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ABSTRACT

Background and aims: Some online gamers may encounter difficulties in controlling their gaming
behavior. Previous studies have demonstrated beneficial effects of transcranial direct current
stimulation (tDCS) on various kinds of addiction. This study investigated the effects of tDCS on
addictive behavior and regional cerebral metabolic rate of glucose (rCMRglu) in problematic online
gamers.Methods: Problematic online gamers were randomized and received 12 sessions of either active
(n 5 13) or sham tDCS (n 5 13) to the dorsolateral prefrontal cortex over 4 weeks (anode F3/cathode
F4, 2 mA for 30 min, 3 sessions per week). Participants underwent brain 18F-fluoro-2-deoxyglucose
positron emission tomography scans and completed questionnaires including the Internet Addiction
Test (IAT), Brief Self-Control Scale (BSCS), and Behavioral Inhibition System/Behavioral Activation
System scales (BIS/BAS) at the baseline and 4-week follow-up. Results: Significant decreases in time
spent on gaming (P 5 0.005), BIS (P 5 0.03), BAS-fun seeking (P 5 0.04), and BAS-reward
responsiveness (P 5 0.01), and increases in BSCS (P 5 0.03) were found in the active tDCS group,
while decreases in IAT were shown in both groups (P < 0.001). Group-by-time interaction effects were
not significant for these measures. Increases in BSCS scores were correlated with decreases in IAT
scores in the active group (b 5 �0.85, P < 0.001). rCMRglu in the left putamen, pallidum, and insula
was increased in the active group compared to the sham group (P for interaction < 0.001). Discussion
and conclusions: tDCS may be beneficial for problematic online gaming potentially through changes in
self-control, motivation, and striatal/insular metabolism. Further larger studies with longer follow-up
period are warranted to confirm our findings.
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INTRODUCTION

Online gaming has become one of the most popular Internet
activities and it can have positive effects on emotion and
cognition if not abused (Granic, Lobel, & Engels, 2014).
While most game players do not develop problems, some
players encounter difficulties in controlling game use and
show addiction symptoms (Han et al., 2011). Furthermore,
problematic online gaming may lead to Internet gaming
disorder (IGD), which has been included as a preliminary
clinical condition in the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) (American
Psychiatric Association, 2013). In comparison to non-
problematic engagement in gaming, IGD is characterized by
compulsion, intrusive thoughts, and irresistible urge to play
online games, and therefore has negative influences on
mental health and daily functioning (Ho et al., 2014; Paw-
likowski & Brand, 2011). However, there has been a con-
troversy surrounding the concept and diagnostic criteria of
IGD such as withdrawal and tolerance, and thus more
research is needed to reach a general consensus (Kuss,
Griffiths, & Pontes, 2017).

Various treatment strategies including psychotherapy
and pharmacological intervention have been proposed for
treating problematic online gaming or IGD. Although pre-
vious studies have reported the efficacy of cognitive-behav-
ioral therapy and antidepressant medication in IGD patients
(Han, Hwang, & Renshaw, 2010; Wolfling et al., 2019), their
benefits remain to be further established (King et al., 2017).

Transcranial direct current stimulation (tDCS) modu-
lates brain function by applying a low-intensity direct cur-
rent to the scalp. In general, the anodal stimulation
depolarizes the neurons and facilitates the occurrence of
action potentials, whereas the cathodal stimulation hyper-
polarizes the neurons and suppresses the likelihood of action
potentials (Nitsche et al., 2008). Compared to transcranial
magnetic stimulation, tDCS has lower spatial resolution, but
it is less expensive, easier, and safer to administer (Bikson
et al., 2016).

