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Abstract: Background: Artemether-lumefantrine is a highly effective artemisinin-based combination
therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum
malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess
the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug
resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. Methods: A 28-day
follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and
older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009
malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to
distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped
as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism
(RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum
chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene.
Results: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate
clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR
was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at
baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively.
Conclusion: Parasite populations exposed to artemether-lumefantrine in this study were selected
toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted
reintroduction of chloroquine or/and amodiaquine.

Keywords: Plasmodium falciparum; Pfcrt; Pfmdr1; Artemether-lumefantrine; Mali

1. Introduction

Resistance of Plasmodium falciparum to chloroquine is present in almost all malaria-
endemic countries [1]. Resistance to most other antimalarial drugs emerged after these
therapies were introduced to replace chloroquine [2–4]. Artemisinins are structurally dis-
tinct from all other antimalarials and have so far been effective against multidrug-resistant
strains of P. falciparum [5]. The World Health Organization (WHO) recommends artemisinin-
based combination therapies (ACTs) as first-line treatment for uncomplicated malaria
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worldwide [6]. In Mali, the National Malaria Control Program (NMCP) recommends treat-
ing uncomplicated malaria with artesunate-amodiaquine or artemether-lumefantrine [7].
Although treatment policy in Mali changed from chloroquine to these ACTs in 2006,
artemether-lumefantrine was not widely implemented as first-line therapy until 2007 [7].
Studies in Mali in 2005 revealed high efficacy of artemether-lumefantrine [8–10].

Artemether-lumefantrine combines the rapid-acting, short half-life synthetic artemisinin
with the long-acting, more slowly cleared aryl amino alcohol, lumefantrine [11]. Efforts
have been made in past years to identify mechanisms of decreased sensitivity to anti-
malarial drugs by searching for the selection of particular genetic polymorphisms in
parasites after treatment. We previously showed results of treatment with chloroquine,
pyrimethamine, pyrimethamine-sulfadoxine, artesunate-amodiaquine, and artesunate-
sulfadoxine-pyrimethamine that were respectively selected for parasites carrying the
molecular markers of resistance to each drug [12–15].

The Plasmodium falciparum multi-drug resistance 1 (pfmdr1) gene on chromosome 5 encodes
a digestive vacuole transmembrane glycoprotein (Pgh1, for P-glycoprotein homologue
1). Point mutations at codons 86, 184 (predominant in Asia and Africa) and 1034, 1042,
and 1246 (predominant in South America) and increased gene copy numbers of pfmdr1 are
associated with resistance to many drugs, including chloroquine, quinine, mefloquine, and
the aryl amino alcohols (halofantrine and lumefantrine) [16–18].

Mutations in the P. falciparum chloroquine resistance transporter (pfcrt) gene on chromo-
some 7, which also encodes a digestive vacuole transmembrane protein, are associated
with chloroquine resistance [19]. Point mutations at codon 76 may play a role in mefloquine
resistance and are now suggested to contribute to parasite susceptibility to other aryl amino
alcohols, particularly lumefantrine [20].

Several countries in West Africa, including Mali, use artemether-lumefantrine as a
first-line treatment for uncomplicated malaria. A number of other studies from Africa have
investigated whether artemether-lumefantrine administration selects for particular pfcrt
and pfmdr1 SNPs, but just a few were from West Africa [21] and Mali. Here, a clinical study
was performed at four different Malian field sites, with different malaria transmission pat-
terns and different drug-resistance rates, to monitor the efficacy of artemether-lumefantrine
and its potential impact on pfmdr1 and pfcrt polymorphisms three years after the wide use
of artemether-lumefantrine in Mali.

2. Results
2.1. Trial Profile

Of 400 recruited patients, 337 were enrolled: 77 in Kolle (n = 77), 88 in Faladje (n = 88),
100 in Bandiagara (n = 100), and 72 in Pongonon (n = 72). After 28 days of follow-up,
327 (97%) participants completed the study: 70 in Kolle (91%), 88 in Faladje (100%), 99 in
Bandiagara (99%), and 70 in Pongonon (97.2%), as shown in Figure 1.

