinguishing between fungal sepsis and fungal colonization, this study aims to describe the characteristics of sepsis patients in whom fungal pathogens have been identified. Using a large multicenter cohort from the Korean Sepsis Alliance database, this study examines the prevalence and types of fungal pathogens detected in sepsis patients and explores the risk factors associated with fungal pathogen detection and their potential influence on patient prognosis.

Materials and methods

Adult patients (aged≥19 years) who met the diagnostic criteria for sepsis and septic shock, as defined by the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), were prospectively identified and enrolled in the Korean Sepsis Alliance national multicenter registry between September 2019 and December 2021. The study was conducted at 20 tertiary and university hospitals in South Korea, all of which had established sepsis education programs. To ensure data accuracy and quality, the research team at Asan Medical Center, Seoul, conducted regular audits.

The study was approved by the institutional review board (IRB) of each participating hospital, including Chungnam National University Hospital (IRB No. 2019–11-048). Given the observational nature of the study,

which involved standard data collection with minimal risk and no interventions, the requirement for informed consent was waived.

Data recruitment and definition

All patients admitted to a general ward or emergency department during the study period were screened for eligibility. Sepsis was diagnosed when the following criteria were met: 1) a probable or confirmed diagnosis of infection, and 2) a change in the total Sequential Organ Failure Assessment (SOFA) score of 2 or more since infection. Septic shock was characterized by persistent arterial hypotension, requiring vasopressors to maintain a mean arterial pressure greater than 65 mmHg and a serum lactate level greater than 2 mmol/L, despite adequate fluid resuscitation. The patients were followed up until death or discharge. The data were prospectively collected by the study coordinator at each participating center using an electronic case report form (http://sepsis. crf.kr/). The collected information included demographic data, such as age, sex, and comorbidities; disease severity (SOFA score and hemodynamic and laboratory variables at baseline); source and type of infection; positive culture results; treatment, including ICU admission; and outcome data, including ICU- and 28-day mortality. For patients admitted to the ICU, we assessed medical events and medical resource use during the ICU stay.

Patients with hemato-oncologic malignancies were defined as those patients with an underlying hematologic malignancy (leukemia, lymphoma, multiple myeloma, etc.) and/or solid cancers (breast, colon, lung, prostate, and skin). Sepsis identified fungal pathogens was defined as cases in which a fungal pathogen was identified by at least one of the following diagnostic methods: culture, polymerase chain reaction (PCR), or antigen (Ag) testing. Culture-based methods were used to isolate fungal species from clinical specimens, while PCR was used to detect fungal deoxyribo nucleic acid in patient samples. In addition, antigen tests, such as β-D-glucan or galactomannan assays, were used to aid in the identification of fungal pathogens. Diagnostic tests were included in the analysis if they were performed within 48 h before or after the onset of sepsis to ensure their relevance to the acute phase of sepsis. These diagnostic methods were routinely performed as part of standard clinical practice at the participating hospitals, and the results were extracted from the medical records for analysis.

Statistical analysis

All statistical analyses were performed using SPSS version 25 software (IBM Corp., Armonk, NY, USA). Categorical variables are represented as numbers with percentages, and continuous variables are represented as means with

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 3 of 10

standard deviations. The Student's t-test or Mann-Whitney U test was used to compare continuous variables, as appropriate. Categorical variables were compared using the χ^2 test or Fisher's exact test, as appropriate. A logistic regression analysis was performed to evaluate the factors associated with fungal infections, and all sepsis data were used to evaluate the factors associated with the identification of fungal pathogens. A Cox regression analysis was performed to assess the factors associated with mortality. Factors with a *p*-value < 0.05 in the univariate analysis were identified and included in the multivariate analysis. The risk factors for fungal infection are presented as odd ratio (OR) and 95% confidence interval (CI), and factors associated with mortality are represented as hazard ratio (HR) and 95% CI. The statistical significance was defined as p < 0.05.

Results

Basic characteristics of the study population

Among the 11,981 patients with sepsis, we analyzed 407 (3.4%) patients in whom a fungal pathogen was identified, excluding the remaining 11,574 patients with no detected fungal pathogens (Fig. 1). Of these, 251 (61.7%) patients had no hematological malignancies or solid tumors, and 156 (38.3%) patients had hematological malignancies and/or solid tumors.

The baseline patient characteristics are shown in Table 1. Patients with non-hemato-oncologic malignancies were older $(72.7\pm13.7 \text{ vs. } 67.7\pm13.0, \text{ years}, p < 0.001)$, had a lower Charlson comorbidity index $(5.0\ [4.0-6.0] \text{ vs. } 7.0\ [6.0-10.0], p < 0.001)$, and had a higher clinical frailty scale $(6.0\ [4.0-7.0] \text{ vs. } 5.5\ [3.0-7.0],$

p=0.016) compared to those in patients with hemato-oncologic malignancies. Chronic kidney disease (24.7% vs. 13.5%, p=0.006), cerebrovascular disease (23.9% vs. 12.2%, p=0.004), and dementia (19.5% vs. 7.7%, p=0.001) were more common in patients with non-hemato-oncologic malignancies than in patients with hemato-oncologic malignancies.