The prefrontal-striatal pathway is closely implicated in
the pathophysiology of various neuropsychiatric disorders
including addiction (Kober et al., 2010). Previous neuro-
imaging studies in IGD have consistently reported structural
and functional abnormalities in this circuit (Yao et al., 2017).
Particularly, the dorsolateral prefrontal cortex (DLPFC)
plays an important role in many aspects of cognitive control
in addiction. The neurocognitive model on modulating the
DLPFC in addiction suggests that the stimulatory effects can
spread over not only other prefrontal regions such as the
orbitofrontal cortex and ventromedial prefrontal cortex, but
also the limbic and paralimbic structures including the
striatum, insula, amygdala, and hippocampus through the
frontal-subcortical networks (Bonelli & Cummings, 2007;
Fecteau, Fregni, Boggio, Camprodon, & Pascual-Leone,
2010). Moreover, dopamine release is also facilitated in the
prefrontal-striatal circuit (Cho & Strafella, 2009; Rudroff,
Workman, Fietsam, & Ponto, 2020; Strafella, Paus, Barrett,

& Dagher, 2001). These neural cascades may have influences
on cognitive systems including decreases in reward seeking,
impulsivity, craving, and addiction-relevant memory and
attentional biases, and increases in inhibitory control (Fec-
teau et al., 2010). Several studies have provided evidence that
tDCS to the DLPFC can be effective in treating various kinds
of substance and behavioral addictions (Boggio et al., 2008;
Fregni et al., 2008; Sauvaget et al., 2015).

Positron emission tomography (PET) has unique po-
tential for assessing cerebral metabolism, neuroreceptor
occupancy, and neurotransmitter binding in vivo. In
particular, mapping uptake of 18F-fluoro-2-deoxyglucose
(FDG) provides insight into the brain activity patterns.
Several PET studies have investigated brain pathophysiology
of addiction including IGD (Tian et al., 2014) and drug
dependence (Wiers, Cabrera, Skarda, Volkow, & Wang,
2016). However, it has been sparsely used in tDCS studies
compared with other neuroimaging modalities (Rudroff
et al., 2020). We previously reported changes in regional
cerebral metabolic rate of glucose (rCMRglu) associated with
tDCS in online gamers (Lee et al., 2018) and patients with
mild cognitive impairment (Yun, Song, & Chung, 2016) and
Alzheimer’s disease (Im et al., 2019).

Our single-arm feasibility study in online gamers
demonstrated the possibility that tDCS to the DLPFC may
reduce both addiction symptoms and time spent on games
(Lee et al., 2018, 2019). Based on these results, we performed
a randomized, single-blind, sham-controlled trial of pre-
frontal tDCS in problematic online gamers using the same
tDCS protocol. The main objective was to investigate
whether addiction symptoms and time spent on games
would decrease after tDCS. The secondary objective was to
examine changes in self-control and motivation, both of
which are associated with online game addiction (Kim et al.,
2016) and may be partially modulated by tDCS (Loftus,
Yalcin, Baughman, Vanman, & Hagger, 2015; Ohmann,
Kuper, & Wacker, 2018). In addition, we examined associ-
ations between changes in self-control or motivation and
changes in addiction symptoms or time spent on games. The
third objective was to assess changes in rCMRglu to examine
the neural correlates of tDCS using FDG-PET, and to
explore correlations between rCMRglu and clinical charac-
teristics.

METHODS

Participants

Young adults of age ≥20 years who play online games and
were interested in changing their gaming behavior were
recruited from the local community. We defined the inclu-
sion criteria for problematic online gamers as scores of 40 or
higher on the Internet Addiction Test (IAT) according to the
previous studies (Tsitsika, Critselis, Janikian, Kormas, &
Kafetzis, 2011; Young, 1998). Exclusion criteria were major
medical conditions including neurological or psychiatric
disorders; taking psychotropic medication; history of
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traumatic brain injury; history of seizure or epilepsy; and
pregnancy. None of the participants had received tDCS or
other medical treatment for their gaming behavior in the
past. In addition, participants were paid for their partici-
pation.