2.2. Characteristics of Participants at Inclusion

Table 1 shows some differences exist among the four study sites, notably gametocyte
carriage and parasite density at enrollment. Average parasite density at enrollment was
37,250 and average gametocyte carriage was 6.5% to 25% at one study site.
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Figure 1. Study profile.

Table 1. Sociodemographic, clinical, and parasitological variables at enrollment at each study site.

Kolle Faladje Bandiagara Pongonon

Female (%) 42 (54.6%) 41 (46.6%) 49 (49.0%) 41 (56.9%)

Age in years
(% under 5) *

6 (4–7)
(41.6%)

6 (4–7)
(35.2%)

7 (5–11)
(20.0%)

5 (4–7)
(36.1%)

Axillary Temperature (◦C) * 38.4 (37.3–38.9) 38.4 (37.6–39.2) 38.2 (37.0–39.2) 38.2 (27.6–39.0)

Parasite density (per uL) * 48,325
(27,075–71,475)

48,075
(30,525–86,975)

38,000
(16,200–80,250)

23,813
(12,363–35,425)

Gametocyte carriage (%) 1 (1.3%) 3 (3.4%) 0 (0.0%) 18 (25.0%)

Hemoglobin (mg/dL) † 10.0 (1.8) 10.8 (1.9) 11.2 (2.1) 10.3 (1.9)

Antimalarial used in previous 2 weeks (%) 1 (1.3%) 1 (1.1%) 9 (9.0%) 0 (0.0%)

Data are number (%), unless otherwise indicated. * Median (IQR) † Mean (SD). mg—milligram; dL—deciliter; uL—microliter.

2.3. Treatment Efficacy for Uncomplicated Falciparum Malaria

Table 2 shows the 28-day treatment outcomes. Only one early treatment failure was
observed: a child developed convulsions on Day 1 with a persistent fever (38.6 ◦C) despite
diminished parasitemia (45,275/µL to 100/µL), and no death was observed in this study.
The earliest recurrent infections were detected on Day 14. Between Days 14 and 28, 86 cases
of parasitemia occurred, resulting in a cumulative risk of failure of 26.1%. Genotyping
using the three polymorphic genes (MSP2, MSP1, and Ca1) showed that nearly all recurrent
infections were new infections, rather than recrudescence. Considering only recrudescence,
eight (2.5%) participants were classified as having genuine treatment failures, and risk of
recrudescence did not differ significantly among the four sites (p > 0.78).
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Table 2. Primary treatment outcomes.

Kolle
N = 70
n (%)

Faladje
N = 88
n (%)

Bandiagara
N = 99
n (%)

Pongonon
N = 70
n (%)

p-Value

Early treatment
failure
(ETF)

1 (1.4) 0 (0.0) 0 (0.0) 0 (0.0) -

Late clinical failure
(LCF) 9 (13.0) 5 (5.7) 15 (15.2) 3 (4.3) 0.044

Late parasitological
failure (LPF) 17 (24.6) 22 (25.0) 12 (12.1) 2 (2.8) 0.0001

Crude Adequate
clinical and

parasitological
response (ACPR)

43 (62.3) 61 (69.3) 72 (72.7) 65 (92.8) 0.0001

Reinfection † 25 (35.7) 24 (27.3) 23 (23.2) 4 (5.7) 0.0001

ACPRc ‡ 68 (97.1) 85 (96.6) 95 (96.1) 69 (98.6) 0.85
† Reinfection. ‡ Adequate clinical and parasitological response correction (ACPRc) by PCR.

2.4. Secondary Outcomes

The clearance of fever was not statistically different among the four sites (data not
shown). By Day 2, nearly all fevers had resolved. Parasitemia was statistically different
among sites and highest in Pongonon on Day 1, but parasites were undetectable in all
patients by Day 3 (Figure 2). Hemoglobin concentrations improved equally in all four
sites (data not shown). Gametocytemia was highest in Pongonon at enrollment, but the
levels became statistically similar to other sites by Day 1 (Figure 3). Gametocytes were not
detected on any peripheral blood smears from Bandiagara.

