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Abstract: In patients with diabetes, metabolic disorders disturb the physiological balance of coagu-
lation and fibrinolysis, leading to a prothrombotic state characterized by platelet hypersensitivity,
coagulation disorders and hypofibrinolysis. Hyperglycemia and insulin resistance cause changes in
platelet number and activation, as well as qualitative and/or quantitative modifications of coagula-
tory and fibrinolytic factors, resulting in the formation of fibrinolysis-resistant clots in patients with
diabetes. Other coexisting factors like hypoglycemia, obesity and dyslipidemia also contribute to
coagulation disorders in patients with diabetes. Management of the prothrombotic state includes
antiplatelet and anticoagulation therapies for diabetes patients with either a history of cardiovascular
disease or prone to a higher risk of thrombus generation, but current guidelines lack recommen-
dations on the optimal antithrombotic treatment for these patients. Metabolic optimizations like
glucose control, lipid-lowering, and weight loss also improve coagulation disorders of diabetes
patients. Intriguing, glucose-lowering drugs, especially cardiovascular beneficial agents, such as
glucagon-like peptide-1 receptor agonists and sodium glucose co-transporter inhibitors, have been
shown to exert direct anticoagulation effects in patients with diabetes. This review focuses on the
most recent progress in the development and management of diabetes related prothrombotic state.

Keywords: metabolic disorder; platelets; coagulation factors; hypercoagulation; hypofibrinolysis

1. Introduction

In 2017, the International Diabetes Federation estimated that 451 million adults are
diagnosed with diabetes mellitus (DM) worldwide, and the number would increase to
693 million by 2045 [1]. Anesthesiologists are increasingly facing high-risk patients with sig-
nificant comorbidities undergoing major surgery, including a significant risk for excessive
bleeding, and hyperglycemia is associated with higher risk of perioperative complica-
tions and poorer outcomes after surgery [2,3]. The hemostatic function of platelets and
coagulation factors sometimes makes it difficult to control the pro-thrombotic state since
global inhibition of coagulation will impair hemostasis [4]. It is essential to understand
the signalling partners and factors involved in platelet hyperresponsiveness or aberrant
activation of the coagulation system. This will eventually allow for selective targeting
of pro-thrombotic cascades while preserving hemostasis. Metabolic disorders influence
coagulation and hemostasis, but the underlying mechanisms have yet to be clarified [5–7].
Besides, the choice and optimal dosage of antithrombotic agents for patients with DM are
still unclear [8]. This review focuses on coagulation dysfunction and prothrombotic states
in patients with DM.
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2. Prothrombotic State Associated with Diabetes Mellitus

Coagulation and hemostasis involve interactions between tissue and coagulation
factors as well as blood and endothelial cells, finally resulting in formation of fibrin clots
stopping bleeding [4]. During this process, the fibrinolytic system decomposes generated
clots to prohibit widespread thrombus formation and vascular occlusion [5].

In patients having DM, metabolic disorders disturb these physiological mechanisms,
leading to a prothrombotic state characterized by platelet hypersensitivity, coagulation
factor disorders and hypofibrinolysis [9] (Figure 1).
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Figure 1. Modifications of coagulation and fibrinolysis system in DM. Diabetes disturbs the physiological balance between
coagulation and fibrinolysis, leading to a prothrombotic state hallmarked with platelet hypersensitivity, coagulation factor
disorders and hypofibrinolysis. Hyperglycemia and insulin resistance enhance number and aggregation of platelets through
increasing von Willebrand factor (vWF) level and inhibiting anti-aggregatory efficiency of nitric oxide and prostaglandin I2.
Hyperglycemia and insulin resistance upregulate level of pro-coagulation mediators like tissue factor (TF), coagulation
factors (FVII, FXII, FXI and FIX) and thrombin. Diabetes also harasses fibrinolysis by decreasing tissue plasminogen activator
(tPA) as well as increasing plasminogen activator inhibitor-1 (PAI-1) and thrombin activator fibrinolysis inhibitor (TAFI).
Next to hyperglycemia and insulin resistance, co-existing metabolic disorders like hypoglycemia, obesity, dyslipidemia, and
non-alcoholic fatty liver disease (NAFLD) also contribute to the pro-thrombotic state of patients with DM.