Study protocol

After screening, participants underwent baseline clinical and
neuroimaging evaluations and were randomized into active
or sham tDCS groups. Within 1 week after the baseline
assessment, participants started the course of 12 active or
sham tDCS sessions at the hospital over 4 weeks (3 times per
week). Within 1 week after the last tDCS session, follow-up
clinical and neuroimaging assessments were performed us-
ing the same protocol as the baseline assessment.

Transcranial direct current stimulation

The tDCS parameters were based on our preliminary study
(Lee et al., 2018, 2019) and the conventional protocols for
human studies (Thair, Holloway, Newport, & Smith, 2017).
tDCS was applied via two sponge electrodes (6 cm in
diameter) using the YDS-301N device (YBrain Inc, South
Korea). Each sponge was soaked with approximately 6 mL of
saline solution (0.9% NaCl). The anodal and cathodal elec-
trodes were positioned over the left (F3, 10–20 system) and
right DLPFC (F4), respectively. Bihemispheric stimulation
may induce stronger cortical activations (Kwon & Jang,
2012; Lindenberg, Nachtigall, Meinzer, Sieg, & Floel, 2013)
and bifrontal tDCS has been widely used to modulate
behavior and cognition and to treat neuropsychiatric dis-
orders including addiction (Kekic, Boysen, Campbell, &
Schmidt, 2016). The current intensity was 2 mA and dura-
tion of each session was 30 min based on the recommended
safety thresholds (Thair et al., 2017). For the active sessions,
the current was ramped up to 2 mA over the first 30 s,
remained at 2 mA for 29 min, and ramped down to 0 mA
over the last 30 s. For the sham condition, the current was
ramped up to 2 mA over 30 s and ramped down over next
30 s. This initial and brief stimulation is the most commonly
used and reliable technique for sham tDCS by mimicking
cutaneous sensations of active tDCS (Gandiga, Hummel, &
Cohen, 2006). Participants were planned to be excluded
from the analysis if they received less than 10 out of 12 tDCS
sessions.

Clinical assessment

The presence of mental disorders was screened by the
Structured Clinical Interview for DSM-IV (First, Spitzer,
Gibbon, & Williams, 2002). The severity of gaming addic-
tion was assessed using the IAT (Lee et al., 2013; Young,
1998) that was modified to specify online gaming instead of
general online activities. In addition, participants reported
average weekly hours spent on gaming over 4 weeks. Levels
of self-control were evaluated with the Brief Self-Control
Scale (BSCS), with higher scores indicating stronger self-
control (Hong, Kim, Kim, & Kim, 2012; Tangney,

Baumeister, & Boone, 2004). The Behavioral Inhibition
System/Behavioral Activation System (BIS/BAS) scale was
used to assess individual differences in the sensitivity of two
motivational systems (Carver & White, 1994; Kim & Kim,
2001). The BIS scale examines anxiety to anticipated pun-
ishment. The drive subscale of the BAS scale evaluates
constant pursuit of desired goals. The BAS-fun seeking
subscale assesses how much one craves and seeks out new
rewards impulsively. The BAS-reward responsiveness sub-
scale reflects positive emotional responses to rewards.
Smoking status and regular alcohol drinking (defined as at
least once a week) were checked by self-report questions.

Image acquisition and analysis

Brain FDG-PET scans was performed using a Discovery STE
PET-CT scanner (GE Healthcare, Milwaukee, WI, USA) at
baseline and follow-up assessments. All participants were
injected with 185–222 MBq of FDG intravenously and rested
in a supine position with eyes closed in a quiet and dark
room for 45 min. A total of 47 transaxial emission images
were obtained (pixel size 5 1.95 3 1.95 mm, slice thickness
5 3.27 mm, matrix 5 128 3 128). Computed tomography
(CT) images were also acquired for attenuation correction.
Standard filtering techniques and ordered subset expectation
maximization algorithm were applied to reconstruct PET
images.