Figure 2. Parasitemia clearance.
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Figure 3. Gametocytemia clearance.

2.5. Baseline Allele-Prevalence and Treatment Outcome

A total of 337 infections before treatment were successfully analyzed. Figures 4 and 5
show the prevalence of the studied pfcrt 76T and pfmdr1 86Y mutations in all participants at
baseline (Day 0) and re-treatment (Day R). Carriage of the pfmdr1 N86 allele and/or the pfcrt
K76 allele (wild types) was not associated with blood smear positivity after initial parasite
clearance in participants at any site within the 28-day follow-up period (p > 0.05). Addi-
tionally, we conducted an analysis of directional selection acting on alleles pfmdr1 codon 86
and pfcrt codon 76 from infected patients following therapy with artemether-lumefantrine.
The frequencies of the pfmdr1 N86 and the pfcrt K76 alleles in recurrent infections increased
from 84.7% to 100% (p = 0.0002) and 43.5% to 61.2% (p = 0.02), respectively (Table 3). The
direction of the allele changes from baseline to recurrence was assessed using McNemar’s
χ2 test for paired samples.

Figure 4. Pfcrt allele frequency. D0 = date of enrollment; Day R = date of recurrent infection.
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Figure 5. Pfmdr1 allele frequency. D0 = date of enrollment; Day R = date of recurrent infection.

Examples of gel photo illustrations for MSP2, MSP1, and Ca1 (Figure 6).

Figure 6. Gel photo illustrations for MSP2, MSP1, and Ca1 (D0 = Day 0 and DF = Failure Day). (Plate 1). DNA band of
Plasmodium falciparum MSP2. (Plate 2). DNA band of P. falciparum MSP1. (Plate 3). DNA band of microsatellite Ca1.
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Table 3. Matched post-treatment allele frequencies.

Prevalence (%) in Patient Samples (No. of Patients With Allele/Total
No. in Group)

Baseline Recurrence χ2 p-Value Selection

Pfcrt K76T
K 43.5 (37/85) 61.2 (52/85) 6.08 0.02 K allele
T 56.5 (48/85) 38.8 (33/85)

Pfmdr1 N86Y
N 84.7 (72/85) 100 (85/85) 13.00 0.0002 N allele
Y 15.3 (13/85) 0 (0/85)

3. Discussion

We found that both pfcrt K76 and pfmdr1 N86 (wild types) were selected in vivo after
treatment with artemether-lumefantrine. Statistically significant pfcrt allele-selection has
not been observed as often as pfmdr1 allele-selection. Our study, in addition to those by
Sisowath, et. al. [22], and Otienoburu et al. [23], confirmed that the selection of the K76
SNP occurs in response after artemether-lumefantrine treatment. Veiga et al. showed the
selection of K76 and N86 with lumefantrine treatment using gene-edited parasites [24].
All these studies described a decreasing chloroquine exposure and increased lumefantrine
exposure and that this contributed to the selection of the wild types of pfmdr1 and pfcrt.

Whether pfcrt K76 and pfmdr1 N86 are selected for under the same mechanism remains
to be determined. The reason for recurrent infections is primarily reinfection and allele
selection occurs in reinfecting parasites. The concentration of lumefantrine is high enough
to eliminate mutated parasites, but insufficient to eliminate wild-type parasites without the
combined protection of artemether. Hastings and Ward have suggested that the selection
of N86 may represent a marker of tolerance to lumefantrine [25].

