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A simple statistical mechanical model proposed by Wako 
and Saitô has explained the aspects of protein folding 
surprisingly well. This model was systematically applied 
to multiple proteins by Muñoz and Eaton and has since 
been referred to as the Wako-Saitô-Muñoz-Eaton 
(WSME) model. The success of the WSME model in 
explaining the folding of many proteins has verified the 
hypothesis that the folding is dominated by native inter-
actions, which makes the energy landscape globally 
biased toward native conformation. Using the WSME 
and other related models, Saitô emphasized the impor-
tance of the hierarchical pathway in protein folding; 
folding starts with the creation of contiguous segments 
having a native-like configuration and proceeds as growth 
and coalescence of these segments. The Φ-values calcu-
lated for barnase with the WSME model suggested that 
segments contributing to the folding nucleus are similar 
to the structural modules defined by the pattern of native 
atomic contacts. The WSME model was extended to 
explain folding of multi-domain proteins having a com-
plex topology, which opened the way to comprehensively 
understanding the folding process of multi-domain pro-
teins. The WSME model was also extended to describe 
allosteric transitions, indicating that the allosteric struc-
tural movement does not occur as a deterministic sequen-
tial change between two conformations but as a stochastic 

diffusive motion over the dynamically changing energy 
landscape. Statistical mechanical viewpoint on folding, 
as highlighted by the WSME model, has been renovated 
in the context of modern methods and ideas, and will 
continue to provide insights on equilibrium and dynami-
cal features of proteins.

Key words: WSME model, energy landscape, statistical 
mechanics

Understanding protein folding is a fascinating problem of 
biomolecular self-organization, and it is a prerequisite for 
comprehending the reactions and interactions of proteins. 
An important method for delineating the folding problem is 
through a simple statistical mechanical model. The model 
was proposed by Wako and Saitô in 1978 [1,2] by extending 
classical models of helix-coil transitions [3,4] to many- 
bodied heterogeneous cases. However, the model was not 
widely accepted until quantitative comparison between the 
model results and the experimental data became possible.

Around 1990–2000, three important advances changed 
the researchers’ viewpoint. The first advance was the prog-
ress in statistical mechanics of complex systems such as spin 
glasses and neural networks. Accordingly, a complex sys-
tem’s behavior could be described as a competition between 
its tendency to be trapped into one of extensively many dis-
ordered states and its tendency to globally drift along the 

Statistical mechanical models have made a significant contribution to elucidating the physics of protein fold-
ing. In particular, a simple theoretical model proposed by Wako and Saitô has explained quantitative features 
of pathways, transition-state ensembles, and intermediates of folding of a variety of proteins. This review 
explains how the physical principles of protein folding were revealed by this model, and discusses the applica-
tion of the model to the folding of multi-domain proteins with topologically complex conformations and to 
the problems in allosteric transitions.
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[23]. The partition function is calculated as

ZWSME(n) = Trn exp (–HWSME({mi})/kBT –
N

∑
i=1
σimi) . (2)

Here, 0≤n≤1 is an order parameter of folding: n=0 when the 
chain is completely disordered, n=1 when the structure is 
identical to that determined via X-ray or NMR analysis.  
Trn is a sum under the constraint M = ∑N

i=1 mi=Nn as Trn= 
∑m1=0,1 ∑m2=0,1 ... ∑mN = 0,1 δM,Nn, where δM,Nn is a Kronecker delta. 
–σi represents the reduction of entropy upon structure order-
ing at the residue i, and we may use σikB≈2–3 cal·mol–1K–1 
[23]. From Eq. 2, we can calculate the free energy,  
F(n)=–kBT log ZWSME(n), which is the one-dimensional free- 
energy landscape represented as a function of n. The expres-
sion of Eq. 2 can be easily extended to the two-dimensional 
version, ZWSME(n1, n2), with the corresponding free-energy 
landscape, F(n1, n2), by introducing the two-dimensional 
folding order parameter (n1, n2) with n1=∑N

i=
1
1 mi/N1,  

n2=∑N
i=N1+1 mi/N2, and N1+N2=N [15,16,20,23]; the higher- 

dimensional representation is also feasible [20].
The WSME model is based on two major assumptions. 

First, it does not consider non-native interactions. Since only 
native interactions are explicitly considered in Eq. 1, the 
energy monotonously decreases as the chain approaches the 
native conformation, i.e., the energy landscape has a global 
bias toward native conformation. This global bias has been 
considered as a characteristic of sequences selected by evo-
lution to meet consistency between local and global struc-
tures [33] or to show minimally frustrated interactions [5]. 
The model with such a global bias was first considered by 
Gō and his colleagues [34–36], and the WSME model belongs 
to a class of such “Gō-like models”.

Another significant assumption in the model is that a 
native interaction occurs only within the “island” of a native-
like configuration; the εij term in Eq. 1 has a nonzero contri-
bution to HWSME only when the consecutive segment from 
residues i through j assume native-like configurations, satis-
fying mimi+1 ... mj–1mj=1. This assumption is illustrated in 
Figure 1, where intra-segment native interactions are effec-
tive (Fig. 1A), but interactions are ineffective when an inter-
vening residue takes the “wrong” direction (Fig. 1B). This 
assumption seems plausible when we consider that the resi-
dues should form a local ordered structure through compact 
atomic packing of residue side chains. Such local structural 
ordering should be represented as a cooperative many- 
residue correlation given by mimi+1 ... mj–1mj=1 and not as a 
naive summation of pairwise correlations.