Statistical Parametric Mapping 12 (SPM; Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, UK) was used for image processing and analysis.
All PET images were spatially normalized to the standard
PET template, resliced with a voxel size of 2 3 2 3 2 mm,
and smoothed with an 8 mm full-width at half-maximum
isotropic Gaussian kernel. Relative FDG uptake at each voxel
was estimated as a ratio to the global mean uptake using
proportional scaling.

To compare changes in rCMRglu after tDCS between the
active and sham groups, group-by-time interaction effects
were examined across the whole brain in a voxel-wise
manner. The statistical threshold was P < 0.001 and 50 or
more contiguous voxels. For each significant cluster, indi-
vidual rCMRglu values were extracted using MarsBar
toolbox (http://marsbar.sourceforge.net/).

Statistical analysis

For sample size estimation, there are no published sham-
controlled tDCS studies in gamers yet, to the best of our
knowledge. From our single-arm feasibility study of tDCS in
gamers (Lee et al., 2018), the estimated sample size was 9 for
uncontrolled design based on the effect size of changes in
IAT scores (d 5 1.07), a power of 0.8, and a two-tailed alpha
of 0.05. In addition, two sham-controlled tDCS studies in
gambling disorder were conducted for 16 and 10 partici-
pants per group with 1 and 3 sessions, respectively (Dickler
et al., 2018; Soyata et al., 2019). Considering different study
designs, sample characteristics, and tDCS protocols among
these studies, we aimed to recruit 13 individuals for each
group.
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Normality of the data was tested with Shapiro–Wilk test.
Baseline demographic and behavioral characteristics were
compared using independent t-test, Mann–Whitney U test,
or Fisher’s exact test, if appropriate.

Between-group differences of changes in behavioral
characteristics including time spent on games and scores of
IAT, BSCS, BIS/BAS were assessed by linear mixed model.
Group, time, and group-by-time interaction terms were
included as fixed effects and within-subject factor was
considered as a random effect. In addition, within-group
changes were examined for each group using separate linear
mixed model analyses.

Linear regression or Spearman’s rank correlation were
used to evaluate associations between significant changes in
time spent on gaming or IAT scores and significant changes
in BSCS or BIS/BAS scores in each group. Furthermore,
linear regression or Spearman’s rank correlation were used
to investigate relationships between rCMRglu and behav-
ioral characteristics in the entire sample at baseline and
between significant changes in rCMRglu and significant
changes in behavioral characteristics within the active tDCS
group.

A P value less than 0.05 (two-tailed) was considered
statistically significant. Statistical tests were performed using
STATA version 16 (StataCorp., College Station, TX, USA).

Ethics

This study was approved by the Institutional Review Board
of Incheon St. Mary’s Hospital (Incheon, South Korea) and
carried out in accordance with the Declaration of Helsinki.
All participants provided written informed consent.

RESULTS

Characteristics of study participants

A total of 26 problematic online gamers were enrolled and
randomized into active (n 5 13) or sham tDCS groups (n 5
13) (Supplementary Fig. 1). No participants were dropped
from the study or analysis due to withdrawal of consent,
follow-up loss, or low compliance. There were no significant
differences in the number of tDCS sessions received between
the two groups (P 5 0.72) and no participants reported

Table 1. Baseline characteristics of study participantsa

Characteristics
Active tDCS Sham tDCS

Test(n 5 13) (n 5 13)

Demographic characteristics
Age (years) 22.2 ± 1.7 23.2 ± 1.6 P 5 0.16c

(20–26) (20–26)
Sex (male/female) 8/5 7/6 P 5 0.69d

Higher educationb 11 11 P 5 1.00d

Right handedness 12 13 P 5 1.00d

Behavioral characteristics
Years of gaming 5.0 ± 3.0 6.0 ± 3.5 P 5 0.43c

(1–10) (1–14)
IAT 49.2 ± 7.9 49.4 ± 7.2 P 5 0.96c

(40–66) (40–63)
Average weekly hours spent on gaming 16.1 ± 11.0 18.3 ± 8.4 P 5 0.34e