In our study, treatment with artemether-lumefantrine (AL) was selected for pfcrt K76
and pfmdr1 N86 alleles (wild types) among recurrent infections. In this analysis, allele
prevalence on Day 0 was compared with allele prevalence on Day R among the 85 patients
who had recurrent infection. Recurrent parasitemia was statistically similar among three
of the four sites (Kolle, Faladje, and Bandiagara), though recurrent malaria was most
commonly observed in Bandiagara (15.2%). Recurrent malaria (4.3%) and parasitemia
(2.9%) were both statistically lower in Pongonon.

Carriage of the pfmdr1 N86 allele has been associated with treatment failure in patients
given artemether-lumefantrine [26–47]. Prevalence of the pfmdr1 N86 allele also increased
in all isolates, which shows a selection in favor of the wild-type allele, as seen previously
with the use of artemether-lumefantrine [48]. The pattern of the pfmdr1 allele prevalence
change was similar to that reported recently by Dokomajilar [49] from their study of
Ugandan children, from Humphreys in Tanzania [26], and from Sisowath in Unguja Island
and Micheweni [20]. Prevalence of the pfcrt K76 allele (wild type) increased in all isolates
after treatment. We found evidence for significant selection of both pfcrt K76 and pfmdr1
N86 SNPs (wild types) after treatment with artemether-lumefantrine.

The selection of a SNP previously associated with quinoline antimalarial drug resis-
tance was first documented in 2005. Our results regarding pfmdr1 N86 allele-selection (wild
type) are consistent with previous studies; however, the risk of new infections among these
studies has varied. In areas of Tanzania with intermediate transmission, the risk of new
infection after artemether-lumefantrine treatment was only 5%; a similar study performed
in an area of high transmission in Tanzania showed new infection rates of about 50%. In our
study, risk of reinfection also varied by site, from Pongonon to Faladje/Bandiagara/Kolle.
As transmission intensity increased from one site to another, so did the proportion of treated
patients selecting for parasites harboring a particular allele. In vitro studies propose that
gene selection occurs during the elimination phase of lumefantrine (t 1/2 = 3–6 days) [50],
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but this effect is unclear at the population level, where the proportion of parasites exposed
to drug-selective pressures will vary geographically.

The eight (2.5%) recrudescent infections in this study could not be explained by pfmdr1
or pfcrt selection alone, albeit the sample size may have been insufficient to identify any
associations. We thus relied on the combined outcomes of reinfection and recrudescence,
as previous studies have done. However, grouping these outcomes involves the risk of
seeing relationships that may not exist. Unless an increased frequency of recrudescence
occurs in patients treated with artemether-lumefantrine, insights regarding tolerance and
resistance will remain limited.

The presence of these wild-type alleles has been associated with reduced sensi-
tivity to lumefantrine in vitro [51]. Other studies have associated the pfmdr1 haplo-
type of N86-184F-1246 with treatment failure [52,53]. We hypothesize that treatment
with artesunate-amodiaquine (ASAQ) may lead to a selection of molecular markers of
drug resistance (pfcrt 76T and pfmdr1 86Y (mutant types)) against artemisinin partner
molecules [54,55]. AL and ASAQ could have opposite effects in selecting for pfcrt K76
and pfmdr1 N86 alleles (wild types), suggesting a potential benefit of using different ACTs
simultaneously as first-line treatment to reduce selective pressures by each regimen. Alter-
nating the use of AL versus ASAQ could maintain drug effectiveness, while decreasing
the risk of tolerance/resistance. Larger studies examining this hypothesis could inform
NMCPs to adjust malaria treatment policies.

In conclusion, parasite populations exposed to artemether-lumefantrine in this study
were selected toward chloroquine-sensitivity and showed a promising trend that may
warrant future targeted reintroduction of chloroquine or/and amodiaquine in areas where
P. falciparum was previously resistant to these drugs.