2.1. Platelet Hypersensitivity

In physiological conditions, platelets circulate in the blood for five to seven days
and constantly undergo a lifecycle from megakaryocyte separation to phagocytosis by
macrophages, to maintain a normal platelet count of 150.000–450.000 per microliter. After
vascular injury, platelets are activated to aggregate, forming an occlusive thrombus and
stop bleeding [10]. Both increased platelet number and enhanced aggregation capacity, the
latter referred to as platelet hypersensitivity, will contribute to a pro-thrombotic state [11].
In patients with DM, over-activation of platelets (mainly attributed to hyperglycemia and
insulin resistance) plays a crucial role for pro-thrombotic events [12].

2.1.1. Hyperglycemia

Among patients with type 2 diabetes mellitus (T2DM), mean platelet counts are up to
10% higher in patients with chronic hyperglycemia (glycated hemoglobin, HbA1c > 8%) as
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compared to euglycemia. Besides, increased mean platelet volume (MPV) is observed in pa-
tients with higher HbA1c and fasting blood glucose (FBG), suggesting that hyperglycemia
also enhances platelet activity [13]. Similarly, positive correlations between higher blood
glucose and increased platelet counts are also found in patients with type 1 diabetes mellitus
(T1DM) [14,15]. Even in patients in a pre-diabetic state, MPV is slightly increased compared
to patients with normal glucose metabolism (10.49 ± 0.96 fL vs. 10.04 ± 1.01 fL) [16]. A
potential underlying mechanism for platelet hyperactivity in hyperglycemia could be an
upregulated expression of pro-aggregatory factors like P-selectin, thromboxane A2 and von
Willebrand factor (vWF) antigen, amplifying the aggregation and adhesion of platelets [17].

In addition, high blood glucose deteriorates the physiologic reaction of platelets on
anti-aggregatory effects of nitric oxide (NO), prostaglandin I2 (PGI2) and insulin by inter-
fering with downstream signalling pathways [18]. Both acute and chronic hyperglycemia
upregulate the expression of adhesion molecules on platelet surface (e.g., CD31, CD49b
and CD63), an effect that is reversible after optimizing glucose control [19]. Chronic hy-
perglycemia increases expression of protease-activated receptor 4 in patients with DM,
in turn promoting the release of activated platelet-derived microparticles (PMPs) via
the Ca2+-calpain pathway. Released PMPs then trigger the secretion of interleukin-6, a
pro-thrombotic and pro-inflammatory mediator in diabetes [20]. Through glycation of
membrane proteins, hyperglycemia also decreases the membrane fluidity of platelets and
results in increased intracellular calcium influx, directly promoting platelet activation and
aggregation [21]. Hyperglycemia also impairs endothelial function by inducing inflamma-
tion and oxidative stress, thereby inhibiting synthesis and release of PGI2 and NO, finally
further promoting platelet aggregation [22].

2.1.2. Insulin Resistance

Patients with T2DM had larger MPV and increased platelet generation compared to
patients having T1DM; MPV correlated with HbA1c only in patients with T1DM [17]. Given
that T1DM is characterized by insulin deficiency and T2DM is hallmarked with insulin
resistance, these data might indicate a potential role of insulin sensitivity and resistance in
coagulation dysfunction [23]. Another study showed a positive correlation between MPV
and homeostasis model assessment insulin resistance index [24]. A possible underlying
mechanism is a modified insulin signalling in platelets associated with insulin resistance:
in healthy individuals, insulin binds with insulin receptors on platelet surfaces, leading to
activation of downstream pathways, e.g., the tyrosine phosphorylation pathway and the
inhibitory G-protein pathway [25]. The latter results in higher cyclic adenosine monophos-
phate (cAMP) generation and lower intracellular calcium inside platelets, thereby inhibiting
their aggregation [18].