With these two assumptions, contiguous native-like seg-
ments are energetically stabilized. Therefore, as illustrated 
in Figure 2, folding starts with the creation of short segments 
with the native-like configuration and proceeds through 
growth and coalescence of these segments into a larger 
region to assume the native conformation. We should note 
that there are combinatorially many ways of segment cre-
ation, growth, and coalescence, and the statistical weight of 

energy landscape toward an ordered functional state. Apply-
ing this notion to protein folding revealed that the global 
structure of the folding energy landscape is a key to explain-
ing the experimental results [5]. The second advance was the 
experimental observation of the folding rates of systemati-
cally derived mutant proteins, which led to the Φ-value anal-
ysis technique to reveal structures of the transition state 
ensemble of folding [6,7]. The third advance was the drastic 
increase in computational power, which facilitated not only 
large-scale simulations with realistic models but also the 
quick and accurate evaluation of folding mechanisms with 
simplified models. Combining these advances, theoretical 
models of the energy landscape of folding were introduced 
to explain and predict the experimentally observed Φ-values 
and other quantities, which led to the innovative cooperation 
between theories and experiments and promoted a paradigm 
shift in folding studies [8,9]. The model developed by Wako 
and Saitô was “re-discovered” in 1999 by Muñoz and Eaton 
[10], and this model has since made a significant contribu-
tion to the advancement in folding studies.

A major advantage of this model is that the partition func-
tion can be exactly calculated from the model Hamiltonian 
[11,12]; the exact calculation allows us to obtain a trans-
parent picture on free-energy landscapes, pathways, and rates 
of folding. The model was at first criticized as quantitatively 
invalid [13]. However, such invalidity was due to the partic-
ular approximation used in the calculation and the problem 
disappeared when the exact solution of the model was used. 
Since then, the Wako-Saitô-Muñoz-Eaton (WSME) model 
has been widely applied in calculating pathways [14–23] 
and kinetics [14,19,23–25] of folding as well as in explain-
ing mechanical unfolding [26,27], amyloidosis [28], and 
allosteric transitions and functions [29–32]. In this review, 
we discuss the physics behind the WSME model and its 
applications to folding and other intriguing biophysical 
problems.

The WSME Model and Cooperativity
In the WSME model, a protein conformation is described 

by a set of Ising-like variables, {mi}. mi=1, when the dihe-
dral angles of the backbone chain at the ith residue have sim-
ilar values to those in the native conformation, and mi=0 
otherwise. The WSME Hamiltonian is defined by a function 
of {mi}as

HWSME({mi}) = 

N–1

∑
i=1

N

∑
j=i+1

εijΔij

j

∏
k=i

 mk , (1)

where N is the total number of residues in the protein and Δij 
represents the pattern of native contacts: Δij=1, when the res-
idues i and j are in contact in the native conformation and 
Δij=0 otherwise. εij<0 represents the strength of the attrac-
tive native interactions, for which we may use εij≈–0.3 to 
–1.5 kcal·mol–1 depending on the extent of the atomic con-
tacts between the residues i and j in the native conformation 
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order parameter of folding for the N-terminal half, and n2 is 
the one for the C-terminal half. In F(n1, n2) of Figure 3B, we 
find two basins: one at a small n1 and a small n2, which cor-
responds to the unfolded state, and the other at (n1, n2)≈(0.95, 
0.96), which corresponds to the native state. In this land-
scape, we find two saddles with similar free-energy heighs; 
therefore, BdpA has two dominant transition states, TS1 and 
TS2, in this representation. Along the pathway through TS1, 
the helix H1 folds earlier than H3, whereas along the path-
way through TS2, H3 folds earlier than H1. The Φ-values 
were calculated at TS1 and TS2 with the WSME model. 
Here, the Φ-value represents the frequency of structure for-
mation at each residue in the transition state ensemble. By 
averaging the Φ-values at two TSs with the respective 
weights of the Boltzmann factor, the average Φ-values are 
calculated and compared with the observed ones in Figure. 
3C, which shows good agreement between the calculated 
and observed data. The existence of two TSs having almost 
equivalent free-energy heights is due to the symmetrical 
native conformation of BdpA, as shown in Figure. 3A, and a 
subtle difference in the experimental conditions or settings 
of the simulation model should break this symmetry and 
change the relative heights of TS1 and TS2. The results of 
several simulation studies are conflicting on which helix, H1 
or H3, folds earlier [38], but the WSME model provides a 

these different pathways is evaluated with the WSME model 
to explain the distribution of folding pathways observed in 
the ensemble of protein molecules.

The WSME model quantitatively explains free-energy 
landscapes, pathways, Φ-values, and kinetic rates of the fold-
ing of various proteins [14–23]. In Figure 3, an example 
result is shown for the B domain of protein A (BdpA). As 
shown in Figure 3A, BdpA is a small 60 residue, α-helical 
protein comprising three helices: H1, H2, and H3. BdpA 
demonstrates a two-state folding transition between the 
unfolded and native states [37]. The two- dimensional free- 
energy landscape F(n1, n2) was calculated, where n1 is the 

Figure 1 The native interaction in the WSME model. Residues in 
the native-like configuration are shown with white circles, and residues 
in non-native configurations are shown with filled circles. A) The 
native interaction (a blue dashed line) between the residues within a 
contiguous native-like segment is taken into account in the WSME 
model. B) The interaction becomes ineffective when an intervening 
residue is in the non-native configuration. C) If the linker chain con-
necting two native-like segments is long enough, a number of residues 
with random configurations can compensate each other to allow two 
segments to reach the positions where native interactions are effective. 
This type of interaction, however, is not taken into account in the 
WSME model. D) Interactions as in C can be suitably calculated with 
the WSME Hamiltonian if we consider that the N- and C-termini are 
connected by a virtual link, as explained in the section “The WSME 
Model for Multi-domain Proteins”.

