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Abstract

During infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is
produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this
detrimental effect under proper control, Y. pestis expresses the caf operon (encoding the F1 capsule) in a temperature-
dependent manner. However, additional properties of the caf operon limit its expression. By overexpressing the caf operon
in wild-type Salmonella enterica serovar Typhimurium under a potent promoter, virulence of Salmonella was greatly
attenuated both in vitro and in vivo. In contrast, expression of the caf operon under the regulation of its native promoter
exhibited negligible impairment of Salmonellae virulence. In-depth investigation revealed all individual genes in the caf
operon attenuated Salmonella when overexpressed. The deleterious effects of caf operon and the caf individual genes were
further confirmed when they were overexpressed in Y. pestis KIM6+. This study suggests that by using a weak inducible
promoter, the detrimental effects of the caf operon are minimally manifested in Y. pestis. Thus, through tight regulation of
the caf operon, Y. pestis precisely balances its capsular anti-phagocytic properties with the detrimental effects of caf during
interaction with mammalian host.
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Introduction

Plague is an ancient disease, responsible for 200 million deaths

worldwide and still exists in parts of the world today [1,2]. Plague

is caused by the gram-negative bacterium Yersinia pestis carried by

rodents and spread by a flea vector [2]. Plague transmitted to

humans by the bite of infected fleas leads to the bubonic form of

the disease [3], which can result in 50% mortality if left untreated

[4]. Some individuals bitten by infected fleas will not develop

bubonic plague, but rather develop septicemic plague, a more

lethal form [5]. Although neither bubonic nor septicemic plague is

contagious, a small minority of patients develop secondary

pneumonic plague. Pneumonic plague is highly contagious since

the distance required for effective aerosol transmission is 2 meters

[2]. Pneumonic plague can cause 100% mortality if not treated

and 50% mortality when antimicrobial treatment begins within

20 hours of the onset of symptoms [5]. To date, endemic areas

include China, central and southern Africa, vast areas of Asia and

South America, and the southwest portion of the United States. In

addition, plague has been classified as a re-emerging disease by the

World Health Organization [1].

Two types of clinical isolates of Y. pestis have been disclosed: the

F1 capsular positive and negative strains. Although the F1 capsule

has been shown to be required for successful transmission from the

flea to the mammalian host [6], contradictory findings regarding

its requirement for mammalian infection have been reported [7,8].

A more recent elaborate study comparing the caf operon deletion

mutant with its parent wild-type (wt) strain Y. pestis CO92 showed

that caf is required for maintaining virulence in mice although it

depends on the mouse background [9], suggesting the F1 capsule

is an important virulence factor. However, in order to utilize the

F1 capsule to assist in infection, the pathogen must reduce

exposure of F1 capsular protein to the mammalian immune system

since it is also a protective antigen [10]. To minimize the exposure

of F1 proteins, the pathogen has adopted a strategy of placing caf

operon expression under tight control of a temperature-sensitive

promoter [11], such that, at mammalian body temperature, the caf

operon becomes activated to produce virulence effects, i.e., anti-

phagocysis [12]. It can be inferred that the advantage gained from

the anti-phagocytic properties of F1 outweighs the potential

disadvantage of immunogenicity, since F1 capsular positive strains

are more frequently isolated in nature than F1 capsular negative

strains [13]. Additionally, bubonic plague symptoms usually

appear after 2–8 days of exposure to the bacteria, while

pneumonic plague has an incubation period of 1–6 days [14].

Such a short time from incubation to disease does not allow for

protective immune responses to develop against the F1 capsule.

Since the F1 capsule provides an overall beneficial effect for Y.

pestis, we questioned why it does not utilize a potent constitutive

promoter rather than an inducible one. We therefore hypothesized
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that other vulnerabilities associated with caf operon that may not

allow its expression beyond a definite threshold. To investigate the

potential vulnerabilities, we overexpressed caf in wt Salmonella

enterica serovar Typhimurium to determine whether overexpression

of caf would display any impact on the bacterial host. Results show

that overexpression of either the caf operon or any genes within

this operon are able to dramatically debilitate Salmonella virulence.

Results

Construction of recombinant S. Typhimurium H71 strains
that overexpress the F1 capsule

To allow stable maintenance and expression of the caf operon,

the asd-mediated balanced-lethal system was utilized in this study

as previously described [15]. Plasmid pF1, pHF and pY containing

asd genes were utilized (Table 1 and Figure 1). In plasmid pF1, caf

operon is regulated by its native promoter upstream of caf1M

(Pcaf1M) and its own regulator caf1R [10]. Plasmid pHF was

constructed by replacing the Pcaf1M in pF1 with a strong

constitutive fusion promoter PtetA,PpagC,PphoP (PM) [16].

Plasmid pY is an empty vector that was used as a control. The

asd mutation strain Dasd::kanR S. Typhimurium H71 (P1) [16] was

transformed with pF1, pHF, and pY, respectively, to obtain the

recombinant strains P1-pF1, -pHF and -pY. Control strain P1-pY

recovered full virulence to wt strain H71 in mice [17].

These three strains were grown in LB media at 37uC with

agitation at 150 rpm for determination of growth rates. During lag

and stationary growth phases, no differences in growth were

observed among P1-pF1, -pHF, and -pY. However, P1-pF1 and -

pHF proliferated slightly more slowly than -pY, and -pHF

proliferated slightly more slowly than -pF1 in logarithmic (log)

phase (Figure 1D and E), suggesting that encapsulation causes

negligibly delayed multiplication. Overnight cell cultures of P1-

pF1 and -pY formed pellets after centrifugation, while -pHF did

not (Figure 2A), implying -pHF produces enormous F1 capsular

proteins that prevent cells from agglutination. Western blot

analysis confirmed that the fusion promoter enhanced F1 protein

expression (Figure 2B) by ,35.2-fold and 18.8-fold in P1-pHF

samples compared to -pF1 at 8 and 12 hrs post-inoculation,

respectively (Figure 2C).

Table 1. Bacterial strains, plasmids, and their characteristics.

