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Abstract Linear B-cell epitopes are critically important for immunological applications, such as

vaccine design, immunodiagnostic test, and antibody production, as well as disease diagnosis and

therapy. The accurate identification of linear B-cell epitopes remains challenging despite several dec-

ades of research. In this work, we have developed a novel predictor, Identification of Linear B-cell

Epitope (iLBE), by integrating evolutionary and sequence-based features. The successive feature

vectors were optimized by a Wilcoxon-rank sum test. Then the random forest (RF) algorithm using

the optimal consecutive feature vectors was applied to predict linear B-cell epitopes. We combined

the RF scores by the logistic regression to enhance the prediction accuracy. iLBE yielded an area

under curve score of 0.809 on the training dataset and outperformed other prediction models on

a comprehensive independent dataset. iLBE is a powerful computational tool to identify the linear

B-cell epitopes and would help to develop penetrating diagnostic tests. A web application with

curated datasets for iLBE is freely accessible at http://kurata14.bio.kyutech.ac.jp/iLBE/.
Introduction

B-cell epitopes (BCEs) are specific regions of immunoglobulin

molecules that can stimulate the immune system, which con-
tributes to diagnostic test, antibody production, and vaccine
design [1–6]. B cells are activated by BCEs to perform a variety
of biological functions [6–12]. Identification of BCEs is chal-
lenging but crucial for immunotherapy and immunodiagnos-
tics [13–16]. Nowadays, biopharmaceutical research and

development of epitope-based antibodies are growing up due
to their high efficiency, biosafety, and acceptability [17,18].
Thus, the analysis of BCEs is prerequisite for the development

of penetrating diagnostic tests and design of the operative
vaccines.

BCEs are categorized into two groups: continuous and dis-
continuous ones [3,19,20]. Epitopes in the continuous group,

called linear BCEs, consists of consecutive amino acids. Dis-
continuous epitopes are provided in the form of spatially
nces and
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Figure 1 Overview of iLBE

Firstly, BCE and non-BCE samples were collected from the IEDB

database and separated as training and independent datasets.

Secondly, the datasets were encoded using four consecutive

methods of AIP, AFC, PSSM, and PKAF. Meanwhile, the

features were optimized using a non-parametric WR scheme via

the RF classifier. After optimization of all parameters, the RF

scores for the four features were combined by LR to construct

iLBE. iLBE was tested by the independent dataset. iLBE,

Identification of Linear B-cell Epitope; BCE, B-cell epitope;

IEDB, Immune Epitope Database; AIP, amino-acid index prop-

erty; AFC, acid frequency composition; PSSM, position-specific

scoring matrix; PKAF, profile-based amino acids frequency; WR,

Wilcoxon-rank sum; RF, random forest; LR, logistic regression;

Sp, specificity; Sn, sensitivity; Ac, accuracy; MCC, Matthews

correlation coefficient; AUC, area under curve.
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folded polypeptides and their antigen-binding residues are
scattered in their amino acid sequences, making it hard to find
them from the primary sequences [21]. To identify the discon-

tinuous epitopes, it is necessary to consider many factors such
as biochemical properties and structural proximity [21–23].
Despite the complex form of the discontinuous epitopes, they

are less effective diagnostic/treatment tools than continuous
ones [17]. Linear BCEs have vast applications in the area of
vaccine design, immunodiagnostic test, and antibody produc-

tion, as well as disease diagnosis and therapy [24–27]. Given
that experimental identification of BCEs is labor intensive
and costly, computational identification of BCEs has gained
remarkable interest recently [8,28–31]. Several computational

approaches have been developed to predict BCEs, which can
be categorized into local and global predictors. Local predic-
tors, such as BepiPred [8], Bcepred [32], and COBEpro [26],

explore some potential BCE encoding sequences from given
protein sequences. These local methods aim to identify the
regions or stretchs of proteins that form BCEs [31], but it is

difficult to specify the exact regions. Global predictors, such
as iBCE-EL [28], IgPred [30], ABCpred [31], SVMTriP [33],
and LBtope [34], determine whether a given sequence is a