Figure 2 The hierarchical process of protein folding. Folding 
starts with the creation of contiguous segments with a native-like con-
figuration. After nucleation, folding proceeds as those segments grow 
and coalesce into larger regions to reach native conformation.

Figure 3 Application of the WSME model to the B domain of 
Staphylococcal protein A (BdpA). A) Native conformation of BdpA 
(Protein Data Bank (PDB) code: 1bdd). B) Two-dimensional free- 
energy landscape, F(n1, n2), calculated with the WSME model, where 
n1 is the folding order parameter of the N-terminal half, and n2 is the 
one of the C-terminal half. A contour is drawn every 0.5kBT. F(n1, n2) 
has two basins: the unfolded state basin (n1≈0.3, n2≈0.3) and the basin 
of the native state (n1≈1.0, n2≈1.0). Two transition states, TS1 and TS2, 
are shown; there are two dominant pathways of folding, which proceed 
through TS1 and TS2. C) Comparison of the calculated and observed 
Φ-values. The calculated values are shown with a line and the observed 
values [37] are green squares shown with error bars. Bars on the bottom 
represent the positions of α helices. Modified from Figures 1, 3, and 5 
of [15].
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configuration, are indeed valid assumptions. The dominance 
of native interactions was also recently shown [21,46] using 
folding trajectories of all-atom simulations performed by 
Shaw’s group [47–49]. Comparing the folding trajectories of 
all-atom simulations and the WSME results, it was shown 
that the much simpler WSME model quantitatively explains 
the all-atom results [21]. The dominance of native interac-
tions can be interpreted as following. When we consider the 
atomic details of a short molecular dynamics trajectory of 
the picosecond time-scale, there would be no distinction 
between native and non-native interactions; both have the 
same physical origin as electrostatic, hydrophobic, or van 
der Waals interactions. However, when we consider a micro-
second or a longer process, the non-native interactions are 
only transiently formed within that process; also, the life-
time of native interactions is much longer due to the 
multi-residue cooperativity forming the local ordered struc-
ture. Then, we can approximate the long-term process using 
only the native interactions. The dominance of native inter-
actions and the resulting globally biased energy landscape 
were first assumed by Gō and his colleagues to explain the 
two-state feature of folding transitions [33,34]. It was re- 
formulated later to explain how the trapping into the non- 
native states is prevented as well as how the Levinthal para-
dox is resolved in the energy landscape perspective [5,8]. 
Here, the dominance of native interactions in folding has 
been clearly supported by the results of the quantitative 
 analyses of experimental data and all-atom simulations, and 

clear explanation of the reason for this disagreement; a sym-
metrical native conformation brings about the competing 
multiple pathways of folding and the detailed simulation 
condition or the parameter setting modulates the relative 
statis tical importance of multiple pathways.

Another example is shown for barnase in Figures 4 and 
5. Barnase is a 110 residue α+β protein (Fig. 4A), and its 
folding proceeds via an intermediate state [6]. The two- 
dimensional free-energy landscape F(n1, n2) was calculated 
by disregarding two structurally unresolved residues with 
N1=54 and N2=54; therefore, n1 is the order parameter of 
folding for the N-terminal half and n2 is the one for the C- 
terminal half. In F(n1, n2) of Figure 4B, a dominant interme-
diate state is represented by a basin at a large n2 and a small 
n1 value, indicating that the C-terminal half is more structur-
ally ordered than the N-terminal half is in the intermediate 
state. There are two transition states, TS1 between the 
unfolded and intermediate states, and TS2 between the inter-
mediate and native states. In Figure 5, the calculated Φ- 
values at TS1 and TS2 are compared with the experimentally 
observed values [39,40], showing a good agreement between 
the WSME results and the observed data. In barnase, as 
shown in Figure 5, the Φ-value shows a large change around 
the boundaries of the structural modules, which are defined 
by the geometrical pattern of the native contacts [41–45]. 
This interesting feature will be discussed later in the Discus-
sion section.

As in the above examples, the WSME model explained 
the experimentally observed data of many proteins, which 
strongly suggests that the two major assumptions made in 
developing the WSME model, dominance of native interac-
tions and the local cooperative formation of the native-like 

Figure 4 Application of the WSME model to barnase. A) Native 
conformation of barnase from Bacillus amyloliquefaciens (PDB code: 
1a2p). B) Two-dimensional free-energy landscape, F(n1, n2), calculated 
with the WSME model, where n1 is the order parameter of folding of 
the N-terminal half, and n2 is the one of the C-terminal half. Contour is 
drawn in every 2kBT . F(n1, n2) has four basins; basin of unfolded state 
(n1≈0.2, n2≈0.2), basin of native state (n1≈1.0, n2≈1.0), and two basins 
of intermediate states, I1 (n1≈0.2, n2≈0.8) and I2 (n1≈0.9, n2≈0.2). Sad-
dles around the basin I1 are much lower in free energy than those 
around I2 are; therefore, a pathway through I1 is a dominant pathway, 
and I1 is a dominant intermediate. I2 could be detected as an off- pathway 
intermediate. Along the dominant pathway, there are two transition 
states, TS1 and TS2. Modified from Figure 14 of [20] with permission.