Bacterial strains Phenotypes and characteristics Sources or references

E. coli H681 asd2. derived from parent strain X6212. [10]

S. Typhimurium H71 Wild-type strain of S. Typhimurium. [42]

S. Typhimurium P1 Dasd::kanR H71. [16]

Y. pestis KIM6+ pgm+, pst+, lcr2, fra+. derived from parent strain KIM-10. [43]

Plasmids

pJGX15C-asd asd+, cfa/I+. [44]

pHC asd+, cfa/I+. The PtetA in pJGX15C-asd was replaced by fusion promoter PM. [16]

pY asd+. cfa/I operon was removed from pJGX15C-asd. This study

pF1 asd+, operon caf+. operon caf regulated by Pcaf1M. [10]

pHF asd+, operon caf+. operon caf regulated by PM. This study

pSMA asd+, gene caf12. caf1Mcaf1A regulated by PM. This study

pSA asd+, gene caf12, caf1M2. caf1A regulated by PM. This study

pSM asd+, gene caf12, caf1A2. caf1M regulated by PM. This study

pSF1 asd+, gene caf1+, caf1M2, caf1A2. gene caf1 regulated by PM. This study

doi:10.1371/journal.pone.0036283.t001

Figure 1. Schematic maps of plasmid pF1, pHF, and pY and
growth rates of Salmonella strains harboring these plasmids. (A)
In pF1, the caf operon is regulated by its native promoter Pcaf1M. (B) In
pHF, the caf operon is regulated by a fusion promoter pM. (C) Plasmid
pY is an empty vector. (D, E) Comparison of growth rates of P1-pF1,
pHF, and pY. The bacterial growth rates were determined by measuring
the OD600 every half hour (D) or determining bacterial CFU every hour
(E), and the statistical differences were analyzed using the Tukey Kramer
multiple comparisons test with * P,0.05, ** P,0.01, and *** P,0.001
for P1-pF1 vs -pY; { P,0.05, {{ P,0.01, and {{{ P,0.001 for -pHF vs -pY;
and " P,0.05, "" P,0.01, and """ P,0.001 for -pHF vs -pF1. Depicted
are mean 6 SEM of three independent experiments.
doi:10.1371/journal.pone.0036283.g001

caf Runs as a Double-Edged Sword during Infection
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Strain P1-pHF is highly attenuated in macrophages and
mice

To determine whether Salmonella encapsulation results in

elevated resistance to phagocytosis, a macrophage RAW264.7

cell infection assay was performed. RAW264.7 macrophages were

infected with P1-pF1, -pHF, and -pY (Figure 3A). At 0 hr,

significantly fewer Salmonella bacilli were recovered from macro-

phages infected with P1-pHF or -pF1 than from those infected

with -pY (Figure 3A), suggesting expression of the F1 capsule

inhibits entry into macrophages, in agreement with previous

findings [12]. Surprisingly, the intracellular P1-pHF could not

survive within macrophages, while -pF1 proliferated in macro-

phages, but exhibited significant defects compared to -pY at 8 and

24 hrs post-infection (Figure 3A).

To test whether the in vivo virulence of the Salmonella was

affected by F1 encapsulation, we performed a virulence assay in

mice. BALB/c mice were observed for survival after they were

infected with 1.06109 colony forming units (CFUs) of P1-pHF,

-pF1, or -pY via oral route. All mice given P1-pHF survived (9/9),

while none of the -pF1 or -pY-infected mice survived (0/10 and 0/

10, respectively) (Figure 3B). These results further demonstrate

that overexpression of caf operon attenuates Salmonella in vivo.

To address the mechanism by which mice survived from the

encapsulated wt Salmonella, we performed an experiment to

analyze the capability of P1-pHF to colonize mouse tissues using

-pF1 and -pY as controls. The BALB/c mice were given P1-pHF, -

pF1, or -pY with dose and route identical to the above survival

assay. At 4 days post-administration, spleens, Peyer’s patches (PP),

and livers were analyzed for bacterial CFUs (Figure 3C). Strain

P1-pHF was not able to colonize the spleen. Colonization of PP by

P1-pHF was reduced by 2,492-fold and 5,417-fold when

compared to the -pY and -pF1 infected mice, respectively, while

colonization of liver by P1-pHF was reduced by 123,580-fold and

9,965-fold when compared to the -pY and -pF1 infected mice,

respectively. This study clearly demonstrated that P1-pHF is

highly disabled and unable to disseminate and replicate within

murine tissues.

The gene in the caf operon responsible for Salmonella
attenuation is determined

Among the three caf genes harbored in pHF (Figure 1), we

sought to determine the one responsible for the observed Salmonella

attenuation. To this end, the capsular gene caf1, chaperone-like

gene caf1M, and usher gene caf1A were deleted in-frame from

pHF, and the plasmids pSA, pSF1, and pSM were created for

overexpression of Caf1A, F1, and Caf1M, respectively (Figure 4).

Compared to P1-pY, the -pSA, -pSF1, and -pSM strains showed

no differences in growth rates (Figure 4E and 4F), but they all lost

the ability to proliferate within macrophages (Figure 5A, P,0.001

for these 3 strains at any time points). All mice given P1-pSA (10/

10), -pSF1 (10/10), or -pSM (10/10) survived, unlike all -pY-

infected mice (0/10), which succumbed to infection (Figure 5B,

P,0.01 for all these 3 strains vs control). Furthermore, strain P1-

Figure 2. Effects of overexpression of F1 capsule on Salmonella
phenotypes. (A) Overexpression of F1 capsule resultant in anti-
agglutination phenotype of Salmonella bacilli. After centrifugation, P1-
pF1 and -pY were pelleted to the tube bottom while -pHF was not. (B)
Detection of F1 capsular expression by Western blotting. Strain P1-pF1
did not express detectable F1 capsular proteins until 12 hrs post-
inoculation, but F1 capsular proteins were visible from -pHF as early as
4 hrs post-inoculation. Control P1-pY did not produce F1 capsule. (C)
Quantification of F1 capsule. The F1 capsular protein yields of P1-pF1
and -pHF were determined and their differences were analyzed using
the Tukey Kramer multiple comparisons test with ** P,0.01. Depicted
are the mean 6 SEM of three independent experiments.
doi:10.1371/journal.pone.0036283.g002