Pathogens and antifungal agents in sepsis

Table 2 (Fig. 2) shows the fungal pathogens identified in patients with sepsis and the antifungal agents used. The most common fungal pathogens identified were *Candida albicans* (47.9%), *Candida glabrata* (20.6%), *Candida tropicalis* (13.5%), *Pneumocystis jirovecii* (7.9%), and *Aspergillus* (3.7%). No statistically significant differences exist in the fungal pathogens between the two groups. Antifungal agents were used in 6.6% of the patients. No differences exist in the antifungal agents between the two groups, except that echinocandins were more commonly used in patients with hemato-oncologic malignancies than in patients with non-hemato-oncologic diseases (3.2% vs. 0.4%, p = 0.022).

Primary sites of infection and culture sites

Additional Table 1 presents the primary sites of infection and culture results. Pulmonary infections were more frequently observed in patients with non-hemato-oncologic malignancies, whereas abdominal and catheter-related infections were more prevalent in those with hemato-oncologic malignancies. With regard to culture results, sputum samples were collected more frequently in patients with non-hemato-oncologic malignancies,

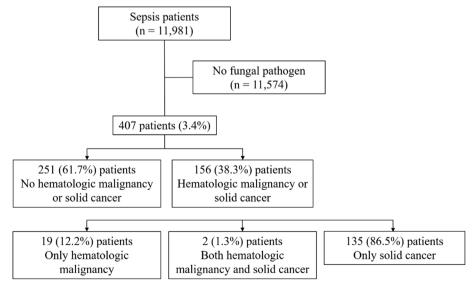


Fig. 1 Flowchart of enrolled patients

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 4 of 10

Table 1 Baseline characteristics of enrolled patients

Characteristics	All patients	Non-hemato-oncologic patients	Hemato-oncologic patients	<i>P</i> -value	
Patients (n)	407	251	156		
Age, yr	70.8 ± 13.6	72.7 ± 13.7	67.7 ± 13.0	< 0.001	
Male	213 (52.3)	129 (51.4)	84 (53.8)	0.630	
Body mass index, kg/m ²	21.8 ± 4.2	21.7 ± 4.4	22.0 ± 3.9	0.493	
Charlson comorbidity index	6.0 (4.0 – 7.0)	5.0 (4.0 – 6.0)	7.0 (6.0 – 10.0)	< 0.001	
Clinical frailty scale	6.0 (4.0 - 9.0)	6.0 (4.0 – 7.0)	5.5 (3.0 – 7.0)	0.016	
SOFA score	6.0 (4.0 – 9.0)	6.0 (4.0 – 9.0)	6.0 (4.0 – 9.0)	0.430	
Underlying disease					
Diabetes Mellitus	172 (42.3)	107 (42.6)	65 (41.7)	0.848	
Chronic kidney disease	83 (20.4)	62 (24.7)	21 (13.5)	0.006	
Chronic liver disease	44 (10.8)	23 (9.2)	21 (13.5)	0.175	
Heart failure	28 (6.9)	20 (8.0)	8 (5.1)	0.271	
Chronic obstructive lung disease	40 (9.8)	29 (11.6)	11 (7.1)	0.138	
Cerebrovascular disease	79 (19.4)	60 (23.9)	19 (12.2)	0.004	
Dementia	61 (15.0)	49 (19.5)	12 (7.7)	0.001	
Connective tissue disease	19 (4.7)	14 (5.6)	5 (3.2)	0.270	
Laboratory findings					
White blood cell, $\times 10^3$ /uL	10.35 (6.25 – 16.48)	11.10 (7.68 – 16.78)	8.63 (3.35 – 15.98)	0.006	
Hemoglobin, g/dL	10.2 ± 2.4	10.5 ± 2.5	9.8 ± 1.9	0.001	
Platelet,×10³/uL	154.0 (74.8 – 250.3)	172.0 (95.0 – 269.3)	134.0 (57.0 – 203.0)	0.001	
Total bilirubin, mg/dL	0.8 (0.5 – 1.6)	0.7 (0.5 – 1.3)	1.0 (0.6 – 1.8)	0.291	
Albumin, g/dL	2.6 ± 0.6	2.8 ± 0.6	2.5 ± 0.6	< 0.001	
Creatinine, mg/dL	1.36 (0.81 – 2.15)	1.41 (0.81 – 2.38)	1.30 (0.80 – 1.92)	0.015	
CRP, ng/mL	10.67 (4.50 – 18.02)	10.26 (4.11 – 18.14)	11.51 (5.11 – 18.21)	0.439	
Lactate, mmol/L	2.4 (1.5 – 4.8)	2.2 (1.3 – 4.1)	3.4 (1.9 – 5.4)	0.028	

Data are presented as mean ± standard deviation or number (%), unless otherwise indicated

APACHE II Acute physiology and chronic health evaluation, AST aspartate aminotransferase, ALT alanine aminotransferase, CRP C-reactive protein

while blood, bile, and ascitic fluid cultures were collected more frequently in patients with hemato-oncologic malignancies.