Figure 5 Calculated and observed Φ-values at the two transition 
states, TS1 and TS2, of barnase. Lines shaded with gray correspond to 
the calculated Φ-values with the WSME model. Dots are the exper-
imentally observed values [39,40]. Red arrows are boundaries of 
 modules defined by the pattern of atomic contacts in the native con-
formation [44,45]. Bars shown on the bottom represent secondary 
structure elements, helices (blue) and strands (yellow). Modified from 
Figure. 15 of [20] with permission.
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diversity of the molten globule state, extending the WSME 
model to describe generic multi-domain proteins by taking 
account of native interactions, as illustrated in Figure 1C, is 
strongly desired. The need for considering native interac-
tions between residues separated by others with non-native 
configuration is evident particularly for proteins having 
topologically complex structures, as shown in Figure 6.

Dihydrofolate reductase (DHFR), a 159 residue α/β pro-
tein, for example, has two domains, the discontinuous loop 
domain (DLD) and the adenosine-binding domain (ABD), 
as shown in Figure 6A; the ABD is a continuous domain 
comprising the residues 38–106, and the DLD is a discon-
tinuous domain comprising the N-terminal part (residues 
1–37) and the C-terminal part (residues 107–159). There-
fore, native interactions between the N- and C-terminal parts 
in the DLD are expected to form even when the intervening 
ABD is disordered, which is just the case illustrated in Fig-
ure 1C. A convenient way to consider such interactions is to 
introduce a virtual link connecting the N- and C-termini 
(Fig. 1D) and applying the WSME Hamiltonian to this virtu-
ally closed ring to derive the partition function Zring. Using 
Zring, the extended WSME (eWSME) partition function is 
defined by

ZeWSME(n) = ZWSME(n) + (Zring(n) – ZWSME(n))eSring(n)/kB, (3)

where Sring(n)<0 is the entropic reduction arising from the 
constraint to place the N- and C-termini at a distance deter-
mined by the native conformation, which can be estimated 
assuming that the disordered parts of the chain under the n 
constraint behave as fragments with random configurations 
[23]. ZeWSME is smoothly interpolated between ZWSME and 

the WSME model has played an important role in these 
 analyses.

By regarding the dominance of native interactions as the 
0th order description, non-native interactions should deter-
mine the next order description. Thus, non-native interac-
tions should bring about the off-pathway intermediates in 
the folding process or work as “friction” in the course of 
folding [50]; non-native interactions may destabilize the 
native conformation to some extent to make the structure 
flexible to meet functional requirements [51]. Understanding 
the role of non-native interactions in long-term dynamics 
remains as an important challenging problem.

In the WSME model, contiguous native-like segments are 
emphasized so that interactions such as those shown in Fig-
ure 1B or C are neglected. Within a single-domain structure, 
this approximation seems reasonable. To make the native 
interaction between residues belonging to two segments 
separated by residues with the non-native configuration 
effective, as shown in Figure 1C, the multiple intervening 
residues in the linker between two segments must follow 
multiple non-native directions to compensate for “incorrect” 
directions and to recover the “correct” orientation between 
residues having the native interaction. This flexible struc-
tural adjustment of the linker chain is a necessary condition 
to make the interaction effective, but such flexible adjust-
ment is rare in a single domain when the linker is short. 
Therefore, the assumption made for the WSME model is 
considered appropriate at least for describing the folding 
process of single-domain proteins. Indeed, the validity of 
the WSME model was shown for single-domain proteins 
[14,15,17–21], but further careful argument is necessary to 
describe multi-domain proteins, particularly when they have 
a nontrivial topological arrangement of domains, as dis-
cussed in the next section.

The eWSME Model for Multi-domain Proteins
Many proteins show all-or-none two-state transitions 

between the folded and unfolded states, but in 1978, Wako 
and Saitô [2] suggested the presence of an intermediate state 
for lysozyme based on the calculated heterogeneous size dis-
tribution of contiguous native-like segments. In the 1980s, 
clear experimental evidence was discovered for the folding 
intermediates, which were referred to as the molten globule 
states [52]. Particularly, the folding process of typical small 
multi-domain proteins, such as α-lactalbumin and lysozyme, 
was analyzed. It was shown that, in these example proteins, 
the intermediate state in the equilibrium three-state transi-
tion is very similar to the intermediate state that appears on 
the kinetic folding pathway, suggesting the pivotal role of 
the molten globule state in protein folding. Furthermore, the 
structure of the molten globule state is heterogeneous and 
composed of ordered and disordered parts, whereas the 
degrees of compaction and side-chain packing largely depend 
on the protein species. To obtain a unified picture of the 

Figure 6 Examples of multi-domain proteins with non-trivial 
topology. A) Dihydrofolate reductase (DHFR) (PDB code: 1rx1) has 
two domains, DLD and ABD. B) Adenylate kinase (AdK) (PDB code: 
4ake) has three domains, CORE, NMP, and LID. Topological connec-
tivity of the chain is illustrated at the bottom.
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the two-dimensional space is shown in Figure 7B–D. These 
panels show that the population indeed proceeds along the 
folding pathway U→IA→IB→N by sequentially visiting the 
intermediate states IA and IB. This pathway agrees with the 
observed pathway and kinetics of folding [53]. This sequen-
tial pathway is preferred due to the high free-energy barrier 
between U and Iα, which prevents folding trajectories from 
branching to Iα. This barrier arises from the large entropy 
decrease, which brings together the discontinuous parts to 
form DLD. In other words, the topological complexity of 
DHFR is the reason for this simple sequential pathway of 
folding. It should also be noted that the free-energy barrier 
between N and Iα is predicted to be low, leading to structural 
fluctuations, including the partial unfolding/folding of the 
ABD that can be important for the function of DHFR in the 
native state.