Figure 3. Effect of overexpression of caf operon on wt
Salmonella virulence. (A) Caf1-mediated Salmonella attenuation in
vitro. Strains P1-pF1, -pHF, and -pY were used for infecting RAW264.7
cells at a ratio of 1:1. Bacteria recovered from macrophages were
determined and statistically evaluated using the Tukey Kramer multiple
comparisons test with *** P,0.001 for P1-pF1 or -pHF vs -pY; and ""

P,0.01 and """ P,0.001 for -pHF vs -pF1. Depicted are the mean 6 SD
of three independent experiments. (B) Caf1-attenuated Salmonella was
nonlethal to mice. Survival fractions of P1-pHF-administered mice
(n = 9) vs -pF1 (n = 10) or -pY (n = 10) dosed mice were obtained and
statistically evaluated using Mantel-Haenszel test with ** P,0.01 for -
pHF vs -pY and "" P,0.01 for -pHF vs -pF1. Depicted are results from
two independent experiments. (C) Caf1-attenuated Salmonella was
unable to colonize mice. At 4 days post oral administration with
1.06109 CFUs of P1-pF1, -pHF, and -pY, mouse splenic, PP, and liver
bacterial CFUs were determined and statistically evaluated using the
Tukey Kramer multiple comparisons test with * P,0.4 and ** P,0.2. ND,
not detected. Depicted are the mean 6 SEM of two independent
experiments.
doi:10.1371/journal.pone.0036283.g003

caf Runs as a Double-Edged Sword during Infection
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pSA only slightly colonized mouse spleen, PP, and liver, whereas -

pSF1 and -pSM were undetectable in spleen, PP, and liver

(Figure 5C). These results suggest overexpression of any caf gene

can attenuate the bacterial host.

The mechanism of caf1A-, caf1-, caf1M-, and caf operon-
mediated wt Salmonella attenuation is analyzed

We hypothesized that the observed Salmonella attenuation due to

the overexpression of genes caf1A, caf1, caf1M, or the caf operon

might result from augmented membrane permeability. To test this

hypothesis, strains P1-pF1, -pHF, -pSA, -pSF1, and -pSM were

analyzed for sensitivity to erythromycin and polymyxin B (PMB),

with -pY as a control. Erythromycin does not efficiently cross the

outer membrane unless there is a breach of outer membrane

integrity [18], while PMB exhibits elevated detrimental effects on

the compromised bacterial outer membrane [19]. Results showed

that the erythromycin minimum inhibitory concentration (MIC) of

strain P1-pF1 was not different from control -pY (Figure 6A).

However, the MICs of strains P1-pHF, -pSA, -pSF1, and -pSM

were all significantly lower than -pY. This result correlated with

the observation that P1-pF1 maintains robust virulence similarly to

that of -pY (Figure 3), while -pHF, -pSA, -pSF1, and -pSM are

attenuated when compared with -pY (Figure 5).

Due to the increased susceptibility to erythromycin, we

speculated that P1-pHF, -pSA, -pSF1, and -pSM might also

exhibit enhanced sensitivity to other antibiotics that target the cell

membrane since, the antibiotic which permeabilizes the mem-

brane may assist in further disrupting the integrity of the

membrane. PMB is an antibiotic that is able to permeabilize the

bacterial outer membrane and induce bactericidal activity [20].

The result showed that the PMB MICs of strains P1-pF1 and -

pSF1 exhibited no differences in comparison with control -pY,

while -pHF, -pSA, and -pSM displayed significantly lower MICs

compared to -pY. Therefore, this experiment provides further

evidence that the Salmonella attenuation may result from the

disruption of the membrane.

Figure 4. Schematic maps of plasmid pSMA, pSA, pSM, and
pSF1 and growth rates of Salmonella harboring these plasmids.
(A) pSMA was generated by deletion of caf1 gene from pHF. (B) pSA
was constructed by deletion of caf1M gene from pSMA. (C) pSM was
created by deletion of caf1A gene from pSMA. (D) pSF1 was produced
by cloning caf1 gene from pF1 to pHF to replace the caf1Mcaf1Acaf1
genes. The caf1(-), caf1M(-), and caf1A(-), respectively, indicate that the
inner DNA sequences of gene caf1, caf1M, and caf1A were in-frame
deleted. (E, F) Comparison of growth rates of P1-pSA, -pSM, -pSF1, and
-pY. The bacterial growth rates were determined by measuring the
OD600 every half hour (E) or determining bacterial CFU every hour (F),
and the statistical differences of the growth rates of these strains were
calculated using the Tukey Kramer multiple comparisons test. No
significant differences of growth rates were discerned among these four
strains.
doi:10.1371/journal.pone.0036283.g004

Figure 5. Effect of overexpression of caf genes on wt Salmonella
virulence. (A) Overexpression of any caf genes was able to inactivate
wt Salmonella in vitro. Strains P1-pSA, -pSF1, -pSM, and -pY were used
for infecting RAW264.7 cells. Bacteria recovered from macrophages
were determined and statistically evaluated using the Tukey Kramer
multiple comparisons test with *** P,0.001 for P1-pSA, -pSF1, or -pSM
vs -pY. Depicted are the mean 6 SD of three independent experiments.
(B) Overexpression of any caf genes resultant in Salmonella nonlethal to
mice. Mice orally dosed with 1.06109 CFUs of P1-pSA, -pSF1, and -pSM
all survived, while those dosed with -pY all succumbed to infection.
Survival fraction obtained from P1-pSA, -pSF1, or -pSM-dosed mice was
compared with -pY-dosed mice and significance was respectively
determined: ** P,0.05, "" P,0.01, and {{ P,0.01. Each group had total
of 10 mice. Depicted are the mean of two independent experiments. (C)
Overexpression of any caf genes resultant in Salmonella unable to
colonize mice in vivo. At 4 days post oral administration with
1.06109 CFUs of P1-pSA, -pSF1, -pSM, or -pY, mouse splenic, PP, and
liver bacterial CFUs were determined and statistically evaluated using
the Tukey Kramer multiple comparisons test with * P,0.4, ** P,0.2, and
*** P,0.1. ND, not detected. Depicted are the mean 6 SEM of two
independent experiments.
doi:10.1371/journal.pone.0036283.g005

caf Runs as a Double-Edged Sword during Infection
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The overexpression of genes caf1A, caf1, or caf1M
impacts Y. pestis