(7–42) (7.5–35)
BSCS 32.5 ± 5.3 35.6 ± 6.1 P 5 0.17c

(25–43) (25–43)
BIS 20.9 ± 3.1 19.8 ± 3.8 P 5 0.54c

(13–25) (14–28)
BAS-drive 11.2 ± 1.3 11.8 ± 2.0 P 5 0.37c

(9–14) (8–15)
BAS-fun seeking 11.8 ± 2.2 12.2 ± 1.6 P 5 0.61c

(8–15) (9–14)
BAS-reward responsiveness 17.1 ± 1.8 16.2 ± 1.4 P 5 0.20c

(14–20) (14–19)
Smoking 5 6 P 5 1.00d

Regular alcohol drinkingf 10 10 P 5 1.00d

BAS: Behavioral Activation System; BIS: Behavioral Inhibition System; BSCS: Brief Self-Control Scale; IAT: Internet Addiction Test; tDCS:
transcranial direct current stimulation.
a Data are presented as mean ± standard deviation (range) or n.
b College or higher.
c Independent t-test.
d Fisher’s exact test.
e Mann–Whitney U test.
f At least once a week.
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adverse events from tDCS. There were no significant dif-
ferences between the two groups in any baseline character-
istics including age (P 5 0.16), sex (P 5 0.69), years of
gaming (P 5 0.43), average weekly hours spent on gaming
(P 5 0.33), and IAT score (P 5 0.96) (Table 1).

Effects of tDCS on behavioral characteristics

Changes in behavioral characteristics are demonstrated in
Table 2. Group-by-time interaction effects were not signifi-
cant for any of the measures. However, the active tDCS
group showed significant decreases in average weekly hours
spent on gaming (P 5 0.005) and scores on IAT (P < 0.001),
BIS (P 5 0.03), BAS-fun seeking (P 5 0.04), and BAS-
reward responsiveness (P 5 0.01), and increases in BSCS
score (P 5 0.03). The IAT score was also significantly
decreased in the sham tDCS group (P < 0.001).

Results from the correlation analysis among the changes
of behavioral characteristics in the active tDCS group are
demonstrated in Supplementary Table 1. Increases in the
BSCS scores were associated with decreases in the IAT
scores in the active group (b 5 �0.85, P < 0.001). However,
a significant correlation was not found in the sham tDCS
group (b 5 �0.24, P 5 0.43) (Fig. 1).

Effects of tDCS on brain glucose metabolism

A significant group-by-time interaction effect was found in a
cluster encompassing the left putamen, pallidum, and insula
(P < 0.001) (Table 3 and Fig. 2). Post-hoc tests revealed that
rCMRglu was increased in the active tDCS group (P <
0.001), while it was reduced in the sham tDCS group (P <
0.001).

Results from the correlation analysis between rCMRglu
and behavioral characteristics are presented in Supplemen-
tary Tables 2 and 3. At the baseline, rCMRglu in the
abovementioned cluster had negative relationships with
scores of BAS-fun seeking (b 5 �0.54, P 5 0.004) and BAS-
reward responsiveness (b 5 �0.57, P 5 0.002) in the entire
sample (Fig. 3).

DISCUSSION

This study investigated the effects of repeated tDCS to the
DLPFC in problematic online gamers. Our findings indicate
that active tDCS may be associated with reductions in time
spent on online gaming, increases in self-control, and
changes in motivation, while addiction severity was
decreased in both active and sham groups. In addition,
rCMRglu of the putamen, pallidum, and insula was
enhanced in the active group compared to the sham group.
These results suggest that prefrontal tDCS may be effective
for improving control of gaming behaviors and cerebral
glucose metabolism of striatal-insular structures.