We should note that the topological complexity of DHFR 
can be resolved by circular permutation. Connecting the N 
and C termini and disconnecting the linker part of the chain 
between DLD and ABD, both ABD and DLD become con-
tinuous domains comprising continuous parts of the chain. 
The free energy change due to this circular permutation was 
calculated by the eWSME model and shown in Figure 8. 
This circular permutation increases the free energy at around 
IB and lowers the free energy at the barrier between U and Iα. 
Then, the kinetic evolution of DHFR molecules’ population 
branches into two pathways, U→IA→IB→N and U→Iα→N, 
as indicated by the Monte Carlo results of Figure 8B–D. In 
this way, the simplification of the DHFR topology through 
circular permutation brings about the complex folding 
behavior. This complex folding behavior is consistent with 
the observed folding kinetics of the circular permutant [54].

Further extension of the WSME model is possible for 

Zring; ZeWSME≈ZWSME, when the entropic reduction is signifi-
cant, as Sring<<0, and ZeWSME≈Zring, when the entropic reduc-
tion is negligible, as Sring≈0. ZeWSME incorporates both local 
multi-residue correlations as in ZWSME and native interactions 
separated by intervening non-native residues with suitable 
statistical weights; also, it is exactly calculable.

The two-dimensional free-energy folding landscape of 
DHFR calculated with this eWSME model is shown in Fig-
ure 7A [23]. Here, the two-dimensional space is defined by 
the parameters MDLD=∑i∈DLD mi and MABD=∑i∈ABD mi. This 
landscape has basins at (MDLD, MABD)≈(30, 30), which is the 
basin of the unfolded state (U); at (MDLD, MABD)≈(30, 69) 
(the basin denoted by IA); at (MDLD, MABD)≈(70, 69) (the 
basin IB); at (MDLD, MABD)≈(90, 35) (the basin Iα); and at 
(MDLD, MABD)≈(90, 69) (the basin of the native state, N). In 
IA, the ABD is folded and the DLD is unfolded, whereas, in 
Iα, the DLD is folded and the ABD is unfolded. The basin Iα 
has lower free energy than IA; however, Iα is separated from 
U by a higher free-energy barrier than IA. Therefore, we can 
expect that molecules starting from U pass through IA to pro-
ceed along the pathway U→IA→IB→N. This was confirmed 
by numerically following the kinetic change of {mi} with the 
Monte Carlo simulation using the following function to cal-
culate the effective eWSME energy for the Metropolis crite-
rion;

EeWSME({mi}) = 

– kBT log (e–HWSME/kBT
 + (e–Hring/kBT

 – e–HWSME/kBT)eSring/kB)
+ kBT ∑

i
  σimi . (4)

The kinetic evolution of the DHFR molecules’ population on 

Figure 7 Free-energy landscape and kinetics of DHFR folding cal-
culated by the eWSME model. A) Free-energy landscape of DHFR 
folding represented in the two-dimensional space of MDLD and MABD. 
The landscape has basins corresponding to the unfolded state U, the 
native state N, and the intermediates, IA, IB, and Iα. B–D) Evolution of 
the population of 200 molecules simulated with the Monte Carlo calcu-
lation at B) 3.3×105 t0, C) 1.6×106 t0, and D) 3.0×106 t0, where t0 is a 
unit of time in simulation. Reproduced from [23].

Figure 8 Free-energy landscape and folding kinetics of the circu-
lar permutant of DHFR calculated by the eWSME model. A) Differ-
ence in the free-energy landscape between the wild type and the circu-
lar permutant of DHFR. B–D) Evolution of the population of 200 
molecules simulated with the Monte Carlo calculation at B) 3.3×105 t0, 
C) 1.6×106 t0, and D) 3.0×106 t0, where t0 is a unit of time in simulation. 
Reproduced from [23].
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tial structural change [60], motions in allosteric transition 
should bear flexible stochastic fluctuations that may allow 
diversely different transition trajectories, as in protein fold-
ing, which should be quantitatively assessed by energy land-
scape methods. For this purpose, the WSME model can be 
extended to describe the energy landscape of allosteric tran-
sitions.

Here, we assume that a protein shows two different low- 
energy conformations in the native state. To be more spe-
cific, we consider the case that one is the active (A) confor-
mation, which has the higher affinity to bind a partner 
protein, and the other is the inactive (I) conformation, which 
has the lower affinity to bind it. The dominant conformation, 
around which the protein structure fluctuates, switches from 
I to A upon binding of a ligand or through chemical modifi-
cation such as phosphorylation of the protein. We should 
note that the following theoretical scheme is applicable to 
cases other than this I-A structural change when the transi-
tion between two low-energy conformations is concerned 
with. We assume that mi can take three values, A, I, and D; 
mi=A or I when the ith residue takes the configuration simi-
lar to that found in the A or I conformation, respectively, and 
mi=D, when the residue takes a disordered non-native con-
figuration. Here, for mathematical convenience, to calculate 
the partition function from the Hamiltonian, we use a redun-
dant expression of either mi=A or mi=I for the residue with 
the configuration common to A and I [31].