Since overexpression of caf operon or its individual genes can

attenuate heterologous bacterium Salmonella, we questioned

whether their overexpression also exhibits unfavorable effects on

the homologous bacterium Y. pestis. Thus, plasmid pF1, pHF, pSA,

pSF1, pSM, and pY, carrying a chloramphenicol resistance

marker, were introduced to the avirulent strain Y. pestis KIM6+
[21], which was generated by curing the virulent plasmid pCD1

from KIM-10 [22].

Strains KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY were

subjected to antimicrobial and temperature sensitivity assays. The

results showed that KIM6+/pSA is susceptible to erythromycin

(Figure 7A), PMB (Figure 7B), hydrogen peroxide (Figure 7C), bile

(Figure 7D), and is unable to vigorously grow at 37uC (Figure 7E)

relative to control pY. Strain KIM6+/pSF1 is sensitive to PMB

(Figure 7B), and pSM is labile to peroxide hydrogen (Figure 7C),

bile (Figure 7D), and high temperature (Figure 7E) when

compared to pY. These observations suggest that KIM6+/pSA

is the most delicate among the three individual genes recombinant

strains, and KIM6+/pHF is even more fragile than strain pSA. In

fact, KIM6+/pHF exhibited the most sensitive phenotypes among

all the tested strains and all the tested stress conditions (Figure 7A–

E). Strain KIM6+/pF1 was slightly sensitive to both hydrogen

peroxide (Figure 7C) and high temperature (Figure 7E). Interest-

ingly, all 6 strains, KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY,

were able to survive at 27uC on Brain Heart Infusion (BHI) agar

with bile (Figure 7D) or at 37uC without bile (Figure 7E), but none

survived at 37uC on BHI agar with bile (Figure 7F). This suggests

that the double pressures from bile and the high temperature are

lethal to all the recombinant strains, as well as the control. This

clearly indicates overexpression of individual genes of caf1A, caf1,

caf1M, or the whole caf operon produces strikingly deleterious

effects to the homologous bacterium Y. pestis.

Subsequently, the infection abilities and survivability of these

strains were determined using macrophage RAW264.7 cells.

KIM6+/pSA and pSF1 lost partial capability of infecting

macrophages, but pSM did not when compared to control pY

(Figure 8A). As expected, KIM6+/pHF displayed the lowest

infectivity among all the tested strains, while pF1 showed no

differences from pY (Figure 8A). This suggests that overexpression

of either caf1A or caf1, particularly the entire caf operon,

dramatically reduces the bacterial infectivity. KIM6+/pSF1 was

cleared from macrophage very rapidly after infection. By 3 and

9 hrs post-infection, only 10.0% and 3.1% of the initial population

of KIM6+/pSF1 remained alive, respectively (Figure 8B). Strain

KIM6+/pSA, pHF, and pF1 also showed impaired survivability

when compared to pY, while pSM exhibited no differences from

pY. These results explicitly suggest that the caf operon and its

individual gene caf1A and caf1 possess severe deleterious effects to

Y. pestis.

Discussion

Since Y. pestis is classified as a category A select agent by the

CDC [23], manipulation of wt Y. pestis requires a Biosafety Level 3

(BSL-3) facility, which limits access to and work with this

pathogen. Thus, in our study, we established a platform for

analyzing Y. pestis virulence factors by means of the wt BSL-2

pathogen, S. Typhimurium. As the caf operon has previously been

demonstrated to be functional in Salmonella [10], use of wt

Salmonella strains to analyze Yersinia virulence factors is feasible.

To investigate whether caf possesses deleterious aspects during

infection, we amplified the expression of caf operon in order to

maximally expose these effects. Hence, the caf native promoter

Pcaf1M was replaced with a strong fusion promoter, which

increased F1 protein yield by 18.8- to 35.2-fold (Figure 2C).

Results showed that overexpression of the caf operon heavily

attenuates Salmonella, which was evidenced by P1-pHF being

unable to proliferate in macrophages (Figure 3A) or colonize

mouse spleens (Figure 3C), a similar attenuation impact only seen

when highly virulent genes, such as phoP and rfaC, are deleted from

the Salmonella genome [24]. This clearly demonstrates that potently

deleterious effects are indeed encoded by the caf operon, as

amplification of the caf operon renders the bacterium markedly

Figure 6. Effect of overexpression of caf operon or individual caf genes on Salmonella antibiotic sensitivity. Strains P1-pF1, -pHF, -pSA,
-pSF1, -pSM, and -pY were analyzed for their sensitivity to (A) erythromycin and (B) polymyxin B via determination of their MICs. The MIC differences
were determined and statistically evaluated using the Tukey Kramer multiple comparisons test with * P,0.05, ** P,0.01, and *** P,0.001. Depicted
are the mean 6 SEM of three independent experiments.
doi:10.1371/journal.pone.0036283.g006

caf Runs as a Double-Edged Sword during Infection
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attenuated in vitro and in vivo. To circumvent the deleterious effect

of caf, Y. pestis cleverly uses a weak and inducible promoter,

Pcaf1M, to precisely govern caf operon expression. Through

Pcaf1M, the vulnerability associated with the caf operon is

adequately camouflaged allowing the P1-pF1 to still possess

similar virulence to -pY in vivo.