Patient outcomes and management in the ICU

The patient outcomes and management in the ICU are shown in Table 3. ICU admission was more common in patients with non-hemato-oncologic malignancies than in patients with hemato-oncologic malignancies (61.8% vs. 48.1%, $p\!=\!0.007$). Otherwise, there were no statistically significant differences in the outcomes or ICU management between the two groups.

Factors related to patients with identified fungal pathogens

The factors that were associated with patients in whom fungal pathogens were identified are shown in Table 4. In multivariate analysis, the factors that were associated with identified fungal pathogen in septic patients included chronic kidney disease (OR 1.662; 95% CI 1.216-2.273; p=0.001), connective tissue disease (OR

1.885; 95% CI 1.058–3.358; p=0.032), immunocompromised patients (OR 2.284; 95% CI 2.186–3.753; p=0.001), and use of invasive mechanical ventilation (OR 2.864; 95% CI 2.186–3.753; p<0.001).

Factors associated with the outcome of patients

The factors associated with in-hospital mortality are shown in Additional Table 2. In the multivariate analysis, older age (HR 1.016; 95% CI 1.000–1.032; p = 0.055), higher clinical frailty scale score (HR 1.253; 95% CI 1.131–1.388; p < 0.001), higher SOFA score (HR 1.104; 95% CI 1.049–1.163; p < 0.001), and higher laboratory lactate level (HR 1.073; 95% CI 1.028–1.120; p = 0.001) were associated with in-hospital mortality.

The factors associated with ICU mortality are shown in Additional Table 3. In multivariate analysis, higher SOFA scores, underlying hematological malignancy, a higher laboratory lactate level, and the implementation of CRRT in the ICU were associated with ICU mortality.

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 5 of 10

Table 2 Pathogen and antifungal agents in enrolled patient cohort

Characteristics	All patients	Non-hemato-oncologic patients	Hemato-oncologic patients	<i>P</i> -value
Pathogens				
Candida albicans	195 (47.9)	123 (49.0)	72 (46.2)	0.576
Candida glabrata	84 (20.6)	48 (19.1)	36 (23.1)	0.338
Candida parasilosis	11 (2.7)	5 (2.0)	6 (3.8)	0.262
Candida tropocalis	55 (13.5)	31 (12.4)	24 (15.4)	0.384
Candida krusei	4 (1.0)	3 (1.2)	1 (0.6)	0.582
Other candida	14 (3.4)	10 (4.0)	4 (2.6)	0.445
Cryptococcus neoformans	4 (1.0)	4 (1.6)	0 (0)	0.113
Aspergillus spp.	15 (3.7)	10 (4.0)	5 (3.2)	0.685
Pneumocystis jirovecii	32 (7.9)	20 (8.0)	12 (7.7)	0.920
aOther fungus	24 (5.9)	15 (6.0)	9 (5.8)	0.931
Antifungal agents	27 (6.6)	15 (6.0)	12 (7.7)	0.499
Fluconazole	6 (1.5)	4 (1.6)	2 (1.3)	0.800
Amphotericin B	1 (0.2)	1 (0.4)	0 (0)	0.430
Voriconazole	1 (0.2)	1 (0.4)	0 (0)	
Echinocandin	6 (1.5)	1 (0.4)	5 (3.2)	0.022
TMP/SMX	13 (3.2)	8 (3.2)	5 (3.2)	0.992

^a Trichosporon asahii, Rhizopus spp, Paecilomyces variotii, Fungus species; Yeast form, Paecilomyces variotii

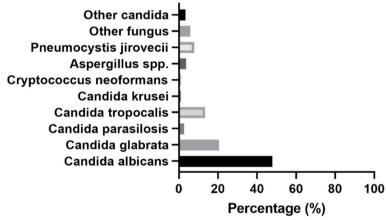


Fig. 2 Distribution of identified fungal pathogens

Discussion

In our study, fungal pathogens were identified in 3.4% of sepsis patients. Our analysis showed that conditions such as chronic kidney disease, cerebrovascular disease, and immunosuppressive status in patients with non-hemato-oncologic diseases influenced the susceptibility to fungal pathogens in sepsis. In addition, older age, high frailty, high SOFA scores, and high lactate levels influenced the patient outcomes. This highlights the need for a personalized approach to the management of septic patients with identified fungal pathogen, considering their different clinical backgrounds.

Fungal infections predominantly affect patients with compromised immune systems [8, 14]. As a result, individuals with hematologic malignancies [15, 16], transplant recipients [17, 18], and individuals with immunodeficiencies [12] are at increased risk. In this study, we examined the identification of the fungal pathogens in patients with and without hemato-oncologic malignancies and identified the types of fungi present and their distribution in these patient groups. Patients with non-hemato-oncologic malignancies were typically older and frailer and more commonly had comorbidities such as chronic kidney disease, cerebrovascular disease, and