The contact patterns in the native conformations are 
expressed as Δij

A and ∆ij
I ; ∆ij

A(or I)
 =1 when the residues i and j 

are in contact in the A(or I) conformation and ∆ij
A(or I)

 =0, 
other wise. Δij

C = Δij
A ∆ij

I  represents the contact pattern which is 
common to A and I. ∆

˷
ij
A = Δij

A
 (1–Δij

C) and ∆
˷

ij
I = Δij

I
 (1–Δij

C) are 
the contact patterns which are specific to A and I, respec-
tively. We define the functions Pk

A
 (mk), Pk

I
 (mk), and Pk

0
 (mk) 

by Pk
A

 (A) = 1, Pk
A

 (I) = Pk
A

 (D) = 0, Pk
I
 (I) = 1, Pk

I
 (A) = Pk

I
 (D) 

= 0, and Pk
0

 (mk) = Pk
A

 (mk)+Pk
I
 (mk).

Then, the WSME Hamiltonian for allosteric transition 
(the aWSME Hamiltonian) is

HaWSME(α, {mi}) = Vα({mi})

+
N–1

∑
i=1

N

∑
j=i+1

εij(Δij
C

j

∏
k=i

Pk
0(mk)+∆

˷
ij
A

j

∏
k=i

Pk
A(mk)+∆

˷
ij
I

j

∏
k=i

Pk
I(mk)) ,

 (6)

where α distinguishes the ligand binding/unbinding or the 
phosphorylation/dephosphorylation and Vα({mi}) represents 
the local interactions between the bound ligand and sur-
rounding residues or those around the phosphorylated site 
[31]. The first term in the summation of the right-hand side 
of Eq. 6 is the energy decrease due to the many-residue 
correla tion to form native-like segments, and the second 
and third terms represent the energy decrease due to the 
many-residue correlation to form A and I-like segments, 
respectively. We define the order parameter n of the folding 
and the order parameter x of allostery as n=∑N

i=1 Pk
0
 (mi)/N 

 proteins with more complex topologies, and we here outline 
this idea. Adenylate kinase (AdK), for example, has three 
domains: CORE (residues 1–29, 68–117, and 161–214), 
NMP (residues 30–67), and LID (residues 118–167), as 
shown in Figure 6B. We define the virtual ring closures at 
residues 29 and 68 (closure-1), 117 and 161 (closure-2), and 
1 and 214 (closure-3). The WSME partition function Zring(i) 
is calculated by assuming only one closure for i=1, 2, or 3, 
Zring(ij) is calculated for two closures with ij=12, 23, or 31, 
and Zring(123) is calculated for three closures. Then, ZeWSME is 
calculable from the WSME Hamiltonian as

ZeWSME = ZWSME + (Zring(1) – ZWSME)A1(1 – A2)(1 – A3)

+ (Zring(2) – ZWSME)A2(1 – A3)(1 – A1)

+ (Zring(3) – ZWSME)A3(1 – A1)(1 – A2)

+ (Zring(12) – ZWSME)A1A2(1 – A3) 

+ (Zring(23)–ZWSME)A2A3(1–A1)

+ (Zring(31) – ZWSME)A3A1(1 – A2) 

+ (Zring(123) – ZWSME)A1A2A3 , (5)

where Ai=exp(Sring(i)/kB) is a factor representing the entropy 
reduction due to the closure-i, which could be estimated by 
evaluating the probability that the two sites in a Gaussian 
chain are located at the closure distance from each other, 
under the constraint of a given pattern of {mi}. In this way, 
the eWSME model can be directly applied to proteins with 
various topologies, as exploring folding mechanisms of 
multi-domain proteins with a unified perspective is an 
important avenue of the folding studies.

The aWSME Model for Protein Allostery
The classical view of protein folding, wherein folding 

proceeds along a definite pathway [55], was replaced by the 
modern energy landscape picture, which describes protein 
folding as fluctuating diffusive motions over a globally biased 
energy landscape. Energy landscape methods have shown 
that the folding pathway and transition state ensemble are 
determined by the statistical features of the distributed fluc-
tuating trajectories; these methods enabled the quantitative 
understanding of protein folding and guided methods of pro-
tein engineering [8]. The energy landscape perspective should 
be important not only for protein folding but also for protein 
conformational change, wherein fluctuations and diversity 
of trajectories are significant. Particularly, the energy land-
scape description should be necessary for understanding 
allosteric transitions [56–58].