As there are three structural genes encoded in the caf operon, we

queried which one was responsible for the caf operon-mediated

Salmonella attenuation. Our data showed that overexpression of any

genes of the caf operon, including chaperone-like protein encoding

gene caf1M, outer membrane protein encoding gene caf1A, and the

capsule encoding gene caf1, was able to undermine the virulence of

Salmonella (Figure 5). We then investigated the mechanisms of why

overexpression of these individual genes, as well as the caf operon,

could attenuate Salmonella. Seemingly, the impairments induced by

overexpression of caf or its components in vitro and in vivo were

associated with the elevated cell membrane permeability (Figure 6).

When compared with P1-pY, the erythromycin MICs were

significantly decreased for all strains other than P1-pF1, suggesting

that -pF1 carefully regulates its vulnerability. The erythromycin

MIC for strain P1-pSA expressing caf1A alone was identical to -

pHF, suggesting these two strains share similar membrane

permeability. The reason P1-pSA and -pHF possess similar

membrane permeability is possibly due to the usher Caf1A alone

being able to self-assemble into functional channels in the outer

membrane without the assistance of the chaperone Caf1M. The

over-installed Caf1A channels in the outer membrane facilitated

the free entrance of the large molecule erythromycin and resulted

in a decreased MIC. The Caf1A impairment to the membrane

may dominate the overall detrimental effects associated with the

caf operon shadowing the impairment of the Caf1M and F1

proteins, to the cell membrane. Thus, P1-pSA and -pHF display

indifferent erythromycin sensitivities. Others have previously

recognized that elevated curli expression increases the erythromy-

cin sensitivity [18]. Thus, by combining previous observations with

our results, we may conclude that overexpression of the cell surface

appendages will proportionally enhance the channel expression

level, and the elevated channels in the cell outer membrane

facilitate entry of erythromycin into the cell, resulting in

heightened bacterial susceptibility. Introduction of membrane

permeabilizer antibiotic PMB into the channeled cell membrane

Figure 7. Effect of overexpression of caf operon or individual
caf genes on Yersinia antimicrobial and temperature suscepti-
bilities. Six strains of KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY were
analyzed for their sensitivities to (A) erythromycin, (B) PMB, (C)
hydrogen peroxide, (D) bile salt, (E) temperature of 37uC, and (F) bile
salt combined with temperature of 37uC. (A, B) The erythromycin and
PMB MICs of the 6 strains were respectively determined. (C) The 6
strains were incubated with 2.5 mM H2O2 for 1 hr and the survival
percentages were determined in comparison with the non-treated
controls, respectively. (D) The 6 strains were dropped onto BHI agar
containing 1% bile and were incubated at 27uC for 48 hrs for CFU
enumeration in comparison with those grown on BHI agar without bile,
respectively. (E) The 6 strains were dropped onto BHI agar and were
incubated at 37uC for CFU enumeration in comparison with those
grown on BHI agar at 27uC, respectively. (F) The 6 strains were dropped
onto BHI agar containing 1% bile and were incubated at 37uC for CFU
enumeration in comparison with those grown on BHI agar without bile
at 27uC, respectively. All experiments (A to F) were statistically analyzed
for significant differences among these 6 strains using the Tukey Kramer
multiple comparisons test with * P,0.05, ** P,0.01, and *** P,0.001.
Depicted (A to F) are the mean 6 SEM of three independent
experiments.
doi:10.1371/journal.pone.0036283.g007

Figure 8. Macrophage infection and survival assays of the
recombinant Y. pestis KIM6+ strains. (A). infectivity assay. Strains
KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY were used for infecting
macrophage RAW264.7 cells. At 1 hr post-infection, the intracellular
bacterial CFUs were compared among these 6 strains. The Tukey
Kramer multiple comparisons test was used for significant difference
calculation with * P,0.05, ** P,0.01, and *** P,0.001. Depicted are the
mean 6 SEM of three independent experiments. (B) Survival assay.
Bacteria survived within the macrophages at 3 and 9 hrs post-infection
were compared with the 0 hr CFU counts, and the percentages were
calculated. Differences in survival rates among the 6 strains were
calculated using the Tukey Kramer multiple comparisons test. Values
depict the mean 6 SEM of three independent experiments with
* P,0.05, ** P,0.01, and *** P,0.001 for the caf operon or caf gene
expression strains vs control KIM6+/pY.
doi:10.1371/journal.pone.0036283.g008
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[25] further increased cell permeability and resulted in decreased

MICs, as evidenced by the decreased PMB MIC of strain P1-pSA

and -pHF. The Salmonella attenuation caused by overexpression of

genes caf1M and caf1 may be because these proteins are arrested

within the periplasm. This may result in (1) other periplasmic

proteins displaying abnormal function and (2) physical injuries to

the membranes when they accumulate. Both of these possibilities

can be applied to Caf1M since Caf1M is naturally located in

periplasm due to its signal peptide guided transportation [26].

Thus, overexpression of caf1M in P1-pSM led to a decreased

erythromycin and PMB MICs. The above two possibilities may

also apply to F1 protein. Normally, the newly synthesized F1

capsular protein monomers are transported from cytoplasm to

periplasm directed by its signal peptide and further traverse outer

membranes to form polymers with the assistance of Caf1A and

Caf1M [27]. In the absence of Caf1A and Caf1M, F1 proteins

were not able to cross the outer membrane. Hence, F1 proteins

trapped within the periplasm would display detrimental effects to

the membrane, as in the case of P1-pSF1. Notably, P1-pSF1

showed no elevated sensitivity to PMB (Figure 6). One possible

explanation for this observation, which will require further study,

is that accumulated F1 proteins in the periplasm served as a

protective layer against PMB disruption of the inner membrane.

Nevertheless, since F1 proteins did not accumulate in the bacterial

periplasm in the presence of Caf1A and Caf1M, F1-mediated

Salmonella impairment might occur only sporadically.