4. Methods
4.1. Study Area and Population

This study was conducted during the malaria transmission season, from October 2009
to January 2010 in four different Malian areas: Kolle, Faladje, Bandiagara, and Pongonon.
Kolle is a rural village of ~3000 inhabitants located 57 km southwest of Bamako. The
climate is Sudanian savanna with two distinct seasons, the dry season (January–June)
and the rainy season (July–December). Malaria is hyperendemic during 3 to 4 months
of the rainy season with a parasite index (PI) of 70%–85%, and of 40%–50% during the
dry season [56]. The entomological inoculation rate during the high transmission season
was 5.2 infective bites per person per month and the pfcrt K76T mutation prevalence was
previously recorded in 1999 and 2002 at 28.3% and 85%, respectively [57,58]. Faladje
is located 80 km northwest of Bamako and its health center serves ~23,000 inhabitants.
Malaria is seasonal (July–November) with a hyperendemic peak in October. The pfcrt
K76T mutation prevalence was previously recorded in 2003 at 80% [57]. Bandiagara is
a town of ~13,364 inhabitants located 700 km northeast of Bamako. Malaria is endemic
with a transmission period from July to November. The pfcrt K76T mutation prevalence
was previously recorded in 2002 at 39% [57]. Pongonon is a village of ~1400 inhabitants
located 20 km from the rural town of Koro and 785 km from Bamako in northeastern Mali.
Malaria is endemic with a transmission period from July to October. The entomological
inoculation rate was one infective bite per person per month. Pongonon is located in an
ecological transition zone between the Savanna and Sahel regions. The pfcrt K76T mutation
prevalence was previously recorded in 2002 at 13% (unpublished data).

4.2. Study Volunteers

Inclusion criteria consisted of the following: (i) age ≥6 months, (ii) microscopic de-
tection of P. falciparum at a density ≥2000 asexual parasites/µL to 200,000/µL of blood,
(iii) axillary temperature ≥37.5 ◦C or reported fever in the preceding 24 h, (iv) ability to
swallow oral medication, and (v) willingness to consent and comply with the study pro-
tocol for the duration of the study (parental consent was required for children <18 years).
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Exclusion criteria consisted of the following: (i) signs of severe malaria according to 2003
WHO definitions, (ii) a concomitant febrile condition (i.e., measles, acute respiratory infec-
tion, severe diarrhea), (iii) severe malnutrition, (iv) disclosed or clinically patent pregnancy,
(v) other known underlying chronic or severe diseases, or (vi) history of hypersensitivity to
artemether-lumefantrine or the rescue treatment, artesunate-amodiaquine.

4.3. Sample Collection

Finger-prick blood samples were collected from enrolled patients to assess the parasite
density and hemoglobin level on-site, and to be preserved on the filter papers (Whatman
3MM, Whatman Lab Sales Ltd., Maidstone, Kent, UK), which were stored in self-sealing
plastic bags with desiccant for later analysis. Patients received a twice-daily dose of
artemether-lumefantrine of 20 mg/120 mg as indicated by weight for three consecutive
days: one tablet per dose for patients weighing 5–14 kg, two tablets per dose for those
weighing 15–24 kg, three tablets per dose for those weighing 25–34 kg, and four tablets per
dose for those weighing ≥35 kg. All doses were administered on-site under supervision.
A full dose was re-administered if a participant vomited within 30 min of the initial drug
administration. After treatment initiation, patients were examined and finger-prick blood
samples were collected routinely on Days 1, 2, 3, 7, 14, 21 and 28 of the treatment and
on any day of recurrent illness during the 28-day follow-up period. In cases of treatment
failure, quinine was administered if the patient was re-diagnosed with uncomplicated
malaria or parasitemia. As per the national guidelines, patients were referred to a hospital
and intravenous quinine was administered if severe malaria was diagnosed at any time
during the follow-up period. Treatment was also given for any other conditions diagnosed
(Supplementary File).

4.4. Laboratory

Specimen analysis was completed at the Malaria Research and Training Center (MRTC)
lab in Bamako, Mali. Parasite density and rate of gametocyte carriage were measured, as
number of parasites per microliter, from Giemsa-stained thick blood smears. A positive
smear was defined as a thick smear with at least one asexual parasite per 100 fields under
1000× magnification (standardized technique from the Malian Ministry of Health). Blood
was collected for hemoglobin measurement (HemoCue AB) on Day 0 prior to treatment
and on Days 14 and 28 of treatment. Children with hemoglobin <7 g/dL were treated with
oral iron therapy according to national policy [59]. For quality control purposes, 10% of
smears were read by two independent microscopists blinded from the results of the first
reading. On the basis of the results of these assessments, patients were classified as having
therapeutic failure (early or late) or an adequate clinical and therapeutic response.