However, in patients with insulin resistance, insulin failed to increase cAMP levels
within platelets, thus impairing its anti-aggregational effects [26]. Insulin resistance also
reduces the sensitivity of platelets towards the anti-aggregatory effects of NO and PGI2,
which in turn alters calcium influxes and promotes platelet aggregation [27]. Intriguingly,
recent studies linked insulin resistance with an altered composition of gut microbiomes [28],
and the latter contributes to the enhanced thrombosis risk via generation of platelet stim-
ulus metabolites [29]. For instance, trimethylamine N-oxide might directly increase the
aggregation and adhesion capacity of platelet [30], and phenylacetylglycine facilitates
platelet responsiveness and enhances thrombosis tendency [31]. Antidiabetic drugs may
be able to change the microbiome structure and the resulting plasma metabolome. Thus,
pleiotropic effects observed by, e.g., metformin, could at least in part be mediated through
microbiota and their released metabolites and that may include antithrombotic effects of
the drug. This is an active area of research and must show in the near future whether
antidiabetics can play a substantial role in these pathomechanisms [32].
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2.2. Quantitative and Qualitative Alterations of Coagulation Factors

Coagulants (also known as coagulation factors) are a series of proteins involved in
the coagulation process, working together with platelets to form a firm clot and stop
bleeding [33]. Both, quantitative and qualitative alterations of coagulation and antico-
agulation factors were observed in patients with DM [34], contributing to formation of
lysis-resistant clots.

The extrinsic coagulation or Tissue Factor (TF) pathway is initialized with activation
of tissue factor/Factor VIIa (TF/FVIIa) complexes and plays an essential role in thrombus
generation [35]. In T2DM, hyperglycemia and insulin resistance exert synergistic effects on
the TF pathway, leading to increased pro-coagulatory activity and FVIIa consumption [36].
Several mechanisms are involved: hyperglycemia and hyperinsulinemia both directly
promote the TF transcription in monocytes [37]. Additionally, patients with diabetes are
prone to constant inflammation, and one symptom is increased inflammatory biomarker
levels (e.g., interleukins) in blood [38]. The pathological process directly upregulates TF
expression in endothelial and vascular smooth muscle cells, contributing to the hyper-
coagulation state in DM [39]. Generation of advanced glycation end-products, glycated
lipids or proteins formed during hyperglycemia [40], as well as reactive oxygen species
enhance TF production through activation of the nuclear factor (NF)-κB inflammatory
pathway [41]. Notably, recent studies highlight the role of micro-RNA (miR) in TF expres-
sion and diabetes-related coagulation dysfunction. For instance, miR-126, miR-19a and
miR-181b are negatively associated with both TF protein and TF-mediated thrombogenicity
in patients with diabetes. Further investigations showed that miR-126 and miR-19a both
inhibit the TF expression in endothelial cells, and miR-181b reduced the generation of TF
within monocytes [42–44]. These findings might explain in part the enhanced vascular TF
activity in poorly controlled type 2 diabetes.

The intrinsic coagulation pathway involves sequential activations of FXII, FXI and
FIX, and recent studies have reported dysfunctions of intrinsic coagulation associated with
hyperglycemia and hyperinsulinemia in DM [45,46]. In the Netherlands’ Epidemiology
of Obesity study [46], increases in FVIII (5.33%, 95%CI: 4.00–6.65), FIX (6.19%, 95%CI:
5.15–7.23) and FXI (2.11%, 95%CI: 1.20–3.02) were observed per mmol/L increase in fast-
ing plasma glucose, and these associations remained significant even after adjusting for
confounding factors such as age, sex and body mass index (BMI). Increased synthesis of
FXII, FXI and FIX in hepatocytes along with a shorter activated partial thromboplastin time
(APTT) were observed in patients with impaired insulin sensitivity, probably mediated by
a low-grade inflammatory reaction caused by insulin resistance [47].

Conversion of fibrinogen to fibrin is the last critical step in extrinsic and intrinsic
coagulation pathways, and higher circulating fibrinogen levels are observed in T1DM
and T2DM patients, resulting in a more compacted clot structure along with increased
resistance to fibrinolysis [48]. Hyperfibrinogenemia in DM can be explained by several
factors. Hyperglycemia and insulin resistance enhance hepatic fibrinogen synthesis, and
production of fibrinogen is further increased in obesity, dyslipidemia and non-alcoholic
fatty acid diseases, all of which are common comorbidities in hyperglycemic patients [49].
In addition, low-grade inflammation in DM directly stimulates hepatocytes to synthesize
more fibrinogen [50].