Since all three proteins overexpressed from the caf operon could

impair Salmonella bacilli, we then questioned if proteins from any

source could cause detrimental effects when accumulated within

the periplasm. We observed no overt detrimental impact on

Salmonella when chaperone gene cfaA or usher gene cfaC from the

enterotoxigenic Escherichia coli (ETEC) cfa/I operon was overex-

pressed in the periplasm [17]. Thus, impairment of Salmonella

caused by overexpression of caf1M or caf1A seemed likely to be

inherent in the caf operon. This deduction is virtually endorsed by

the impacts of these individual genes on the Y. pestis strain KIM6+
(Figure 7). Overexpression of caf1A alone resulted in considerably

high susceptibility of KIM6+ to both erythromycin and PMB. In

addition to erythromycin and PMB, KIM6+/pSA also exhibited

increased sensitivity to hydrogen peroxide, bile, and a high

temperature of 37uC. This directly led to the lowered infectivity

and survival of the KIM6+/pSA (Figure 8). Overexpression of

caf1M alone in KIM6+ did not alter bacterial sensitivity to

erythromycin and PMB, but resulted in the elevated sensitivity to

bile, hydrogen peroxide, and high temperature. However, the

macrophage infectivity and survival assays of KIM6+/pSM did

not reveal any defects relative to control pY (Figure 8). Of interest

is the strain KIM6+/pSF1 only showed slight susceptibility to

PMB, but showed no sensitivity to erythromycin, hydrogen

peroxide, bile, and high temperature. Nevertheless, KIM6+/

pSF1 displayed low infectivity similar to that of pSA, and its

survival rate within macrophages was the lowest among all the

recombinant Yersinia strains tested. This suggested the F1 antigen

possessed the most potent detrimental effects in vitro among the

three caf genes. As discussed above, the F1-mediated deleterious

effects may not be fully implemented to Yersinia in the presence of

the Caf1M and Caf1A, since it may be secreted out of the cells

with the assistance of these two proteins [12,28]. By using KIM6+
to analyze the caf genes’ impact to the bacteria, we saw that these

individual caf genes displayed a synergistically deleterious effect

when co-expressed. This was demonstrated by the observation that

KIM6+/pHF showed the most sensitive phenotypes to the

hydrogen peroxide, bile, and high temperature among all the

tested recombinant KIM6+ strains (Figure 7). Furthermore,

KIM6+/pHF exhibited the lowest infecting capability compared

with the other KIM6+ strains (Figure 8). This reduced infectivity

may be associated with the overexpressed F1 capsular anti-

phagocytic function [12], or may be associated with the following:

(1) KIM6+/pHF may not be able to swim as vigorously as the

other KIM6+ strains due to the viscous capsule on the cell surface.

Previous study on Pseudomonas aeruginosa showed swimming motility

is critical for the bacteria to establish a successful macrophage

infection [29]. Thus, KIM6+/pHF may not effectively contact the

macrophage to infect. (2) KIM6+/pHF may be neutralized by the

macrophages after infection, particularly at the very early time

points post-infection, i.e., during the infection incubation period.

These two speculations may require a motile behavior assay and a

dynamically microscopic observation for further investigation. In

any case, this study implies that the vulnerability of caf operon

found through Salmonella vector is applicable to the Yersinia.

In summary, results achieved from this study do indicate that caf

associates with serious vulnerabilities. In addition to the previously

found immunogenic property of F1 capsular proteins which may

potentially render Yersinia to an unfavorable condition during

infection, this study suggests that the Caf1 apparatus may also be

an Achilles’ heel when overexpressed. Yersinia benefits from caf

operon expression via anti-phagocytic role of F1 capsule; however,

it runs the risk of exposing the deleterious effects rooted in the

Caf1 apparatus. Thus, the Caf1 apparatus may serve as a double-

edged sword for Yersinia. Yersinia cautiously manages a balance

between the advantages and disadvantages conferred by caf

through regulating its expression with an elaborate promoter

Pcaf1M, which determines when and where it should switch on

and most importantly to what level it should transcribe, in order to

take the advantage of F1 capsule while preventing the deleterious

effects from being exposed.

Materials and Methods

Bacterial strains, media, and molecular manipulations
The bacterial strains, plasmids, and their relevant characteristics

are provided in Table 1. The primers used for polymerase chain

reaction (PCR) are listed in Table 2. Diaminopimelic acid (DAP)

(50 mg/ml) was used for E. coli H681 or S. Typhimurium P1

culture unless a plasmid containing asd was introduced. The asd+

plasmids pHF, pSA, pSF1, and pSM were constructed by means

of H681 and transformed to P1 to generate Salmonella recombinant

strains. Lysogeny broth (LB; 10 g of tryptone, 10 g of NaCl, and

5 g of yeast extract per liter) was used for recombinant E. coli and

Salmonella growth at 37uC without DAP supplementation. Bacteria

were cultured in LB and stored at 280uC in LB plus 20% glycerol.

For growth rate comparison among the recombinant Salmonella

strains, cells were inoculated from 280uC stock to LB agar for

overnight incubation at 37uC. Salmonella bacilli were collected from

plates, and the cell optical density at 600 nm (OD600) was adjusted

to ,0.1. Bacterial inoculants were subjected to culture for 4 hrs at

37uC in BioScreen C (Lab Systems) with agitation at 150 rpm, and

OD600 was measured every half hour. Data were downloaded and

utilized for statistical comparison among these strains. Meanwhile,

the bacterial CFUs were determined at one-hour intervals via

colony enumeration after they were made serial dilutions on LB

agar plates and incubation overnight at 37uC.

To determine whether overexpression of caf operon or caf

individual genes of caf1A, caf1, and caf1M impact the homologous

bacterium Y. pestis, plasmids pF1, pHF, pSA, pSF1, pSM, and pY

were transferred to KIM6+ after they were modified with a

chloramphenicol resistance marker. Strain Y. pestis KIM6+ was a

gift kindly provided by Robert D. Perry (University of Kentucky,
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Lexington, Kentucky, USA). The conditions used for growing

KIM6+ derived strains were 27uC without shaking in BHI liquid

medium unless otherwise indicated.

Restriction endonucleases, T4 DNA ligase, and Taq DNA

polymerase were purchased from New England BioLabs (Beverly,

MA) unless otherwise noted. Chemicals were purchased from

Sigma-Aldrich (St. Louis, MO). Genetic manipulations were

conducted by using the method as described elsewhere [10].