Our findings on decreased addiction severity and time
spent on games and increased self-control after active tDCS
were consistent with the findings from our previous pre-
liminary study (Lee et al., 2018). Furthermore, decreases in the
IAT scores were associated with increases in self-control only
in the active group. Low self-control is one of the core features
of addiction (Lee et al., 2012; Reynolds, Penfold, & Patak,
2008). Previous studies reported lower self-control in IGD and
smartphone addiction than healthy controls (Kim et al., 2016;
Na, Lee, Choi, & Kim, 2017). In addition, the scores of BIS,

Table 2. Changes of behavioral characteristics after transcranial direct current stimulationa

Characteristics

Active tDCS Sham tDCS

Test
(group 3 time)c

(n 5 13) (n 5 13)

Baseline Follow-up Test (time)b Baseline Follow-up Test (time)b

IAT 49.2 ± 7.9 35.8 ± 15.5 P <0.001 49.4 ± 7.2 31.4 ± 12.9 P < 0.001 P 5 0.36
(40–66) (17–66) d 5 1.00 (40–63) (2–52) d 5 1.40 d 5 0.35

Average weekly hours spent
on gaming

16.1 ± 11.0 9.4 ± 6.9 P 5 0.005 18.3 ± 8.4 16.3 ± 10.5 P 5 0.34 P 5 0.13
(7–42) (0.5–23) d 5 0.75 (7.5–35) (2–40) d 5 0.25 d 5 0.56

BSCS 32.5 ± 5.3 35.8 ± 7.1 P 5 0.03 35.6 ± 6.1 36.6 ± 6.7 P 5 0.44 P 5 0.25
(25–43) (24–45)< d 5 0.58 (25–43) (23–45) d 5 0.21 d 5 0.44

BIS 20.7 ± 3.1 19.6 ± 2.6 P 5 0.03 19.8 ± 3.8 19.0 ± 4.5 P 5 0.31 P 5 0.81
(13–25) (14–24) d 5 0.57 (14–28) (10–24) d 5 0.27 d 5 0.09

BAS-drive 11.2 ± 1.3 10.9 ± 1.0 P 5 0.48, 11.8 ± 2.0 11.8 ± 2.2 P 5 0.91 P 5 0.69
(9–14) (10–13) d 5 0.19 (8–15) (9–16) d 5 0.03 d 5 0.15

BAS-fun seeking 11.8 ± 2.2 10.8 ± 2.2 P 5 0.04 12.2 ± 1.6 11.8 ± 1.8 P 5 0.39 P 5 0.35
(8–15) (9–15) d 5 0.55 (9–14) (9–15) d 5 0.23 d 5 0.35

BAS-reward responsiveness 17.1 ± 1.8 15.8 ± 2.2 P 5 0.01 16.2 ± 1.4 15.5 ± 1.1 P 5 0.07 P 5 0.48
(14–20) (11–19) d 5 0.66 (14–19) (13–17) d 5 0.48 d 5 0.27

BAS: Behavioral Activation System; BIS: Behavioral Inhibition System; BSCS: Brief Self-Control Scale; IAT: Internet Addiction Test; tDCS:
transcranial direct current stimulation.
a Data are presented as mean ± standard deviation (range).
b Time effects were assessed by linear mixed model in each group.
c Group-by-time interaction effects are evaluated using linear mixed model.
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BAS-fun seeking, and BAS-reward responsiveness were
reduced following active tDCS. Previous studies indicated
higher scores of BIS/BAS in individuals with Internet or
smartphone addiction (Kim et al., 2016; Ko et al., 2008; Yen,
Ko, Yen, Chen, & Chen, 2009). Individuals with both higher
sensitivity to reward stimuli and higher anxiety to anticipated
punishment may choose online gaming due to lower risk and

immediate pleasure. Anonymity, faceless interaction, lack of
physical harm, entering or leaving in games without limitation
may allow the user to feel relief of anxiety from their behaviors
and to prefer online gaming to real-world activities (Yen et al.,
2009). Increases of self-control and changes of motivation
following tDCS may contribute to amelioration of problematic
online gaming.