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 6 of 10

Table 3 Outcomes and interventions of the patients

Characteristics	All patients	Non-hemato- oncologic patients	Hemato-oncologic patients	P-value 0.169
Vasopressors	195 (47.9)	127 (50.6)	68 (43.6)	
Norepinephrine	195 (47.9)	127 (50.6)	68 (43.6)	0.169
Epinephrine	41 (10.1)	21 (8.4)	20 (12.8)	0.147
Vasopressin	86 (21.1)	47 (18.7)	39 (25.0)	0.132
Dopamine	17 (4.2)	14 (5.6)	3 (1.9)	0.073
Inotropic	22 (5.4)	17 (6.8)	5 (3.2)	0.122
Dobutamine	21 (5.2)	16 (6.4)	5 (3.2)	0.160
Transfusion	140 (34.4)	140 (34.4) 92 (36.7) 48 (30.8)		0.224
Antibiotics	406 (99.8)	99.8) 250 (99.6) 156 (100.0)		0.999
Steroid	98 (24.1)	64 (25.5)	34 (21.8)	0.396
Admission to the ICU	230 (56.5)	155 (61.8)	75 (48.1)	0.007
Interventions in the ICU ($n = 230$)				
Invasive mechanical ventilation	164 (71.3)	111 (71.6)	53 (70.7)	0.882
NIV	20 (8.7)	16 (10.3)	4 (5.3)	0.208
HFNC	81 (35.2)	49 (31.6)	32 (42.7)	0.100
Continuous renal replacement therapy	83 (36.1)	1) 59 (38.1) 24 (32.0)		0.369
ECMO	11 (4.8)	3) 7 (4.5) 4 (5.3)		0.785
Hemodialysis	15 (6.5)	8 (5.2)	7 (9.3)	0.230
Tracheostomy	27 (11.7)	18 (11.6)	9 (12.0)	0.932
Clinical outcomes				
ICU mortality	69 (30.0)	49 (31.6)	20 (26.7)	0.443
ICU stay, days	7.0 (3.0 – 15.0)	8.0 (4.0 – 15.0)	6.0 (3.0 – 12.0)	0.849
In-hospital mortality	160 (39.3)	95 (37.8)	65 (41.7)	0.443
Hospital stay, days	19.0 (10.0 – 39.5)	18.0 (10.0 – 36.3)	21.0 (11.0 – 44.0)	0.751

Data are presented as median and interquartile range or number (%), unless otherwise indicated

 $\textit{ICU} \ intensive \ Care \ Unit, \textit{HFNC} \ high \ flow \ nasal \ cannula, \textit{ECMO} \ extracorporeal \ membrane \ oxygenation$

dementia. Several studies have investigated fungal infections in patients without hematological diseases. These studies provided information on the prevalence, risk factors, and outcomes of fungal infections in this specific patient population. In addition, these studies have identified additional risk factors for fungal infections, including old age [19], immunocompromised state [8], ICU admission [13, 20], the presence of indwelling catheters [21], high acute physiology and chronic health evaluation score II [1, 13], and underlying medical conditions [12, 22], such as liver cirrhosis [23], chronic kidney disease [24], and chronic obstructive pulmonary disease [25]. Solid organ transplant recipients are at increased risk for Candida infections, including urinary tract candidiasis, peritonitis, intra-abdominal candidiasis, and candidemia [26]. Furthermore, the emergence of fluconazole-resistant Candida species highlights the importance of early identification, susceptibility testing, and antifungal stewardship to optimize treatment outcomes [26]. However, the lack of molecular characterization and antifungal susceptibility testing in our data set limits our ability to assess emerging Candida species and antifungal resistance patterns. Future studies incorporating these elements would provide a more detailed epidemiologic and clinical understanding of fungal infections in critically ill patients. Despite these limitations, our findings expand the understanding of fungal infections beyond traditionally recognized high-risk groups. The identification of fungal pathogens in sepsis patients, regardless of hematologic malignancy status, underscores the importance of early detection, risk stratification, and tailored antifungal therapy in critically ill patients. A more standardized approach to diagnostic testing and resistance monitoring is needed to improve clinical decision-making and patient outcomes in this population.

In this study of sepsis patients, the most commonly identified fungal pathogens were *Candida species*, followed by *Pneumocystis jirovecii* and *Aspergillus species*. These findings are consistent with previous studies and indicate a consistent pattern of fungal pathogen prevalence in critically ill patients. A study by Montagna et al. reported an overall incidence of invasive fungal infections

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 7 of 10

Table 4 Univariate and multivariate logistic analysis of factors associated with identified fungal pathogens