Plasmid DNA was extracted by using a Qiagen Miniprep Kit

(Valencia, CA). DNA fragments were purified and extracted from

agarose gel slices, using Qiagen Gel Extraction Kit. Competent E.

coli and S. Typhimurium cells were made in 10% glycerol and

transformed by electroporation.

Construction of plasmids
Plasmids pHF and pY. The genes of caf1Mcaf1Acaf1 from

plasmid pF1 [10] were amplified with the primers of caf1-F and

caf1-R (Table 2), and the DNA fragment was Topo cloned

(Invitrogen, Carlsbad, CA). After sequencing for identification

with the original caf DNA sequence, the correct clone was used for

subcloning. The caf1Mcaf1Acaf1 DNA fragment with a length of

4153 bps was placed downstream of promoter PM of plasmid

pHC [16] to generate pHF (Figure 1B). Plasmid pY was derived

from pHC by using ScaI to remove the cfa/I operon, and the

vector fragment was then self-ligated (Figure 1C).

Interim plasmid pSMA. Prior to pSA and pSM

construction, an interim plasmid pSMA was constructed

(Figure 4A). Plasmid pSMA was derived from pHF by deleting

its caf1 gene inner DNA sequence. The caf1 gene downstream

sequence was amplified with a pair of primers of F1-dn-F+F1-dn-

R, and its upstream sequence was amplified with another pair of

primers of F1-up-F+F1-up-R (Table 2). The two DNA fragments

were subjected to Topo cloning and sequencing to confirm no

mutation was introduced, and then they were fused at the EcoRV

and SmaI sites since both are blunt ends. A total of 405 bps was

deleted from caf1 gene, and this fusion DNA fragment was placed

between NheI and PstI sites in pHF. This plasmid was termed

pSMA. Based on pSMA, the plasmids pSA and pSM were

constructed as follows:

Plasmids pSA and pSM. The DNA sequence downstream

caf1M was amplified with a pair of primers of M-dn-F+M-dn-R

(Table 2). After sequencing identification, it was digested with

SmaI and XbaI, and this 287 bps DNA fragment was inserted

between the EcoRV and XbaI sites in pSMA. Thus, the 660 bps

inner DNA sequence of caf1M was deleted in-frame. The new

plasmid was termed pSA (Figure 4B). The DNA sequence

downstream caf1A was amplified with a pair of primers of A-dn-

F+caf1-R (Table 2). After sequencing confirmation and digested

with XbaI and PstI, this 993 bps DNA fragment was installed

between the XbaI and PstI sites in pSMA. The 2121 bps inner

DNA sequence of caf1A was deleted in-frame. This new plasmid

was termed pSM (Figure 4C).

Plasmid pSF1. The caf1 gene from pF1 was amplified by a

pair of primers of F1-F+caf1-R (Table 2). Fidelity of the 773 bps

caf1 gene was verified by sequencing, and it was then inserted into

pHF between SacI and PstI sites. Thus, the 4153 bps caf operon

was replaced by the caf1 gene. The new plasmid was termed pSF1

(Figure 4D).

Western blot analysis of Caf1 expression
To verify F1 protein expression and yield, P1-pF1, -pHF, and -

pY were inoculated from 280uC freezer to LB agar and allowed to

grow overnight at 37uC. Bacteria were then inoculated into liquid

LB media with the cell OD600 adjusted to ,0.1. They were

incubated at 37uC with shaking at 150 rpm. At 4, 8 and 12 hrs

post-inoculation, cultures were centrifuged at 13,000 g for 15 min

at 4uC to collect whole cells. Secreted F1 capsular proteins

contained in supernatants were precipitated by ammonium sulfate

added to 30% saturation as previously described [30]. Supernatant

protein pellets were mixed with their corresponding whole cell

pellets of P1-pF1, -pHF, and -pY. Samples were subjected to

Western blot analysis as previously described [10], and each well

was loaded with an equivalent number of CFUs of P1-pF1, -pHF,

and -pY cells. The F1 protein yields were quantified by

densitometric analysis as previously described [31].

Evaluation of survivability of recombinant Salmonella and
Yersinia strains in RAW264.7 macrophages

RAW264.7 macrophage cell line (American Type Culture

Collection) was used for evaluating the capability of infection and

replication for strains P1-pF1, -pHF, -pSA, -pSF1, -pSM, and -pY.

Infections were conducted as previously described [32]. 1.256106

RAW264.7 cells/well without antibiotics were allowed to adhere

to plastic in 24-well microtiter dishes (BD-Labware, Franklin

Lakes, NJ) at 37uC with 5% CO2. Wells were washed, and the

nonadherent cells were collected and counted to determine cell

numbers that remained plastic-adherent. After overnight culture,

cells were infected with bacteria to macrophage ratio of 1:1 for

1 hr at 37uC. Wells were washed twice and then incubated with

50 mg/ml of gentamicin for 30 minutes at 37uC. After washing

twice, as described, fresh complete medium containing 2.5 mg/ml

of gentamicin was added, and cells were incubated for either an

additional 8 or 24 hrs. Next, the macrophages were water lysed,

and the bacteria were placed on LB agar plates after a series of

dilutions. After incubation overnight at 37uC, the bacterial CFUs

were determined.

To determine whether the recombinant Yersinia strains of

KIM6+/pF1, pHF, pSA, pSF1, and pSM were capable of

surviving as robustly as pY in vitro, a macrophage infection assay

was conducted as previously described [33]. Briefly, log phase

cultures of KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY were

Table 2. Primer sequences and restriction enzyme sites
integrated.