Fig. 1. Relationships between changes in the Brief Self-Control Scale and changes in the Internet Addiction Test in problematic online
gamers administered with (A) active or (B) sham tDCS. A solid line represents a regression line. tDCS: transcranial direct current

stimulation

Fig. 2. Increases (red-yellow) or decreases (blue-green) of rCMRglu in problematic online gamers after active tDCS compared to sham tDCS.
(A) A significant group-by-time interaction effect was found in the left putamen, pallidum, and insula (P < 0.001). The significant cluster
was overlaid on a standard T1-weighted template and brain regions were identified using the Harvard-Oxford Atlas. Images are shown in
neurological convention and the numbers above the brain slices indicate standard coordinates in the Montreal Neurological Institute space.
(B) Changes in rCMRglu in the significant cluster are demonstrated for each group. Post-hoc tests revealed that rCMRglu was increased in
the active tDCS group (P < 0.001), while it was decreased in the sham tDCS group (P < 0.001). Error bars represent standard errors.

rCMRglu: regional cerebral metabolic rate of glucose; tDCS: transcranial direct current stimulation

Table 3. Changes of brain glucose metabolism after transcranial direct current stimulation

Region t P Coordinatesa (x, y, z) Cluster size (voxels)

Group-by-time interaction
Left putamen, pallidum, and insula 5.47 <0.001 �28, �12, �6 159

a The coordinates refer to the Montreal Neurological Institute coordinate system.
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The decreased addiction severity in the sham tDCS
group was probably due to placebo effects. Attaching tDCS
electrodes to the scalp itself may result in expectation of
significant effects. Some studies in major depression also
reported comparable antidepressant effects of sham tDCS to
active stimulation (Loo et al., 2010; Palm et al., 2012).
However, the amount of gaming time was not significantly
changed in the sham group, although the relatively large
variance should be considered in the interpretation of our
findings.

Since group-by-time interaction effects were not sig-
nificant for behavioral measures, efficacy of tDCS should
be confirmed in further larger studies. In addition, prob-
lematic gaming is often accompanied by mood distur-
bances and substance abuse (Van Rooij et al., 2014), and
thus assessing changes in these comorbid symptoms would
be useful in future studies. Indeed, tDCS has been sug-
gested to reduce depressive symptoms and craving for
alcohol and nicotine (Boggio et al., 2008; Fregni et al.,
2008; Kekic et al., 2016).

Active tDCS enhanced rCMRglu in the striatal and
insular regions compared to sham tDCS. Neuroimaging and
computational modelling studies have suggested that effects
of tDCS are not limited to the stimulation sites, but spread to
other cortical and subcortical structures. For instance,
changes of rCMRglu, regional cerebral blood flow, and
resting-state functional connectivity were found in both
local and remote brain regions after tDCS, indicating brain-
wide network effects of tDCS (Keeser et al., 2011; Pena-
Gomez et al., 2012; Rudroff et al., 2020). Although the
complex mechanisms of action remain to be further eluci-
dated, previous human neuroimaging studies revealed that
bifrontal tDCS elevated both glutamate/glutamine and
dopamine levels in the striatum (Fonteneau et al., 2018;
Hone-Blanchet, Edden, & Fecteau, 2016). Since tDCS alters
glutamatergic activities under the electrodes (Stagg et al.,
2009), stimulation to the prefrontal cortex may impact
striatal activity through the corticostriatal pathways.