	Univariate analysis			Multivariate analysis		
	OR	95% CI	<i>P</i> -value	OR	95% CI	<i>P</i> -value
Age, yr	0.997	0.990 – 1.004	0.445			
Male	1.248	1.024 - 1.521	0.028	1.256	0.967 - 1.631	0.088
Body mass index, kg/m ²	0.999	0.975 - 1.023	0.917			
Charlson comorbidity index	1.049	1.010 - 1.089	0.013	0.991	0.938 - 1.048	0.760
Clinical frailty scale	1.075	1.025 - 1.127	0.003	1.036	0.974 - 1.103	0.258
SOFA score	1.050	1.018 - 1.082	0.002	0.996	0.956 - 1.038	0.855
Underlying disease						
Diabetes Mellitus	1.387	1.135 – 1.695	0.001	1.185	0.909 – 1.545	0.209
Chronic kidney disease	1.796	1.402 – 2.300	< 0.001	1.662	1.216 – 2.273	0.001
Hematologic malignancy	0.815	0.522 - 1.273	0.369			
Solid cancer	0.900	0.730 - 1.109	0.323			
Chronic obstructive lung disease	1.605	1.148 – 2.243	0.006	1.521	0.969 – 2.388	0.068
Connective tissue disease	1.815	1.130 – 2.917	0.014	1.885	1.058 - 3.358	0.032
Immunocompromised	2.739	1.835 – 4.087	< 0.001	2.284	2.186 – 3.753	0.001
Interventions in the ICU						
Steroid	1.739	1.378 – 2.195	< 0.001	1.150	0.859 - 1.540	0.347
Invasive mechanical ventilation	2.895	2.214 - 3.785	< 0.001	2.864	2.186 – 3.753	< 0.001
Continuous renal replacement therapy	1.772	1.352 – 2.324	< 0.001	1.063	0.786 – 1.439	0.692

SOFA sequential organ failure assessment, ICU intensive care unit, OR odd ratio, CI confidence interval

of 18.9 cases per 1,000 ICU admissions, with yeasts and molds accounting for 87.6% and 12.4% of cases, respectively [27]. Similarly, Lehrnbecher et al. identified *Candida* and *Aspergillus species* as the most common fungal pathogens in a university hospital setting [28]. In patients with hematologic malignancies, *Aspergillus non-fumigatus* was the most common cause of invasive aspergillosis, followed by candidemia and mucormycosis [29]. Another study by Rayens et al. reported that infections caused by *Aspergillus, Pneumocystis*, and *Candida species* accounted for 76.3% of diagnosed fungal infections and 81.1% of associated healthcare costs [3].

Fungal infections in sepsis patients often originate from different anatomical sites, reflecting their ability to disseminate systemically. In our study, the most common culture sites for fungal pathogens were sputum, urine and blood, similar to previous findings. The lungs are frequently identified as the primary site of fungal infection [28, 30], while the bloodstream is an emerging site of systemic fungal infection, particularly in hospitalized patients with central venous catheters or those receiving parenteral nutrition [31, 32].

According to our analysis, patients with non-hematologic malignancies were more likely to be admitted to the ICU than patients with hematologic malignancies. This suggests that a significant burden of sepsis in this population is associated with fungal pathogens. This finding is consistent with previous

studies reporting that ICU admission, mechanical ventilation, hemodialysis, central venous catheterization, and prolonged ICU stay are associated with an increased risk of fungal infections [1, 2, 13, 33-35]. However, beyond ICU admission rates, we did not observe significant differences in clinical outcomes or ICU management strategies between the two groups. This finding suggests a consistent approach to sepsis management across patient demographics, despite differences in underlying conditions. Several studies have examined fungal infections in non-haematological patients, providing insight into prevalence, risk factors, and clinical outcomes. A meta-analysis of candidemia cases in Iran identified surgery, malignancy, and broad-spectrum antibiotic use as major risk factors for fungal infections. Candida parapsilosis (30.8%) was the predominant species, followed by Candida albicans (27.3%) and Candida glabrata (18.2%) [36]. Similarly, our study identified chronic kidney disease, connective tissue disease, immunocompromised status, and invasive mechanical ventilation as significant risk factors for identified fungal pathogens in sepsis, underscoring the complex interplay of underlying conditions in critically ill patients. These findings underscore the multiple and overlapping risk factors for fungal infections observed in previous studies. Factors such as immunosuppressive status [8, 16], neutropenia [12, 30], prolonged antibiotic use [22], total parenteral Lee et al. BMC Infectious Diseases (2025) 25:331 Page 8 of 10

nutrition [2, 27] and previous surgery [13] have all been associated with increased susceptibility to fungal infections. The coexistence of multiple risk factors further complicates the management of fungal sepsis and underscores the importance of early detection and tailored prevention strategies.

Several factors influenced in-hospital mortality, including older age, higher Clinical Frailty Scale, higher SOFA scores, and higher laboratory lactate levels. Consistent with our findings, previous studies have identified comorbidities [37, 38], the extent of organ dysfunction [39], and the severity of the patient's condition [38–40], as important predictors of mortality, reinforcing a consistent pattern across patient populations. These indicators, along with those identified in our research, may be important for initial risk stratification of patients with sepsis in whom fungal pathogens have been identified.