BCE or not. Since the number of BCEs has rapidly increased
in the immune epitope database [35], global methods gain
attention as the classifier of BCEs. Two global methods,
LBtope and iBCE-EL, have recently been developed and pub-

licly available [28,34]. These two predictors exclusively investi-
gated primary sequence-based features, such as amino acid
composition, binary properties, and physicochemical proper-

ties, but did not consider any evolutionary information. There-
fore advanced analytic tools for identifying linear BCEs are
still desirable.

In this work, we have established a computational, global
predictor named Identification of Linear B-cell Epitope (iLBE)
by integrating sequence and evolutionary features. For evolu-

tionary features, we considered the position-specific scoring
matrix (PSSM) and composition of profile-based amino acids
frequency (PKAF) encoding descriptors. For primary
sequence features, we considered amino-acid index property

(AIP) and amino acid frequency composition (AFC). To opti-
mize the consecutive feature vectors, a non-parametric
Wilcoxon-rank sum (WR) test was employed. Then the ran-

dom forest (RF) algorithm using the optimal consecutive fea-
ture vectors was used to identify linear BCEs. By the
combination of the RF scores through logistic regression

(LR), the iLBE yielded better performance than other predic-
tors. Finally we implemented iLBE as a user-friendly web
application. The computational outline of the iLBE is shown
in Figure 1.

Method

Dataset preparation

Experimentally well-characterized datasets of BCEs are needed
to develop an accurate machine learning (ML) classifier. We
pulled an experimental dataset of linear peptides from the
Immune Epitope Database (IEDB), which consists of the ver-

ified positive samples (BCEs) and negative samples (non-
BCEs) [36,37]. The IEDB integrates multi-species datasets
derived from viruses, bacteria, and fungi. We removed homo-
log sequences from these collected datasets. To evaluate the
potential over-fitting problem in the prediction model, a

70% sequence homology reduction method of CD-HIT was
performed [38]. To make a fair comparison with other meth-
ods available, the same training and independent samples were

retrieved from a recent study [28]. The training model con-
tained 4440 BCEs and 5485 non-BCEs, whereas the indepen-
dent dataset consisted of 1110 BCEs and 1408 non-BCEs. To

avoid the prediction biases, a none-redundant dataset of exper-
imentally validated BCEs and non-BCEs was used, and the
samples with more than 70% sequence similarity were
excluded. In this study, the peptide length of BCEs and non-

BCEs was set to 24. When the length of positive and negative
peptide samples was < 24, the null residues (gaps) were added
downstream. The curated datasets are shown in our web server

and a statistics of the curated datasets is included in Table 1.

Feature encoding strategies

PSSM profile

The PSSM profile was generated using the PSI-BLAST (a ver-

sion of 2.2.26+) with the whole Swiss-Prot non-redundant-
protein database (a version of December 2010). We used two
onset parameters: an iteration times of 3 and E-value cutoff



Table 1 Statistics of the datasets used in this study

Note: Number and percentage (in the parenthesis) of BCEs and non-

NCEs at different lengths in the two datasets are provided. BCE, B-cell

epitope; aa, amino acid.
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of 0.0001 [39,40]. The feature vectors were extracted based on
the sequence of BCEs and non-BCEs. For each epitope

sequence with length 24, a (24 � 20) dimensional vector was
generated via the PSSM encoding. When the query peptide
length is < 24, zero was added downstream of each PSSM

to neutralize the null residues.

