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Abstract: When heat and electric field are applied to the sample, sintering takes place within a short
time of a few seconds by the flash phenomenon that occurs. In what condition flash does occur is a
main issue for the flash sintering technique. In this study, the effect of processing conditions such as
sintering atmosphere, sample size, density and grain size on the flash onset of hydroxyapatite was
investigated. In a vacuum atmosphere, a flash occurred at a lower temperature by 50–100 ◦C than in
air. The smaller the thickness of the sample, the higher the flash onset temperature due to the larger
specific surface area. Flash was also observed in samples which were presintered, having a density of
86–100% and a grain size of 0.2–0.9 µm. When the density and grain size of the sample were higher
and larger, the flash onset temperature was higher. It was because the diffusion and conduction path
through the grain boundary and the inner surface of the pores with high defect concentration are
blocked with an increase of density or grain size. When an electric field was applied during flash
sintering, a color change of the sample was observed and the reason was discussed.
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1. Introduction

Flash sintering is a process of consolidating loose powders using thermal energy
with an application of electric field. It is similar to or belongs to field assisted sintering
technique (FAST) or electric field assisted sintering (EFAS) in the sense of using electric
field [1]. It is possible to produce a dense body at relatively lower temperatures in a
short time within seconds by applying an electric field to the sample, causing a flash
phenomenon [2,3]. When flash occurs, the sample temperature rises by several hundred
degrees instantaneously and densification occurs abruptly. It is interesting for one to find
that the flash occurs at a specific temperature given by the processing conditions [4–14].
Zhang et al. [15] stated that the flash sintering temperature of the zinc oxide sample in a
reducing atmosphere was 350~400 ◦C lower than in air. Biesuz et al. [16] reported that the
electrical conductivity increased when argon gas was sprayed on 8 mol% yttria-stabilized
zirconia (8YSZ) sample during flash onset. Francis et al. [17] reported that the larger the
particle size of 3 mol% yttria-stabilized zirconia (3YSZ) raw material powders, the higher
the flash onset temperature and the lower the densification rate. Avila et al. [18] reported
that the thinner the thickness of the 3YSZ sample, the lower the densification rate during
flash sintering, which was due to the specific surface area of the sample.

The hydroxyapatite ceramic is manufactured by using various sintering techniques. In
case of normal sintering, a dense body can be obtained by sintering under predetermined
conditions at temperatures from 1250 ◦C or higher for several hours [19]. However, if the
sintering time and temperature are over the range of proper condition, thermal decomposi-
tion, grain growth, or phase change may occur leading to deterioration of properties [20,21].
Spark plasma sintering which is a kind of electric field-assisted sintering was also used
to effectively produce a dense body of hydroxyapatite [22–24], even though it is costly by
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using a dedicated mold and high pressure. Recently, flash sintering method was introduced
to successfully manufacture hydroxyapatite without thermal decomposition and phase
change at a low temperature for a short time within seconds [25,26]. However, temperature
and voltage conditions for flash onset were not fully investigated especially with a variable
of the sample and processing conditions.

In this study, the flash onset temperature of hydroxyapatite was investigated by chang-
ing variables such as gas atmosphere, sample size, and presintering temperature/time
under the flash conditions.

2. Materials and Methods

Hydroxyapatite powders (Junsei, Tokyo, Japan) were uniaxially pressed to prepare a
thin rectangular plate-shaped green sample, with a size of 20 × 5.4 × 1 mm, which was
again pressed by cold isostatic pressing (CIP-L2-70-200, Suflux, Deajeon, Korea) for 5 min
under a pressure of 200 MPa. Two holes having a diameter of 1 mm were drilled onto the
pressed green sample in a thickness direction at an interval of 10 mm in the longitudinal
direction. The sample was hung by a platinum wire hooked in two holes and a platinum
paste was applied to the holes to lower the contact resistance.

Flash sintering was carried out under two conditions: An elevating temperature condi-
tion and an isothermal condition. In the case of elevating temperature condition, the sample
was placed in a furnace and heated with a rate of 10 ◦C/min. When 800 ◦C was reached,
an electric field was applied and, during temperature rising, the onset temperature of flash
was recorded. In the case of isothermal condition, the sample was heated to the desired
temperature and an electric field was applied to generate flash. Before flash sintering, some
samples were presintered by normal sintering method without an application of electric
field at 1000, 1100, or 1200 ◦C for 5, 60, 120, 180, or 240 min respectively.