Modified quality of fibrinogen in DM has recently been demonstrated: an increased
glucose level amplifies glycation of fibrinogen and disturbs the fibrinolytic process, and
these alterations could be attenuated by tight glucose control [51]. Enhanced oxidative
stress and sustained inflammatory reactions in patients having DM also alter the structure
of fibrinogen and fibrin, thereby leading to fibrinolysis-resistant clots [52].

Thrombin is derived from prothrombin and is an essential factor that transforms fib-
rinogen into fibrin. In patients with DM, increased thrombin levels lead to enhanced fibrin
generation and clot density, thereby contributing to the pro-thrombotic state [53]. Both
hyperglycemia and hyperinsulinemia stimulate prothrombin synthesis in the liver. Recent
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studies reported increased thrombin levels in obesity and hyperlipidemia, comorbidities
that can therefore aggravate the hypercoagulable state in patients with DM [54,55].

2.3. Hypofibrinolysis

The hypofibrinolytic state in DM is partly attributed to the formation of fibrinolysis-
resistant clots; however, alterations of the fibrinolytic system have also been observed
among individuals with diabetes [56].

Plasminogen is the precursor of plasmin. During coagulation, generated fibrin binds
with tissue plasminogen activator (tPA), the key catalysator of plasmin generation, which
then initiates fibrinolysis and restrains excessive thrombus formation [57]. In diabetic
patients with DM, tPA is negatively correlated with HbA1c (lower levels of tPA with higher
levels of HbA1c); increased glucose levels inhibit tPA’s pro-fibrinolytic activity, leading to
reduced levels of plasmin in blood with high glucose values [56]. Hyperglycemia enhances
the glycation of plasminogen and thereby inhibits the generation of plasmin, an effect that
is reversible after tight glucose control [58]. The impact of plasminogen on coagulation
disorders in DM is further aggravated as plasminogen is also a pro-inflammatory factor,
thereby promoting insulin resistance and exacerbating a pro-thrombotic state [59].

Plasminogen activator inhibitor-1 (PAI-1) and thrombin-activator fibrinolysis inhibitor
(TAFI) are two crucial inhibitory factors of the fibrinolytic system. PAI-1 forms complexes
with tPA to harass its catalytic capacity, while TAFI prevents plasminogen from binding
to fibrin and terminates the conversion of plasminogen to plasmin [57]. Hyperglycemia
and insulin resistance lead to elevation of these two anti-fibrinolytic factors, resulting in
reduced fibrinolytic factors [60]. The alterations of PAI-1 and TAFI could be reversed by
euglycemia, emphasizing the importance of glucose control in alleviating the fibrinolytic
dysfunction in DM [56]

3. Prothrombotic Effects of Coexisting Metabolic Disorders

DM is a cluster of metabolic disorders, and next to hyperglycemia and insulin resis-
tance, co-existing changes like hypoglycemia, obesity and dyslipidemia also contribute to
the pro-thrombotic state of patients with DM.

3.1. Hypoglycemia

Hypoglycemia is a crucial acute complication of DM treatment and it significantly
increases cardiovascular risk and mortality [61]. Hypoglycemia is also associated with in-
creased thrombus formation based on platelet activation, quantitative and qualitative
alterations of coagulants, as well as impaired fibrinolysis [62,63]. In T2DM patients,
platelet function increased with decreasing blood glucose and increasing epinephrine,
suggesting that hypoglycemia induces platelet activation by sympathetic stimulation [64].
Hypoglycemia also promotes coagulant and fibrinolytic dysfunction by inducing pro-
inflammatory reactions and impairing endothelial function in patients with DM [65]. In-
creased thrombogenicity after hypoglycemia lasted for up to seven days [66], indicating that
hypoglycemia might exert short- to medium-term harmful effects on coagulation function.