PKAF encoding

After generating the PSSM profile, we generated PKAF fea-

ture vectors [41,42]. In brief, if the residue pair appears
between m and m + k +1, the composition scores were mea-
sured or standardized by the following formula:

Sij ¼
PT

i;j¼1max½min PSSM m; xið Þ;PSSM mþ kþ 1; xj

� �� �
; 0�

W� 1

ð1Þ
where W is the peptide length of BCEs, a k-spaced residues

characterized as xi{k}xj (i, j = 1, 2, . . ., 20) represent 20 types
of common residues, and T means that xi{k}xj performs T
times for the positive /negative samples. PSSM (m, xi) signifies

the score of amino acid xi at m
th row in xi{k}xj, and PSSM

(m + k + 1, xj) indicates the score of residue xj at the row
of (m + k + 1)th. An optimum value of k is 0 or 1, and the

dimension of PKAF is 800.
In addition, we employed a similarity-search-based tool of

BLAST (version of ncbi-blast-2.2.25+) to examine whether
a query peptide belongs to BCEs or not [43,44]. An E-value

of 0.01 via BLASTP was used for the whole Swiss-Prot non-
redundant90 database (version of December 2010).

AIP encoding

The AIP database (a version of 9.1) contained numerical
indices of biochemical and physicochemical properties of
amino acids [45]. With assessing various types of indices, we

measured 8 types of high informative indices, including
NAKH920108, CEDJ970104, LIFS790101, BLAM930101,
MAXF760101, TSAJ990101, NOZY710101, and

KLEP840101. To produce the feature vectors, the selected
AIPs were transformed into the BCEs and non-BCEs. A null
residue was used to fill the gap and pseudo residues. In a pep-

tide sequence with lengthW, a (W � 8) dimensional vector was
generated via the AIP encoding.

AFC encoding

The AFC encoding is widely used for representing short
sequence peptide motifs [21,24]. The procedure of AFC is
briefly described as follows. When a peptide is composed of

20 types of common residues, it contains (AA, AC, AD, . . .,
YY)400 types of residue pairs. An optimal value of k, which sig-
nifies the frequency of any two-amino acid pairs, was set to 0
or 1. Consequently, 20 � (k + 1) � 20 = 800 distinguished

residue pairs were generated. The feature vector was then cal-
culated and standardized by the following formula:

NAA

Ntotal

;
NAC

Ntotal

; :::;
NYY

Ntotal

� �
400

ð2Þ

where Ntotal is the length of epitope in the total composition
residues. If epitope length W is 24 and k is 0 or 1, then Ntotal =

W � k � 1 is 23 or 22, respectively. (NAA, NAC, . . ., NYY) rep-
resents the frequency vector of amino acid pairs within the
BCEs and non-BCEs.

Feature selection

Uncorrelated and redundant features may exist in the gener-

ated feature vectors, which can affect the accuracy of a predic-
tion model [40]. Hence, feature selection approaches are
important to collect the informative features and to character-

ize the intrinsic properties of BCEs. To characterize the fea-
tures important for predicting BCEs, a well-established
reduction method of feature dimensionality, WR, was used.
A large value of the WR specifies that the corresponding resi-

dues have a great impact on the prediction performance.
Details in the WR scheme are described elsewhere [39].

Model training and evaluation

To construct a prediction model, an RF classifier was used. It
is a supervised ML algorithm and widely used in bioinformat-

ics research [46–52]. In brief, the RF is an ensemble of a num-
ber of decision trees, H = {H1(S), H2(S), . . ., HN(S)}, which
are built on N random subcategories of the training samples.

This forest was trained with the bagging method to build an
ensemble of decision trees. The general idea of the bagging
method is that learning models are assembled to increase the
global performance. Details in the RF algorithm were pro-

vided in previous studies [39,48]. The R package was employed
to implement the RF into the proposed iLBE (https://cran.r-
project.org/web/packages/randomForest/).

Three commonly used ML algorithms, naive Bayes (NB)
[53], support vector machine (SVM) [54], and artificial neural
network (ANN) [55], were compared with the RF algorithm.