An allosteric transition is a change in the distribution of a 
protein’s structure triggered by a chemical or physical per-
turbation [59], which is often an essential step for proteins to 
exert their functions. Although the classical view of allosteric 
transition is based on the picture of a deterministic sequen-
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A conformation, when the residue Asp54 is phosphorylated, 
and by the I conformation, when dephosphorylated. Figure 
10 shows Fα(x, n) calculated with the aWSME model. 
Although the most stable structure in Fdephos(x, n) is the I 
conforma tion at (x, n)≈ (0, 1), a low free-energy valley 
extends from I to A conformations with metastable basins at 
(x, n)≈ (0.2, 0.97), (0.55, 0.97), and (0.75, 0.97), demon-
strating that the dephosphorylated NtrC should exhibit large 
structural fluctuation. The NtrC molecules within the valley 
bear the A-like features, which transiently appear as fluctua-
tions, though the most stable structure is the I conformation. 
As shown in Figure 11, this structure fluctuation, explains 
the observed Rex values derived from the R1, R2, and the NOE 
relaxation data of NMR [61].

As shown in Figure 10, when Asp54 is phosphorylated, a 
basin that does not exist in Fdephos(x, n) appears at (x, n) 
=(0.95, 0.97) in Fphos(x, n). Therefore, the conformation 
close to A becomes most stable upon phosphorylation. The 
large fluctuation between A and I in the dephosphorylated 
state shows that the transition from I to A can be regarded 
as the selection of pre-existing A-like conformations, but 
the shift from (0.75, 0.97) to (0.95, 0.97) shows that the 
“induced-fit” works during the last step of this transition. 
Thus, the aWSME model reveals that the mixed mechanisms 
of conformation selection and induced fit regulate the allos-
teric transition of NtrC.

The large structural fluctuation in the dephosphorylated 

and x=MA/NA, respectively. Here, MA is the number of 
 residues assuming the configuration specific to the A con-
formation, and NA is the maximal number of MA, so that  
(x, n)= (0, 1) is the I conformation, (x, n)= (1, 1) is the A 
conformation, and (x, n)= (0, 0) is the completely disordered 
state. The partition function ZaWSME(α, x, n) and the two- 
dimensional free-energy landscape Fα(x, n)=–kBT log ZaWSME 
are exactly calculable from HaWSME. See [32] for a more 
detailed explanation of the model.

Figure 9 illustrates the allosteric transition of an example 
protein, the bacterial nitrogen regulatory protein C (NtrC). 
The distribution of the NtrC structures is dominated by the 

Figure 9 Allosteric transition of NtrC. Upon phosphorylation of 
Asp54, the NtrC structure switches from a state around the inactive (I) 
conformation (PDB code: 1dc7) to another state around the active (A) 
conformation (PDB code: 1dc8). Asp54 is shown with blue colored 
spheres. “3445 face” (the region comprises helices and strands, α3, β4, 
α4, and β5) is colored red. Reproduced from [31].

Figure 10 Free-energy landscape Fα(x, n) of allosteric transition of NtrC calculated with the aWSME model. x is the order parameter of 
allosteric transition and n is the order parameter of folding transition. (x, n)= (0, 1) is the I conformation, (1, 1) is the A conformation, and (0, 0) is 
the completely disordered state. A) Fdephos(x, n) in the dephosphorylated state and B) Fphos(x, n) in the phosphorylated state. C) and D) are closeups 
of A) and B), respectively, at n≈1. Contour is drawn for every 2kBT . Reproduced from [31].
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proceeds through growth and coalescence of these segments 
through long-range interactions. Saitô suggested that the 
segments formed first should typically be secondary struc-
ture elements (SSEs), such as α-helices or β-strands, and 
these SSEs are packed with hydrophobic interactions in the 
later stage of folding [64–66]. However, in many cases, the 
loop regions include as dense hydrogen-bonds or other inter-
actions as in SSEs such that local structures including loops 
can be energetically stabilized similarly to SSEs. Therefore, 
segments that include loops could also be formed during the 
early stage of folding. A well-known example of a loop, 
where the folding reaction initiates, is the distal hairpin loop 
of src SH3 [67]. The above discussion suggests that we 
should carefully examine the parts of the protein that fold 
during the early stage of the folding process. Importantly, 
the statistical weight of the different folding pathways can 
be compared with the WSME model by taking account the 
balance between energy and entropy so that the quantitative 
comparison between the experiments and the WSME results 
would facilitate solving this problem.

Local segments, which could be identified as units of a 
protein’s substructure, have been defined and analyzed from 
several viewpoints. A notable approach is the geometrical 
analysis; using the contact pattern in the native conforma-
tion, “modules” were defined as units of the substructure 
[41]. Gō showed that the boundaries of these modules 
 coincide with the boundaries of exons of example proteins 
[42,43], which suggested that modern proteins were formed 
through shuffling of modules in the evolutionary history. 
Barnase, for example, comprises six modules, M1, M2, ..., 
M6, and their boundaries are at residues 24, 52, 73, 88, and 
98 [44,45]. In Figure 5, these module boundaries are com-
pared with the calculated and observed Φ-values at two tran-
sition states, TS1 and TS2. Meanwhile, when we examine an 

state is due to the entropic gain for the intermediate x. In the 
intermediate x regime, multiple A- or I-like segments coexist 
in the chain, and a large number of mosaic patterns of these 
segments are possible; this large number of structures is the 
reason for the large entropy in this regime. In other words, 
the multitude of fluctuating trajectories with similar energies 
is the reason for the flat free-energy landscape and large fluc-
tuation along the x variance with n≈1. Such entropic gain is 
not taken into account by conventional simulations based on 
the classical picture assuming a unique definite transition 
pathway. Thus, the results of the WSME model reveal the 
importance of fluctuating movement over the energy land-
scape. It should be noted that in the problem of allostery, 
the landscape itself is modified by binding/unbinding of an 
effector such as the phosphate group, inducing the dynami-
cal transition Fdephos↔Fphos. To emphasize this aspect, we 
would argue that the “dynamical energy landscape view” is 
important for analyzing protein allostery and functions.