3.2. Obesity

Overweight and obesity, according to World Health Organization guidelines defined
as BMI≥ 25 kg/m2 and 30 kg/m2, respectively, are common comorbidities of two-thirds of
patients with DM [67]. Obesity is considered a noticeable pro-thrombotic factor: increased
thrombogenicity with higher BMI, and a hazard ratio for thrombosis of 3.4 (95% CI: 2.6–4.6)
was observed in severe obese subjects compared with those of normal-weight [68]. Underly-
ing mechanisms could be the increased number and size of adipocytes in obese individuals,
accompanied by enhanced secretion of TF and PAI-1, finally leading to hyper-coagulation
and hypo-fibrinolysis [69,70]. Additionally, increased body weight causes physical in-
activity and slows down blood flow with stasis, resembling a pro-thrombotic factor by
itself [68].
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3.3. Dyslipidemia

Dyslipidemia is common among patients with T2DM and is associated with hyper-
coagulation [71]. Individuals with high triglyceride and total cholesterol levels showed
higher fibrinogen levels and shortened APTT, suggesting an enhanced endogenous po-
tential for thrombin generation [72]. Coagulation dysfunction of patients with DM was
partially alleviated by lipid-lowering agents [53]. A potential underlying mechanism could
be increased blood lipids, which directly impair function of hepatic cells (e.g., the origins
of multiple coagulation factors) and in turn disturb coagulation [73]. Oxidized low density
cholesterol also activates scavenger receptors on monocytes, resulting in inflammatory
pathway activation and overproduction of oxidants and coagulation factors [74].

3.4. Nonachoholic Fatty Liver Disease (NAFLD)

Over 50% of patients with T2DM suffer from NAFLD, which may contribute to
coagulation disorders and also a pro-thrombotic state [75]. Given that hepatic cells are the
major producer for multiple coagulants (e.g., VIII, XI, XII), accumulation of liver fat might
correlate with changes in coagulation factor production and prolonged APTT in patients
with NAFLD [76,77]. Contrarily, another study showed that insulin resistance and adipose
tissue inflammation, rather than liver fat content, enhanced the expression and activity of
coagulant factors [47].

4. Management of Pro-Thrombotic State in DM

Due to the prothrombotic state and enhanced cardiovascular risk in diabetic patients,
the necessity of antiplatelet and anticoagulation therapy is well acknowledged, but the
optimal treatment strategies remain controversial [78,79]. In addition, optimized glucose-
lipid control and weight loss further alleviate the pro-thrombotic state in DM [80].

4.1. Antiplatelet Medications

Aspirin is the most widely used antiplatelet agent also in patients with DM [79]. It
binds irreversibly to cyclooxygenase-1 (COX-1) on platelets and prevents the generation of
prostaglandin H2 from arachidonic acid, thus inhibiting thromboxane A2 formation and
platelet activation [81]. Aspirin (75–162 mg per day) is recommended as the first choice for
secondary prevention in patients with a history of cardiovascular disease (grade A) [82], but
the most recent guidelines of the American College of Cardiology and the American Heart
Association do not specifically recommend aspirin as a primary prevention strategy in
diabetes patients [82]. A meta-analysis showed that aspirin reduced the first cardiovascular
event by around 12% in patients without a history of cardiovascular disease, which was less
effective compared to its effects in secondary prevention (22% reduction of cardiovascular
events) [83]. One possible explanation might be that the absolute incidence of a very first
cardiovascular event is low in patients without previous cardiovascular disease, thereby
impairing the efficiency of aspirin in the primary prevention of cardiovascular events [84].
P2Y12 inhibitors like clopidogrel are commonly combined with aspirin for dual antiplatelet
therapy (DAPT), which is recommended (grade A) also for patients suffering from acute
coronary syndrome [82]. Clopidogrel is also considered as a substitute in patients with
contraindications for aspirin [85].

Population-based clinical trials have been carried out to explore the efficacy and
safety of other antiplatelet drugs in patients with DM. Cilostazol, a phosphodiesterase
III inhibitor enhancing cAMP generation and preventing platelet aggregation, decreased
stent thrombosis after stent-implantation in patients having DM when combined with
DAPT [86]. Compared to aspirin, the thromboxane synthase inhibitor picotamide reduced
non-fatal vascular complications in T2DM patients with peripheral vascular disease [87].
However, neither cilostazol nor picotamide were superior to aspirin in preventing overall
mortality [87,88], thus aspirin is still the first-choice antiplatelet treatment in patients with
a history of cardiovascular disease.
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4.2. Anticoagulation Medications