Previous human neuroimaging studies have suggested
potential associations between gaming addiction and struc-
tural, functional, and neurochemical alterations of the
striatum and insula. At resting condition, lower FDG uptake
of the putamen and the negative correlation between
rCMRglu of the insula and addiction severity were found in
individuals with IGD (Kim et al., 2019). Another PET study
in IGD demonstrated lower rCMRglu of the putamen and
posterior insula, and the association between decreased
dopamine D2 receptors of the putamen and higher addiction
severity while playing online games (Tian et al., 2014). Ad-
olescents with IGD showed reduced resting-state functional
connectivity between the putamen and posterior insula,
suggesting impaired network disturbances (Hong et al.,
2015). Among structural neuroimaging studies, gray matter
loss of the putamen and insula was consistently reported in
IGD (Weinstein, 2017; Yao et al., 2017). In addition, a
greater amount of videogame play in children was associated
with not only damaged white matter microstructures cross-
sectionally but also the progression of these deficits in
several brain areas including the putamen, pallidum, and
insula (Takeuchi et al., 2016). The correlation between lower
rCMRglu of the striatal/insular areas and higher levels of fun
seeking and reward responsiveness found in this study may
also imply potential roles of these deficits in problematic
online gaming.

The striatum has diverse afferent and efferent connec-
tivity with multiple cortical, subcortical, and midbrain areas
and is a key brain structure involved in reward processing
and the pathophysiology of addiction (Kim, Lee, Yun, &
Kim, 2017). In addictive processes, it has been hypothesized
that a ventral-to-dorsal shift of striatal control may play a
critical role in habitual and then compulsive behaviors
(Everitt & Robbins, 2013). For instance, both gray matter
density and white matter connectivity of the putamen were
predictive of vulnerability to habitual reactions toward no-
longer-rewarding outcomes (de Wit et al., 2012). The insula
is closely implicated in physiological states inducing strong

Fig. 3. Associations between regional cerebral metabolic rate of glucose in the cluster encompassing the left putamen, pallidum, and
insula and (A) fun seeking and (B) reward responsiveness subscales of the Behavioral Activation System at baseline. Solid lines

represent regression lines
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interoceptive signals of addictive urge (Droutman, Read, &
Bechara, 2015). tDCS may ameliorate online game addiction
by enhancing metabolic activity in these structures. How-
ever, further studies are warranted to elucidate more detailed
mechanisms underlying tDCS-induced changes of brain
functions and subsequent improvement of addiction symp-
toms.

Some limitations should be addressed. First, since this
is a single-blind study, more rigorous double-blind design
is necessary for future studies. Although we used self-
report questionnaires and PET scans for the assessment,
experimenter influences may not be ruled out. However, it
was suggested that behavioral differences between single-
blind and double-blind tDCS experiments may not be
significant as expected (Thair et al., 2017). Second, whether
participants noticed the stimulation type was not checked
at the end of the study to ensure proper blinding. However,
previous studies have reported that participants were not
able to distinguish between active and sham tDCS from
perceived cutaneous sensations when using the standard
shamming procedure (Gandiga et al., 2006; Palm et al.,
2013; Poreisz, Boros, Antal, & Paulus, 2007). Third, mul-
tiple comparison correction was not applied in the statis-
tical analyses and should be considered for future studies
with larger samples. Fourth, this study focused on adults,
and therefore caution is needed to generalize our findings
to children and adolescents. Since tDCS trials in these
populations are scarce and the developing brain can be
more sensitive to interventions, the application of tDCS
should be carefully considered only after convincing evi-
dence is obtained from adults (Muszkat, Polanczyk, Dias,
& Brunoni, 2016). Optimization of the stimulation pro-
tocols and reassessment of efficacy and safety are required
for gamers in the developmental age. Lastly, the in-
struments to assess self-control and motivation have not
been validated for repeated evaluation within the short
term.

In summary, our findings provide initial evidence that
repeated tDCS to the prefrontal cortex may be beneficial for
problematic online gaming in short term potentially through
changes in self-control, motivation, and striatal/insular
metabolism. Larger studies with longer follow-up period are
warranted to confirm our findings.
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