Finally, we note that the aWSME model can be applied to 
the folding problem, when competition between the native 
conformation and an off-pathway intermediate state with a 
distinct non-native structure dominates the folding process 
[62,63]. The aWSME model is applicable to this problem 
using these native and non-native conformations in place of 
the A and I conformations in the above analysis.

Discussion: Cooperativity and Modularity
Prof. Nobuhiko Saitô emphasized the importance of the 

hierarchal pathway of protein folding through the WSME 
model development and the related models of secondary 
structure formation [64–66]. In this hierarchical picture, 
“islands” or local native-like contiguous segments are spon-
taneously formed at the early stage of folding, and folding 

Figure 11 Pre-existing structural fluctuation of NtrC. (Top) The parameter ξA showing the extent of the A-like structure development in the 
dephosphoryated state. ξA calculated with the aWSME model under the constraint of each fixed x and n=1 is plotted in gray scale. Even in confor-
mations near the I conformation with small x, the A-like structure appears as a fluctuation around the 3445 face. (Bottom) Rex observed in the relax-
ation measurement of NMR in the dephosphorylated state [61] are shown with red dots. Rex is larger than a threshold for the blue dots [61]. Repro-
duced from [31].
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foldon-2 corresponds to M2, and foldon-3 corresponds to a 
part extending from M3 to M6 [68]. With this terminology, 
foldon-3 is folded with a large probability, foldon-1 is folded 
with a modest probability, and foldon-2 is almost unfolded at 
TS2 of barnase.

Comparing multiple proteins showed that there are cor-
relations among modules, exons, and foldons, but the corre-
spondence is not perfect and deviations specific to proteins 
were reported [68,69]. To elucidate the correlation and 
deviation of these differently defined local segments, the 
comprehensive comparison of different types of proteins is 
necessary. As shown in the above discussion, the Φ-value 
analysis with the WSME model should be useful for inter-
preting the results of such a comparison.

At a larger scale, local cooperative structures, foldons or 
modules, are assembled into the native conformation in a 
further cooperative way. A question in this scale is how such 
long-range cooperative assembly is realized. Here, the geo-
metrical analysis sheds light on this problem. One of the 
present authors developed an efficient non-sequential struc-
ture alignment software, MICAN [70], and demonstrated 
that the spatial arrangement of SSEs of numerous different 
proteins can be precisely superposed on each other if we 
 disregard both the chain direction in SSEs and the manner 
those SSEs are connected by chains [70,71]. An example of 
a non-sequential structure alignment by MICAN is shown in 
Figure 12. Indeed, approximately 80% of the fold represen-
tatives defined in the SCOP database [72] share the same 
spatial arrangement of SSEs with other folds [71]. Because 
it is widely accepted that proteins with different folds are 
very unlikely to be evolutionarily related, this frequent shar-

ensemble of numerous protein molecules, those mole cules 
diffusively move on the energy landscape to diversely trace 
different trajectories so that the transition state, in which the 
folding nucleus is formed, is not dominated by a unique 
structure, but should be described as an ensemble of many 
heterogeneous structures. The Φ-values represent the aver-
age tendency to form the ordered structure at each residue in 
this transition state ensemble.

We found distinct dips in the calculated Φ-values at resi-
dues 72–73 and 89–90 at TS1, and at 20–23, 46, 72–73, 
77–78, and 87–89 at TS2, showing the rough correlation 
between the module boundaries and the Φ-value boundaries. 
Through this comparison, we see that in the nucleus forma-
tion in TS1, M1 (residues 1–24) and M2 (residues 25–52) 
are disordered, M3 (residues 53–73) and M6 (residues 
99–110) have small but finite probability of structure forma-
tion, and M4 (residues 74–88) and M5(residues 89–98) have 
intermediate levels of probability of folding. In another stage 
of nucleus formation in TS2, M1 has an intermediate level of 
probability of folding, M2 is disordered, and M3–M6 have 
higher probabilities of folding. Although the correspondence 
is not exact, this comparison suggests that module-like 
 segments are formed at the transition states of barnase as 
cooperative structure formation units.

Energetic analysis is another method to define the sub-
units. Using a knowledge-based potential, the units of coop-
erative folding, foldons, were defined as segments that show 
the maximal energy gap between ordered and disordered 
structures [68,69]. For barnase, the foldons’ boundaries do 
not exactly match with those of the modules; however, there 
is a correlation between them; foldon-1 corresponds to M1, 

Figure 12 An example of a non-sequential structure alignment. A) Structure of Q8ZRJ2 (PDB code: 2es9), B) structure of the eukaryotic clamp 
loader (PDB code: 1sxj), and C) the superimposition of Q8ZRJ2 and the eukaryotic clamp loader obtained by the non-sequential alignment program 
MICAN [70]. In A–C, the structurally equivalent regions are drawn with the same color. It can be clearly seen that all helices are well superimposed 
if both the chain direction and the connectivity are ignored. D and E are two-dimensional diagrams of protein topology of Q8ZRJ2 (A) and eukary-
otic clamp loader (B), respectively. F) Correspondence relation of helices obtained by MICAN. Reproduced from [73] with permission.
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