4.5. DNA Extraction

Three methods were used for DNA extraction. (1) Methanol was used to extract
parasite DNA from all filter paper blood samples. Samples that did not yield DNA by this
method were extracted using (2) the Chelex method [60]. For a single day 0 sample from
Bandiagara, a filter paper blood sample was not available; thus, parasites were extracted
from the thick smear according to a modified dried blood protocol using (3) QIAmp DNA
blood mini kit (Qiagen, Valencia, CA, USA). DNA samples were stored at −20 ◦C until use.

4.6. Genotyping of Plasmodium Falciparum Isolates

MSP2, MSP1, and Ca1 were used to compare genotypic profiles between pre- and
post-treatment P. falciparum isolates, in order to distinguish between episodes of recrudes-
cence and reinfection [61–63]. The number of clones in pre- and post-treatment P. falciparum
isolates were denoted by the number of different-sized PCR products [61]. Length differ-
ences were determined using a 100 bp molecular weight ladder (Promega, Madison, WI,
USA). Allele-specific positive controls and DNA-free negative controls were included in
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each round of reactions. Primers for MSP1, MSP2 and Ca1 were synthesized by Integrated
DNA Technologies, Coralville, IA, USA.

4.7. Pfcrt Codon 76-Point and Pfmdr1 Codon 86-Point Mutations Analysis

Mutations in pfcrt and pfmdr1 were assessed for all baseline infections (Day 0) and
all recurring infections post-treatment (Day R) to examine any association between the
artemether-lumefantrine treatment and the development of tolerance/resistance, as has
been previously suggested [21]. The pfcrt K76T SNP was analyzed by restriction frag-
ment length polymorphism (RFLP)-PCR and mutation-specific MS-PCR [13]. DNA from
P. falciparum isolates Dd2 (containing the 76T mutation) and 3D7 (lacking this mutation)
were used as the positive controls, while a DNA-free reaction mix was used as negative con-
trol. The pfmdr1 N86Y SNP was analyzed by PCR-RFLP, as described previously [64]. The
negative control without parasite DNA and the positive controls were processed alongside
the samples. HB3 and Dd2 P. falciparum isolates, representing wild-type (N86) and mutant
genotypes (86Y), respectively, were used as the positive controls. PCR was performed in
a tetrad 2 thermocycler (BIO-RAD, Marnes-la-Coquette, France). Primers for pfcrt were
synthesized by Integrated DNA Technologies, Coralville, IA, USA. Primers for pfmdr1
were synthesized by the UMD Biopolymer core facility. RFLP and MS-PCR products and
digestions were separated by electrophoresis in 2% agarose gels with ethidium bromide
and were visualized under UV transillumination (SynGene; GeneSnap v.6.05).

4.8. Data Management and Analysis

Data were collected on case report forms and double entered using MS Access and
analyzed using Stata (Stata Corp 11). The prevalence of single mutations and of various
genotypes including the double mutant (pfcrt 76T + pfmdr1 86Y) were calculated with 95%
confidence interval (CI). Chi-square or Fisher exact probability tests and McNemar’s χ2 test
were used for comparisons as appropriate with statistical significance set at p value < 0.05.

4.9. Ethics

The study was approved by the ethical committee of the Faculty of Medicine, Phar-
macy and Dentistry of Bamako, University of Sciences, Techniques, and Technologies
of Bamako, Mali #No9/63/FMPOS#. Community permission was obtained from each
locality prior to the study. Written informed consent was obtained from all adults and
parents/guardians of children enrolled prior to screening.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22116057/s1.
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