Currently, anticoagulants such as thrombin-inhibitors or anti-Xa agents are only rec-
ommended in patients with diabetes in case they experience complications, e.g., thrombosis
or high risk for thrombotic tendency (e.g., atrial fibrillation) [82]. Warfarin non-specifically
inhibits the synthesis of several clotting factors by inhibiting the vitamin K epoxide re-
ductase complexes [89]. Direct oral anticoagulants (DOACs) target thrombin or factor
Xa and exert specific anticoagulation activities [90]. Several studies have compared the
effectiveness and safety of DOACs and warfarin in patients at a high risk for thrombotic
diseases. In individuals with and without DM, Rivaroxaban, a specific inhibitor of FXa, is
associated with a lower risk of systemic embolism and major bleeding than warfarin [91,92].
Low-dose rivaroxaban also reduced platelet activation and inflammation via the inhibition
of the binding of FXa towards protease-activated receptors on platelet surfaces [93], possi-
bly ameliorating the pro-thrombotic state in patients with diabetes with no indication for
a full anticoagulant dose. Patients on apixaban, another FXa inhibitor, experienced 30%
less incidents of hemorrhages than those exposed to warfarin [94]. The thrombin inhibitor
dabigatran also leads to more potent reduction in embolic events in individuals with DM
than warfarin, without increasing the risk of hemorrhage [95]. These studies suggest that
DOACs might serve as more potent and safer alternatives to warfarin for anticoagulation
therapy in patients with DM.

4.3. Metabolism Optimization
4.3.1. Glucose Control

Several glucose-lowering agents exert glucose-independent anticoagulation effects in
patients with DM. Alleviation of coagulation dysfunction is mediated by improvement of
insulin resistance, endothelial function, inflammatory reaction and oxidative stress. [96–98].

For instance, metformin, the most widely prescribed anti-diabetes drug, lowers the
activity of coagulation factors and platelets and prevents the formation of fibrinolysis-
resistant clots [99,100]. The attenuation of coagulation function was explained by an
enhancement of insulin sensitivity and a normalization of endothelial function for met-
formin treatment [96]. A recent study revealed that metformin directly lowered expression
and activity of TF in patients with chronic hyperglycemia and poorly controlled glucose,
which was mediated by suppression on endothelial inflammation [97]. Thiazolidinediones
have also been proven to attenuate coagulation dysfunction by reducing fibrinogen and
PAI-1 levels, thereby modulating the balance between clot generation and fibrinolysis [101].
Rosiglitazone inhibited platelet aggregation activity in a dose-dependent manner, medi-
ated by enhanced insulin sensitivity and decreased inflammatory reaction and oxidative
stress [98]. Considering sulphonylureas, glibenclamide dose-dependently inhibited the
expression of TF, producing a potential anticoagulation effect of sulphonylureas [102]. In-
sulin inhibits platelet aggregation by inducing cAMP generation and reducing intracellular
calcium levels [18]. Contrarily, in patients with T2DM, insulin treatment was associated
with higher fibrinogen and PAI-1 levels due to insulin resistance [103].

The anticoagulation potential of glucagon-like peptide-1 receptor agonists (GLP-1
RAs), a group of glucose-lowering agents with cardiovascular protective effects [104],
has been demonstrated; after binding with GLP-1 receptors on platelets, liraglutide in-
creased the sensitivity of platelets towards NO, thereby inhibiting aggregation activity of
platelets [105]. Apart from glucose control, GLP-1 RA also exerts anticoagulation effects by
inhibiting inflammation and promoting NO synthesis of endothelial cells [106].

Sodium glucose co-transporter 2 inhibitors (SGLT-2i’s) are also glucose-lowering drugs
with beneficial cardiovascular effects. These drugs directly alleviate DM-related endothelial
dysfunction, one of the major modulators of coagulation and fibrinolysis [107,108]. A
recent study in human endothelial cells demonstrated that empagliflozin and dapagliflozin
restored NO bioavailability [109], which is an anticoagulation factor inhibiting platelet
aggregation [22]. More recently, empagliflozin has also been shown to decrease the plasma
concentration of PAI-1 in patients with T2DM (by 25%), thereby improving fibrinolysis
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function [110]. Intriguingly, two clinical trials (NCT04342819 and NCT04400760) are
now performed, recruiting patients with DM to figure out the influence of empagliflozin
and dapagliflozin on platelet functions; these studies will present more insight into the
anticoagulation potential of SGLT-2i’s. The direct anticoagulation effects of mentioned
glucose-lowering agents have been summarized in Table 1.