Limitations

This study has several limitations, primarily related to the challenges of accurately distinguishing true fungal pathogens from commensals in sepsis patients. A major limitation is that the presence of a fungal pathogen does not necessarily indicate invasive fungal sepsis. Although our study was prospective in design, data were collected from medical records and laboratory results, and it was not always possible to perform direct clinical reassessment of each case. As a result, we were unable to apply standardized criteria to definitively differentiate invasive fungal infections from colonization. This limitation may have led to potential misclassification, affecting the analysis of the prevalence and risk factors associated with fungal infections in sepsis. However, it is important to note that fungal colonization itself has been identified as a potential risk factor for invasive infections in previous studies [13, 34, 35], which underscores the clinical significance of our findings despite this limitation. Furthermore, the time interval between the detection of fungal pathogens and the onset of sepsis could not be precisely determined in our data set, limiting our ability to assess the temporal relationship between fungal infection and the development of sepsis. Another important limitation is that our study did not include antifungal susceptibility testing or drug susceptibility data. Given the increasing reports of fluconazole-resistant Candida species and other antifungal-resistant pathogens, the lack of drug susceptibility data prevents a more in-depth analysis of treatment efficacy and resistance trends. Future studies incorporating antifungal susceptibility testing would provide important insights into emerging resistance patterns and optimal treatment strategies. In addition, the retrospective nature of our study, which relies on the accuracy and completeness of medical records, is an inherent limitation. Data inconsistencies and missing information may introduce potential bias in data interpretation. However, we attempted to minimize this by using structured data collection methods and involving experienced researchers in data verification. In addition, variability in patient demographics and clinical practices among participating hospitals introduced heterogeneity into the data set. Differences in baseline characteristics, treatment protocols, and institutional policies may have influenced the observed epidemiologic trends and risk factors, potentially affecting the generalizability of our findings.

Recognition of these limitations is essential for accurate interpretation of our results and for guiding future research toward a more standardized approach to assessing fungal infections in sepsis patients. Future studies should incorporate prospective designs, standardized diagnostic criteria, and antifungal susceptibility testing to further refine our understanding of the clinical impact of fungal infections in critically ill patients.

Conclusion

In conclusion, this study identified fungal pathogens in 3.4% of sepsis patients, demonstrating the need for improved detection and treatment strategies, particularly in patients with chronic kidney disease, immunocompromised status, and other established risk factors. The low rate of antifungal treatment observed in this cohort suggests a potential under-recognition of fungal infections in clinical practice and highlights the need for increased clinical awareness, timely diagnosis and prompt intervention. Given the growing concern about antifungal resistance, future research should include standardized diagnostic criteria, antifungal susceptibility testing, and treatment outcome assessment to optimize therapeutic strategies and improve patient outcomes. A multidisciplinary approach involving infectious disease specialists, critical care physicians, and microbiologists is essential to facilitate early detection, effective risk stratification, and targeted antifungal therapy. Strengthening these collaborative efforts will be critical to reducing the burden of fungal infections in sepsis patients and improving overall survival.

Abbreviations

ICU Intensive care unit IRB Institutional review board

SOFA Sequential Organ Failure Assessment

PCR Polymerase chain reaction

Ag Antigen OR Odd ratio

CI Confidence interval

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 9 of 10

HR Hazard ratio

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12879-025-10722-y.

Supplementary Material 1.

Acknowledgements

We would like to thank the Korean Sepsis Alliance (KSA) for their invaluable support in data collection. The following persons and institutions participated in the Korean Sepsis Alliance (KSA): Steering Committee – Chae-Man Lim (Chair), Sang-Bum Hong, Dong Kyu oh, Su Yeon Lee, Gee Young Suh, Kyeongman Jeon, Ryoung-Eun Ko, Young-Jae Cho, Yeon Joo Lee, Sung Yoon Lim, Sunghoon Park; Participated Persons and Centers – Kangwon National University Hospital – Jeongwon Heo; Korea University Anam Hospital – Jaemyeong Lee; Daegu Catholic University Hospital – Kyung Chan Kim; Seoul National University Bundang Hospital – Yeon Joo Lee; Inje University Sanggye Paik Hospital - Youjin Chang; Samsung Medical Center - Kyeongman Jeon; Seoul National University Hospital - Sang-Min Lee; Asan Medical Center -Chae-Man Lim, Suk-Kyung Hong; Pusan National University Yangsan Hospital - Woo Hyun Cho; Chonnam National University Hospital - Sang Hyun Kwak; Jeonbuk National University Hospital – Heung Bum Lee; Ulsan University Hospital – Jong-Joon Ahn; Jeju National University Hospital – Gil Myeong Seong; Chungnam National University Hospital – Song-I Lee; Hallym University Sacred Heart Hospital – Sunghoon Park; Hanyang University Guri Hospital – Tai Sun Park; Severance Hospital – Su Hwan Lee; Yeungnam University Medical Center – Eun Young Choi; Chungnam National University Sejong Hospital – Jae Young Moon; Inje University Ilsan Paik Hospital - Hyung Koo Kang.

Authors' contributions

Jeong Eun Lee (Data curation, Formal analysis, Writing – original draft, Writing – review & editing), Da Hyun Kang (Data curation, Writing – review & editing), Hyekyeong Ju (Data curation, Writing – review & editing), Dong Kyu Oh (Data curation, Writing – review & editing), Su Yeon Lee (Data curation, Writing – review & editing), Mi Hyeon Park (Data curation, Writing – review & editing), Chae-Man Lim (Data curation, Funding acquisition, Writing – review & editing), Song I Lee (Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing). All authors have reviewed and approved the final version of the manuscript.