The WEKA software [56] was used for the NB and ANN algo-
rithms and the LIBSVM software (https://www.csie.ntu.edu.
tw/~cjlin/libsvm/) was used for the SVM algorithm

To construct the final model of iLBE, the respective RF

scores evaluated from the four features (PSSM, PKAF, AIP,
and AFC) were combined using a LR algorithm. The LR algo-
rithm was effectively used in ubiquitination site prediction [57].

After examining the performance of the resulting S-prediction
models (S is the number of the encoding schemes, S = in this
study), the final prediction score P was calculated by:

log
P

1� P

� �
¼

XS

n¼1
bnRn þ a ð3Þ

where bn is the regression coefficient, Rn is the RF score of each
feature, and a is the regression constant. The R software pack-

age (https://cran.r-project.org/) was employed for a general-
ized model of LR.
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Figure 2 Distribution of amino acids of BCEs

The iceLogo software (https://iomics.ugent.be/icelogoserver/) is

used to present amino acids with a significantly different distri-

bution between BCE and non-BCEs (P < 0.05).
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Performance assessment

To examine the performance of iLBE, four widely-used statis-
tical measures, represented as sensitivity (Sn), specificity (Sp),
accuracy (Ac), and Matthews correlation coefficient (MCC),

were defined as:

Sn ¼ nðTPÞ
nðTPÞ þ nðFNÞ ð4Þ

Sp ¼ nðTNÞ
nðTNÞ þ nðFPÞ ð5Þ

Ac ¼ nðTPÞ þ nðTNÞ
nðTPÞ þ nðFNÞ þ nðFPÞ þ nðTNÞ ð6Þ

MCC

¼ nðTPÞ � nðTNÞ � nðFPÞ � nðFNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½nðTNÞ þ nðFNÞ�½n TPÞ þ nðFPð Þ�½n TNÞ þ nðFPð Þ�½nðTPÞ þ nðFNÞ�p
ð7Þ

where n(TP), n(TN), n(FP), and n(FN) demonstrate the num-

ber of anticipated positive, anticipated negative, unexpected
positive, and unexpected negative samples, respectively. Fur-
thermore, we depicted the receiver operating characteristic

(ROC) curve (Sn vs. 1 � Sp) and measured the area under
curve (AUC) values [58,59].

The prediction performance was assessed using 10-fold

cross-validation (CV) test on the training model until no fur-
ther improvement occurred after each round of optimization
parameters. The training dataset was separated into 10 groups,
where 9 of the groups were used for training and the remaining

one for test. This selection process was repeated 10 times to
assess the average performance of the 10 models.

Model development

To develop the prediction model, we first compiled the training
and independent datasets in the same manner as described by

Manavalan et al. [28] (see Dataset preparation section). The
prediction result was evaluated based on the criterion of
whether the indication measure (Sp, Sn, MCC, Ac, or AUC)
exceeds a threshold value. The AUC value of the ROC curve

was evaluated, with the threshold value of the RF score chan-
ged to classify a BCE or non-BCE. The threshold value deter-
mines the desirable balance to successfully detect positive and

negative BCEs. The true positive rate (Sn) and the false posi-
tive rate (1 � Sp) were calculated for each threshold value of
the RF scores. The high-, moderate-, and low-level thresholds

were determined based on RF scores of 0.485, 0.410, and
0.360, respectively, which corresponded to Sp levels of 0.866,
0.747, and 0.636 in the training set results, respectively.

Web application and implementation

To provide a prediction service of potential BCEs to the scien-
tific community, an accessible web page of the iLBE was estab-

lished at http://kurata14.bio.kyutech.ac.jp/iLBE/. The web
application was written in various programming languages
including Perl, R, CGI scripts, HTML, and PHP. The server

takes antigen epitopes written with 20 types of common amino
acids in the FASTA format. When the submission job is com-
pleted, the server returns the prediction results with a com-
bined RF score of the predicted BCEs in a tabular form to
the output webpage with the job ID and a query peptide. Users

can save the ID for a future query and the iLBE server stores
this ID for a month.