Table 1. Anticoagulation effects of glucose-lowering agents.

Agent Alterations in Coagulation-Fibrinolysis System

Metformin tPA ↓[83]; platelet aggregation↓[84]; TF ↓[97]
Thiazolidinediones fibrinogen↓; PAI-1↓[101] ; platelet aggregation↓[98]

Sulphonylureas TF↓[102]
Insulin platelet aggregation↓[18]; fibrinogen↑; PAI-1↑[103]

GLP-1RA platelet aggregation↓[105]; NO↑[106]
SGLT-2i’s NO↑[109]; PAI-1↓[110]

GLP-1RA: glucagon-like peptide-1 receptor agonists; SGLT-2i’s: sodium glucose co-transporter 2 inhibitors; tPA:
tissue plasminogen activator; TF: tissue factor; PAI-1: plasminogen activator inhibitor-1; NO: nitric oxide.

4.3.2. Weight Loss

Diet, exercise and bariatric surgery are common weight loss therapies [111], and
their antithrombotic effects have also been explored [112–114]. Gastric bypass surgery
reduced thrombin generation activity by one-third after six months, which is partially
mediated by significant weight loss (27.4 ± 0.7 kg) and improved glucose-lipid metabolism
benefits [112]. The combination of surgery with supervised physical training further
improved coagulation and metabolic benefits [112]. Mild weight reduction (within 5 kg)
induced by leisure exercise and dietary modulation failed to reduce thrombogenic markers
in overweight/obese subjects [113,114], suggesting that the influence of weight loss on
coagulation might be determined by the extent of weight loss. A recent study showed
that lifestyle intervention led to reduced activities of multiple coagulation factors (II, VII,
VIII, IX, XI and XII) and decreased levels of PAI-1 and vWF. These beneficial changes
in the coagulation system were not only mediated through weight loss, but also via the
ameliorated insulin resistance and limited subclinical inflammation [115].

4.3.3. Lipid-Lowering Therapy

The anticoagulation functions of lipid-lowering agents have been described: statin-
lowering therapy led to reductions of thrombotic risk and platelet activity in patients
with DM [53,116]. For instance, fibrates and ezetimibe alleviated hypercoagulability in
patients with impaired glucose metabolism, probably mediated by lipid-lowering and
anti-inflammatory effects[117]. Lipid-lowering agents also directly reduced the expression
levels of several pro-coagulation factors, e.g., TF and P-selectin, thereby inhibiting throm-
bin generation [118]. Moreover, proprotein convertase subtilisin/kexin type-2 (PCSK9)
inhibitors, potent agents against hypercholesterolemia, might enhance the expression of
hepatic low-density lipoprotein receptors and accelerate FVIII degradation within the liver,
thereby lowering circulating FVIII levels [119]. However, at present, there is no direct
proof for the anticoagulation effect of PCSK9 inhibitors and the decreased FVIII in patients
with DM.

5. Conclusions

In summary, patients with T1DM and T2DM are prone to thrombotic events based on a
series of disorders, including platelet hypersensitivity, coagulation factor modifications and
hypofibrinolysis. Studies on the altered coagulation in DM suggest that hyperglycemia, in-
sulin resistance and other comorbidities contribute to the hypercoagulable state (Figure 1).
Thus, management of the enhanced thrombogenicity in DM requires comprehensive treat-
ments of existing prothrombotic factors along with antithrombotic therapy, but current
guidelines lack recommendations on the optimal antithrombotic medications in patients
with DM. Results from clinical studies strongly support the beneficial effects of glucose
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control, weight loss and lipid-lowering on coagulation dysfunctions, and glucose-lowering
drugs, especially GLP-1 RAs and SGLT-2i’s, tend to ameliorate diabetes related hypercoag-
ulation (Table 1).
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