Funding

This work was supported by the Research Program funded by the Korea Disease Control and Prevention Agency (fund codes 2019E280500, 2020E280700, and 2021–10-026) and the Korean Sepsis Alliance (KSA) affiliated with the Korean Society of Critical Care Medicine (KSCCM).

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Declarations

Ethics approval and consent to participate

This study was approved by the Clinical Research Ethics Committee of Chungnam National University Hospital (approval number: 2019–11-048) and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Chungnam

National University School of Medicine, Munhwaro 282, Daejeon, Jung Gu 35015, Republic of Korea. ²Department of Pulmonary and Critical Care Medicine, Dongkang Medical Center, Ulsan, Republic of Korea. ³Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Republic of Korea.

Received: 1 May 2024 Accepted: 26 February 2025 Published online: 10 March 2025

References

- Xie GH, Fang XM, Fang Q, Wu XM, Jin YH, Wang JL, Guo QL, Gu MN, Xu QP, Wang DX, et al. Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. Crit Care (London, England). 2008;12(1):R5.
- Yang SP, Chen YY, Hsu HS, Wang FD, Chen LY, Fung CP. A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study. BMC Infect Dis. 2013;13:10.
- Rayens E, Norris KA. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect Dis. 2022;9(1):ofab593.
- Dantas KC, Mauad T, de André CDS, Bierrenbach AL, Saldiva PHN. A single-centre, retrospective study of the incidence of invasive fungal infections during 85 years of autopsy service in Brazil. Sci Rep. 2021;11(1):3943.
- Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, Ibrahim AS, Carvalho A. COVID-19-associated fungal infections. Nat Microbiol. 2022;7(8):1127–40.
- Kariyawasam RM, Dingle TC, Kula BE, Vandermeer B, Sligl WI, Schwartz IS. Defining COVID-19-associated pulmonary aspergillosis: systematic review and meta-analysis. Clin Microbiol Infect. 2022;28(7):920–7.
- Koulenti D, Karvouniaris M, Paramythiotou E, Koliakos N, Markou N, Paranos P, Meletiadis J, Blot S. Severe Candida infections in critically ill patients with COVID-19. J Intensive Med. 2023;3(4):291–7.
- Jenks JD, Cornely OA, Chen SC, Thompson GR 3rd, Hoenigl M. Breakthrough invasive fungal infections: Who is at risk? Mycoses. 2020;63(10):1021–32.
- Valentine JC, Morrissey CO, Tacey MA, Liew D, Patil S, Peleg AY, Ananda-Rajah MR. A population-based analysis of invasive fungal disease in haematology-oncology patients using data linkage of state-wide registries and administrative databases: 2005–2016. BMC Infect Dis. 2019;19(1):274.
- Puerta-Alcalde P, Monzó-Gallo P, Aguilar-Guisado M, Ramos JC, Laporte-Amargós J, Machado M, Martin-Davila P, Franch-Sarto M, Sánchez-Romero I, Badiola J, et al. Breakthrough invasive fungal infection among patients with haematologic malignancies: a national, prospective, and multicentre study. J Infect. 2023;87(1):46–53.
- 11. Oberoi JK, Sheoran L, Sagar T, Saxena S. Invasive fungal infections in hemato-oncology. Indian J Med Microbiol. 2023;44:100353.
- 12. Maertens J, Vrebos M, Boogaerts M. Assessing risk factors for systemic fungal infections. Eur J Cancer Care (Engl). 2001;10(1):56–62.
- Muskett H, Shahin J, Eyres G, Harvey S, Rowan K, Harrison D. Risk factors for invasive fungal disease in critically ill adult patients: a systematic review. Critical care (London, England). 2011;15(6):R287.
- Biyun L, Yahui H, Yuanfang L, Xifeng G, Dao W. Risk factors for invasive fungal infections after haematopoietic stem cell transplantation: a systematic review and meta-analysis. Clin Microbiol Infect. 2024;30(5):601–10.
- Herbrecht R, Bories P, Moulin JC, Ledoux MP, Letscher-Bru V. Risk stratification for invasive aspergillosis in immunocompromised patients. Ann N Y Acad Sci. 2012;1272:23–30.
- Pagano L, Akova M, Dimopoulos G, Herbrecht R, Drgona L, Blijlevens N. Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients. J Antimicrob Chemother. 2011;66(Suppl 1):15-14.
- Kimura M, Araoka H, Yamamoto H, Asano-Mori Y, Nakamura S, Yamagoe S, Ohno H, Miyazaki Y, Abe M, Yuasa M, et al. Clinical and microbiological characteristics of breakthrough candidemia in allogeneic hematopoietic stem cell transplant recipients in a Japanese hospital. Antimicrob Agents Chemother. 2017;61(4):10–128.
- Chen XC, Xu J, Wu DP. Clinical characteristics and outcomes of breakthrough candidemia in 71 hematologic malignancy patients and/or allogeneic hematopoietic stem cell transplant recipients: a single-center