Results and discussion

Analysis of positional amino acids

To investigate the sequence preference of BCEs and non-
BCEs, we performed amino acid positional analysis using the

iceLogo software [60]. In the training datasets, 1–15 residues
were employed to create iceLogos. The average length of the
BCE and non-BCEs was set to 15. Significant differences in

the surrounding BCEs and non-BCEs were observed by
Welch’s t-test with P < 0.05 (Figure 2). The neutral amino
acids P, N, and Y showed a strong preference on BCEs at posi-

tions 3, 4, 6, 7, 8, 10, and 11, while amino acids A, H, L, M,
and V showed a strong preference for non-BCEs. This analysis
supports the idea that different residues are targeted by distinct

BCEs, suggesting that combination of different features is crit-
ical for accurate prediction of BCEs.

Selection of the optimal model

To inspect the performance of iLBE, the curated BCE datasets
were first coded as mathematical feature vectors based on the
four successive encodings of AIP, AFC, PSSM, and PKAF.

Given that prediction performance may be impaired by uncor-
related and redundant evidence in the curated features, we
used the WR method to optimize the feature vectors. After

several trials, top 170, 510, 320, and 490 feature vectors were
selected from the AIP, AFC, PSSM, and PKAF descriptors,
respectively. Then the selected feature vectors were rearranged
in the ascending order of WR values. The RF classifiers were

trained by using the final four encoding feature vectors. The
decision trees of RF were optimized over the training dataset
by a 10-fold CV test. Then the RF scores by the PSSM,

AIP, PKAF, and AFC encoding methods were combined by
the LR scheme with regression coefficients of 0.435, 0.102,
1.337, and 0.465, respectively. As shown in Table 2, AFC pre-

sented a higher performance than any other single encoding

http://kurata14.bio.kyutech.ac.jp/iLBE/
https://iomics.ugent.be/icelogoserver/


Table 2 Performance comparison among four single feature methods and the combined iLBE

Method Sp Sn Ac MCC AUC P value

PSSM 0.703 0.714 0.708 0.368 0.746 0.006

AIP 0.704 0.689 0.697 0.369 0.742 0.006

PKAF 0.705 0.737 0.719 0.429 0.774 0.033

AFC 0.703 0.739 0.719 0.432 0.775 0.038

iLBE 0.747 0.759 0.752 0.496 0.809

Note: A10-fold CV test was applied to the training dataset. A two-tailed t-test was performed based on the AUC values, where P< 0.05 indicates a

significant difference between iLBE and the respective single feature method. PSSM, position-specific scoring matrix; AIP, amino-acid index

property; PKAF, profile-based amino acids frequency; AFC, acid frequency composition; Sp, specificity; Sn, sensitivity; Ac, accuracy; MCC,

Matthews correlation coefficient; AUC, area under curve; CV, cross-validation.

Figure 3 ROC curves of various prediction models

A. and B. ROC curves for the four encoding schemes PSSM, AIP, PKAF, and AFC, as well as their LR-combined iLBE model, are

presented for the training dataset (A) and independent dataset (B). The LR coefficients for PSSM, AIP, PKAF, and AFC are 0.435, 0.102,

1.337, and 0.465, respectively. ROC, receiver operating characteristic.

Figure 4 Distribution of the top 25 significant features derived

from the AFC scheme

The Y-axis represents the average AFC values for BCEs and non-

BCEs. The X-axis represents the selected features of amino acid

pair. The letter x represent any amino acid.

Hasan MM et al / iLBE for Identification of Linear B-cell Epitopes 597
approach in terms of Sn, MCC, and AUC in the training data-
set. The combined model of iLBE outperformed all the four

single encoding approaches in terms of Sn, MCC, Ac, and
AUC. The superiority of iLBE was confirmed to be significant
by two-tailed t-test.