Primer
names

Enzyme
sites Primer sequencesb,c

caf-F SacI GAGCTCCGTAAGGAGGTTAAGC

caf-R PstI CTGCAGTGAACCTATTATATTGCTTCGCGC

F1-dn-F EcoRV GATATCGTAACCGTATCTAACCAATAATCC

F1-dn-R PstI CTGCAGTGAACCTATTATATTGCTTCGCGC

F1-up-F NheI ATCGTTAAACATTGCTAGCGAGGAATACGCC

F1-up-R SmaI CCCGGGAGTGGTGCTTGCAGTTAAATCTG

M-dn-F SmaI CCCGGGTTGGATCGTTTGTATTCC

M-dn-R XbaIa TTGTAAGGATGATAGGCATGGC

A-dn-F XbaI TCTAGACGGTGTCTATTTGACTGGACTAC

F1-F SacI GAGCTCATTATTCGATAGAGGTAATATATG

Note:
aThe restriction enzyme site XbaI locates downstream of this primer.
bThe sequences of the restriction enzyme sites integrated in the primers are
bolded.
cPrimer sequences are based on template of Y. pestis plasmid pFra (accession
No. X61996).
doi:10.1371/journal.pone.0036283.t002
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adjusted so the bacteria to macrophage infection ratio was 1:1.

Wells were washed twice, and then incubated with 8 mg/ml of

gentamicin for 1 hr at 37uC. After washing twice, as described,

fresh complete medium containing 2 mg/ml of gentamicin was

added, and cells were incubated for an additional 3 or 9 hrs. The

infected macrophages that were not supplied with the 2 mg/ml

gentamicin were water lysed for bacterial CFU enumeration, and

the bacterial CFUs (defined time point, 0 hr) were compared

among the 6 strains to determine their infection capabilities. The

bacterial CFUs obtained at 0, 3, and 9 hrs post-infection were

then calculated for bacterial macrophage survival assay with the

initial bacterial counts (t = 0) as 100%. After water lysis, the

released bacteria were placed on BHI agar plates and incubated

for 48 hrs at 27uC, and the bacterial CFUs were enumerated.

Mouse studies
Pathogen-free female BALB/c mice (National Cancer Institute,

Frederick Cancer Research Facility) of 7–9 wks of age were used

throughout this study. All mice were maintained at Montana State

University Animal Resource Center under pathogen-free condi-

tions in individually ventilated cages under HEPA-filtered barrier

conditions and were fed sterile food and water ad libitum. All

animal care and procedures were in accordance with institutional

policies for animal health and well-being.

To assess the virulence of the newly constructed P1-derived

strains, groups of BALB/c mice (5–7 individuals/group) were

orally gavaged with 1.06109 CFUs of P1-pF1, -pHF, -pSA, -pSF1,

-pSM, and -pY in 200 ml sterile phosphate buffered saline (sPBS).

Mice were monitored for mortality for 4 wks post-administration,

and experiment was repeated twice. For tissue colonization assay,

mice were sacrificed at 4 days post-administration. Spleen, PP, and

liver were excised under aseptic conditions for determination of

bacterial burden as previously described [17,34].

Antimicrobial susceptibility tests
The recombinant Salmonella strains of P1-pF1, -pHF, -pSA, -

pSF1, -pSM with control -pY were determined for MIC under

aerated conditions. They were subjected to various concentrations

of erythromycin and PMB in polypropylene microtiter plates

(Costar Corp., Cambridge, MA) at 37uC in LB medium. MIC was

calculated according to the method as previously described [35].

The KIM6+/pF1, pHF, pSA, pSF1, pSM, and control pY were

determined for erythromycin and PMB MICs using the procedure

as previously described with slight modifications [36]. Y. pestis

strains KIM6+/pF1, pHF, pSA, pSF1, pSM, and pY were grown

in BHI broth at 27uC for 18 hrs without shaking, since we found

that shaking would result in serious cell agglutination for all these 6

strains (data not shown). The cell cultures were then used for

evaluating in MIC assays. In the preliminary experiment, we

found that by using the cell density of 105 CFU/ml [36] we were

unable to detect any bacterial growth after 48 hrs incubation at

27uC in 96-well polypropylene microtiter plates, even though no

antibiotics were added in the medium. Thus, we raised the cell

density by 100-fold (final cell concentration, 107 CFU/ml) for the

MIC determination. At this cell density, the MICs of erythromycin

and PMB for these recombinant strains were determined at 24 hrs

post-incubation at 27uC. At the end of the assays, the OD600 of the

bacterial suspensions were measured by using a multichannel plate

reader BioScreen C. The MICs were determined as the lowest

concentrations of erythromycin and PMB, which did not result in

measurable growth at the end of the experimental period [37].

Each sample was run in triplicate, and experiments were repeated

three times.

The recombinant KIM6+ strains were further subjected to

analysis of susceptibility to two additional antimicrobial reagents,

hydrogen peroxide (H2O2) and ox bile salt (Sigma-Aldrich (St.

Louis, MO). Human cells produce hydrogen peroxide as a first

line of defense against bacteria pathogens [38], and the secreted

bile serves as the humoral barrier, interfering with normal function

of the bacterial membrane and damaging the bacterial DNA [39].

The sensitivity to H2O2 was conducted according to the previously

described method [40]. H2O2 (final concentration, 2.5 mM) was

added to bacteria (final cell density, 105 CFU/ml) resuspended in

sPBS. The mixture was allowed to incubate at 27uC for 1 hr, and

the cells were briefly spun down to remove the H2O2. After a

series of dilutions, the cells were placed on BHI agar for incubation

at 27uC for 48 hrs, and the CFUs were enumerated. A parallel set

of cultures not exposed to H2O2 served as a control. The bile

sensitivity assay was performed by adding bile salt to BHI agar

(final concentration, 1%) [41], and the log phase bacteria were

placed onto the plates. Cells were incubated at 27uC for 48 hrs,

and the CFUs were enumerated. The bacteria grown up on BHI

agar without bile were used as a control. Three independent

experiments were done for both hydrogen peroxide and bile

assays.

Statistical analysis
The Tukey Kramer multiple comparisons test was used for

assessing differences among experimental parameters. The

Kaplan-Meier method (GraphPad Prism, GraphPad Software,

Inc., La Jolla, CA) was applied to obtain the mouse survival

fractions following infection with recombinant Salmonella strains.

Using the Mantel-Haenszel log rank test, the P-values for statistical

differences between inactivated Salmonella strains and control

Salmonella strain-dosed mice were discerned at the 95% confidence

interval.
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