Lee et al. BMC Infectious Diseases (2025) 25:331 Page 10 of 10

- retrospective study From China, 2011–2018. Clin Infect Dis. 2020;71 (Suppl 4):5394-5399.
- Kauffman CA. Fungal infections in older adults. Clinl Infect Dis. 2001;33(4):550–5.
- Harrison D, Muskett H, Harvey S, Grieve R, Shahin J, Patel K, Sadique Z, Allen E, Dybowski R, Jit M, et al. Development and validation of a risk model for identification of non-neutropenic, critically ill adult patients at high risk of invasive Candida infection: the Fungal Infection Risk Evaluation (FIRE) Study. Health Technol Assess. 2013;17(3):1–156.
- Kriengkauykiat J, Ito JI, Dadwal SS. Epidemiology and treatment approaches in management of invasive fungal infections. Clin Epidemiol. 2011;3:175–91.
- Beed M, Sherman R, Holden S. Fungal infections and critically ill adults. Continuing Educ Anaesthesia Crit Care Pain. 2013;14(6):262–7.
- Lahmer T, Peçanha-Pietrobom PM, Schmid RM, Colombo AL. Invasive fungal infections in acute and chronic liver impairment: A systematic review. Mycoses. 2022;65(2):140–51.
- Gandhi BV, Bahadur MM, Dodeja H, Aggrwal V, Thamba A, Mali M. Systemic fungal infections in renal diseases. J Postgrad Med. 2005;51(Suppl 1):S30-36.
- 25. Hammond EE, McDonald CS, Vestbo J, Denning DW. The global impact of Aspergillus infection on COPD. BMC Pulm Med. 2020;20(1):241.
- Diba K, Makhdoomi K, Nasri E, Vaezi A, Javidnia J, Gharabagh DJ, Jazani NH, Reza Chavshin A, Badiee P, Badali H, et al. Emerging Candida species isolated from renal transplant recipients: species distribution and susceptibility profiles. Microb Pathog. 2018;125:240–5.
- Montagna MT, Caggiano G, Lovero G, De Giglio O, Coretti C, Cuna T, latta R, Giglio M, Dalfino L, Bruno F, et al. Epidemiology of invasive fungal infections in the intensive care unit: results of a multicenter Italian survey (AURORA Project). Infection. 2013;41(3):645–53.
- Lehrnbecher T, Frank C, Engels K, Kriener S, Groll AH, Schwabe D. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect. 2010;61(3):259–65.
- Lionakis MS, Lewis RE, Kontoyiannis DP. Breakthrough invasive mold infections in the hematology patient: current concepts and future directions. Clin Infect Dis. 2018;67(10):1621–30.
- Lien MY, Chou CH, Lin CC, Bai LY, Chiu CF, Yeh SP, Ho MW. Epidemiology and risk factors for invasive fungal infections during induction chemotherapy for newly diagnosed acute myeloid leukemia: a retrospective cohort study. PLoS ONE. 2018;13(6):e0197851.
- 31. Richardson M, Lass-Flörl C. Changing epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008;14(Suppl 4):5–24.
- Suzuki H, Perencevich EN, Diekema DJ, Livorsi DJ, Nair R, Kralovic SM, Roselle GA, Goto M. Temporal trends of candidemia incidence rates and potential contributions of infection control initiatives over 18 years within the united states veterans health administration system: a joinpoint timeseries analysis. Clin Infect Dis. 2021;73(4):689–96.
- Meersseman W, Vandecasteele SJ, Wilmer A, Verbeken E, Peetermans WE, Van Wijngaerden E. Invasive aspergillosis in critically ill patients without malignancy. Am J Respir Crit Care Med. 2004;170(6):621–5.
- 34. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5(1):161–9.
- Thomas-Rüddel DO, Schlattmann P, Pletz M, Kurzai O, Bloos F. Risk factors for invasive candida infection in critically III patients: a systematic review and meta-analysis. Chest. 2022;161(2):345–55.
- Vaezi A, Fakhim H, Khodavaisy S, Alizadeh A, Nazeri M, Soleimani A, Boekhout T, Badali H. Epidemiological and mycological characteristics of candidemia in Iran: a systematic review and meta-analysis. J Mycol Med. 2017;27(2):146–52.
- Lindström AC, Eriksson M, Mårtensson J, Oldner A, Larsson E. Nationwide case-control study of risk factors and outcomes for community-acquired sepsis. Sci Rep. 2021;11(1):15118.
- Wang M, Jiang L, Zhu B, Li W, Du B, Kang Y, Weng L, Qin T, Ma X, Zhu D, et al. The prevalence, risk factors, and outcomes of sepsis in critically ill patients in china: a multicenter prospective cohort study. Front Med (Lausanne). 2020;7:593808.
- Martin-Loeches I, Guia MC, Vallecoccia MS, Suarez D, Ibarz M, Irazabal M, Ferrer R, Artigas A. Risk factors for mortality in elderly and very elderly critically ill patients with sepsis: a prospective, observational, multicenter cohort study. Ann Intensive Care. 2019;9(1):26.

 Song JE, Kim MH, Jeong WY, Jung IY, Oh DH, Kim YC, Kim EJ, Jeong SJ, Ku NS, Kim JM, et al. Mortality risk factors for patients with septic shock after implementation of the surviving sepsis campaign bundles. Infect Chemother. 2016;48(3):199–208.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.