The performances of each single feature vector-trained
model and the combined model were evaluated in the training
and independent datasets, as shown in Figure 3. AUCs

obtained using iLBE were higher than those obtained using
any single feature model for both training and independent
datasets, demonstrating the robustness of the iLBE model.
Moreover, we also measured the predictive performance based

on either sequence or evolutionary features alone for the train-
ing and independent datasets (Table S1). The AUC values of
the sequence feature-based methods were at most 0.791 and

0.798 for the training and independent datasets, respectively
(Table S1). Similarly, the AUC values of the evolutionary
feature-based methods were at most 0.789 and 0.786 for the

training and independent datasets, respectively. Neither the
sequence nor evolutionary feature-based methods outper-
formed iLBE, indicating that the combination of the sequence
and evolutionary features in iLBE is effective for enhanced

prediction accuracy.
In addition, we used BLAST to determine the sequence

profile information of BCEs and non-BCEs in the training

dataset [40]. In total 1038 BCE and 597 non-BCE samples were
selected out of 4440 BCE and 5485 non-BCE samples via the
BLASTP with an E-value of 0.01. Then the BLAST perfor-
mance was evaluated through a 10-fold CV test. The Sn, Ac,
MCC, and AUC were 0.214, 0.544, 0.042, and 0.569, respec-

tively, which are lower than those of iLBE. Therefore, BLAST
was not considered for the final prediction.

We found that the AFC scheme presented the highest

AUC, Sn, Ac, and MCC for all four single encoding methods
(Table 2). To investigate significant residues estimated by the
AFC method, the top 25 amino acid pairs were examined

through the WR feature selection. The top 25 significant resi-
due pairs and corresponding P values are listed in Table S2. As



Table 3 Performance comparison between iLBE and existing predictors in the training dataset

Predictor Threshold Sp Sn Ac MCC AUC

LBtope – 0.672 0.660 0.667 0.330 0.730

iBCE-EL – 0.739 0.716 0.729 0.454 0.782

iLBE High 0.866 0.568 0.733 0.452 0.809

Moderate 0.747 0.759 0.752 0.496 0.809

Low 0.636 0.838 0.726 0.475 0.809

Note: A 10-fold CV test was applied to the training dataset. The performances of LBtope and iBCE-EL were collected according to their published

studies [28,34]. In the proposed iLBE, the high-, moderate-, and low-level thresholds were determined based on the RF scores of 0.485, 0.410, and

0.360, respectively, which corresponded to the Sp levels of 0.866, 0.747, and 0.636, respectively, in the training dataset.

Table 4 Performance comparison between iLBE and existing predictors in the independent dataset

Predictor Threshold Sp Sn Ac MCC AUC P value

LBtope – 0.567 0.759 0.615 0.328 0.730 < 0.01

iBCE-EL – 0.724 0.742 0.732 0.463 0.786 < 0.05

iLBE High 0.861 0.554 0.726 0.440 0.813

Moderate 0.745 0.752 0.748 0.494 0.813

Low 0.635 0.830 0.721 0.467 0.813

Note: The high-, moderate-, and low-level thresholds for iLBE were considered based on the training dataset performance. Significant difference

between iLBE and the respective existing method was analyzed using a paired two-sample t-test based on the AUC values (P < 0.05).
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shown in Figure 4, the average AFC value was measured for
BCEs and non-BCEs. The selected feature of LxT (where ‘x’

signifies any amino acid) was the most significant residue pair
and depleted around non-BCE (P = 3.112E–12, paired two-
sample t-test, Table S2). Likewise, the feature SP that charac-

terizes a 0-spaced (i.e., there is no space in this case) pair of
residues SP is important and enriched in BCEs (Figure 4;
P = 2.88E–09, paired two-sample t-test, Table S2). The above

similar concept was applied to other selected pairs of residues
(Figure 4). Importantly, the top 25 features contained P, N,
and Y residues, which showed strong preference in positional
residue analysis (Figure 2). These residues would play an

important role in the recognition of BCEs. Moreover, as
shown in Table S2, the average AFC values of top 25 features
were significantly different between BCEs and non-BCEs

(P < 0.05; paired two-sample t-test).

Optimal length of epitopes

To optimize the length of short epitopes, we investigated the
different lengths (5, 10, 15, 20, or 25 amino acids) of BCEs
using the four encoding schemes of AIP, PSSM, AFC, and

PKAF and their combined scheme (iLBE) (Table S3). The
RF algorithm without any feature selection approach was used
to evaluate prediction performance on the training data via a
10-fold CV test. The prediction performance increased with

an increase in sequence length, and was saturated for lengths
of 20 and 25 (Table S3). Therefore, a sequence length of 24
was determined for iLBE.

Comparison of RF with other widely-used ML algorithms

The RF algorithm was characterized in comparison with the

widely-used ML algorithms of NB, SVM, and ANN on the
same training dataset. AUC values of predictions using the
four algorithms without any feature selection were evaluated
by a 10-fold CV test. As shown in Table S4, the RF algorithm
provided a higher AUC than any other algorithms. Accord-
ingly, we implement the RF algorithm in iLBE.

Comparison of iLBE with existing methodologies

We evaluated the prediction performance of the proposed

iLBE with existing approaches on the same dataset. First, we
employed the training dataset to compare the performance
of iLBE with those of the LBtope and iBCE-EL models, which

are the state-of-the-art predictors and publicly accessible. As
shown in Table 3, an increase in Sp decreased Sn for iLBE.
iLBE with the moderate threshold showed higher Sp, Sn,
MCC, Ac, and AUC than LBtope and iBCE-EL, demonstrat-

ing that iLBE outperforms the existing pioneering predictors.
Furthermore, we compared the performance of iLBE with
those of LBtope and iBCE-EL in the independent dataset

(see Method). As shown in Table 4, an increase in Sp also
decreased Sn for iLBE in the independent dataset. iLBE with
the moderate threshold outperformed the two existing meth-

ods in terms of Sp, MCC, Ac, and AUC, while it presented
almost the same Sn as LBtope. The superiority of iLBE to
the existing methods was confirmed to be significant

(P < 0.05, paired two sample t-test).

Effect of combination methods

To investigate the effects of combination methods on the pre-

diction performance, we built a competitive model of iLBE,
which arranges the four encoding vectors of AFC, AIP, PSSM,
and PKAF in a row, instead of the use of LR. It is named as

the sequential combination model. The resultant total dimen-
sion was 2192. The top 380 feature vectors were collected
and rearranged in the ascending order of WR values. The

WR-optimized feature vectors were used to train the RF clas-
sifier via a 10-fold CV test. The sequential combination model
with and without feature collection approaches yielded AUC
values of 0.778 and 0.767 on the training dataset, respectively
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(Figure S1A), and presented 0.798 and 0.781 on the indepen-
dent dataset, respectively (Figure S1B). The LR-based combi-
nation of iLBE outperformed the sequential combination

model (Figure 3) and was found to be the best in this study.

Conclusion

We have developed a novel computational predictor, iLBE,
which accurately predicts BCEs for both the training and inde-

pendent datasets. iLBE outperformed existing state-of-the-art
predictors LBtope and iBCE-EL. The iLBE model combined
the sequence-based features and evolutionary information,
while the LBtope and iBCE-EL predictors only used

sequence-based encoding methods. iLBE employed the LR-
based combined model of the RF-based classifiers, while
LBtope and iBCE-EL used SVM and an ensemble ML model,

respectively. Importantly, iLBE allows the use of various
threshold values at high, moderate, and low levels to demon-
strate whether a BCE is highly positive or negative, which is

not available in the existing prediction tools. As a complemen-
tary to the experimental strategies, iLBE provides insight into
the functional and significant characteristics of BCEs. A user-
friendly web-application was also developed for easy use by

the immunological research community.

Availability

A web application with curated datasets for iLBE is freely
accessible at http://kurata14.bio.kyutech.ac.jp/iLBE/.
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