DC power supply (XR Series 2000V/1A, Magna Power, Flemington, NJ, USA) was
used for the power source. As the current surges when flash occurs, voltage control was
automatically converted to current control and current limiting values of 3 mA in air
and 100 mA in vacuum were used. During the entire flash sintering experiment, voltage,
current, and surface temperature of the sample were recorded using a digital multimeter
and pyrometer, and the morphology of the sample was recorded using CCD (IS 6 Advanced,
Lumasense, Ballerup, Denmark).

The flash-sintered portion between the positive and the negative electrodes was
selectively cut and collected, and its density was measured by the Archimedes method.
After polishing to about 50% of the thickness of the sample, thermal etching was done for
10 min in the 900 ◦C, and microstructure analysis was performed with a scanning electron
microscopy (Merlin compact, Zeiss, Germany). From the obtained microstructure image,
the average grain size was measured using the linear intercept method. Phase analysis was
performed using an x-ray diffractometer (D/Max-2500VL/PC, Rigaku, Tokyo, Japan).

3. Results and Discussion

Under elevating temperature condition, the flash onset temperature decreased as the
electric field increased, and it was lower in vacuum by 50–100 ◦C than in air, as shown in
Figure 1. In air, when flash occurred, the current rapidly increased, and as the temperature
was elevated, several more flashes occurred, as shown in Figure 2a. On the other hand, in
vacuum, the current slowly increased as the temperature increased, as shown in Figure 2b,
and the flash occurred only once. Under an isothermal condition of 1050 ◦C with applied
1000 V, the flash occurred only once in air. In vacuum, as in the case of the elevating
temperature condition, a flash occurred once, and the current was found to change slowly
(Figure 3).
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Figure 1. Change of flash onset temperature with electric field during flash sintering of hydroxyapatite.
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Figure 2. Electric field and current measured during flash sintering of hydroxyapatite under elevating
temperature condition (a) in air and (b) in vacuum.
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Figure 3. Electric field and current measured during flash sintering of hydroxyapatite under isother-
mal conditions at 1050 ◦C and 1000 V (a) in air and (b) in vacuum.
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As hydroxyapatite materials generate hydroxyl and hydrogen defects by temperature-
dependent dehydration reaction, electrical conductivity increases [27–29]. In a vacuum
atmosphere, dehydration reaction is accelerated, defect concentration increases, and flash
occurs at lower temperatures [30–34]. In the elevating temperature condition, since the
defect concentration increases as the temperature rises, multiple flashes may occur, How-
ever, in the isothermal condition, the defect concentration is constant, so multiple flashes
may not occur. In vacuum, the current abruptly rose and then slowly decreased. As
mentioned later in this paper, the reason for the decrease in current in vacuum is that grain
growth and densification proceed over time, so the grain boundary fraction decreases and
resistance increases.

Flash onset temperature was found to be a function of the thickness of the samples.
It decreased as the thickness increased (Figure 4). Since sample has a heat source inside
during flash sintering, the internal temperature of the sample is higher than the furnace
temperature making heat loss through the surface and thus a size effect. When the sample
size increases, the rate of increase in surface area is smaller than that in volume, so the
specific surface area decreases. When the thickness increases by three or five times, the
specific surface area decreases by 46% or 57%, respectively. The reduction of the specific
surface area causes a reduction in heat loss and preservation of heat in the samples, thereby
lowering the flash onset temperature.
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Figure 4. Change of flash onset temperature with a sample thickness.

Flash sintering was performed on the presintered samples to investigate the effect of
microstructure. After normal sintering, presintered samples had densities in a range of 86%
to 100% and grain sizes in a range of 0.2 to 0.9 µm. Flashes were observed in all samples
with high or full density, indicating that flash does occur not only in the sintering process
of loose powder but also in the dense body. Flash onset temperature was found a function
of density and grain size as shown in Figures 5 and 6. Onset temperature was higher when
the density and grain size larger. In ceramics, the electrical conduction is through atomic
diffusion by defects. It is well known that diffusion through the surface or grain boundary
is faster than through lattice. When the density is low and the porosity is high, the surface
area inside the pores is large, and electrical conduction becomes easier. [35–37] When the
grain size is smaller, the grain boundary area is larger, and the more favorable the flash
onset [17].
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If the densification and grain growth proceeds during flash sintering, the temperature
required for the flash onset will increase. Under isothermal conditions, flash can be
suppressed once it has occurred. However, under the elevating temperature condition, the
flash may occur again when temperature becomes sufficiently high enough to meet the
required defect concentration.

When the hydroxyapatite green body was normal sintered in air, the color of the sam-
ple changed from white to pale blue. The color became darker as the sintering temperature
was higher. When the sample with a pale blue color was flash sintered again, the color
disappeared and the sample was whitened in the portion between the negative and the
positive electrodes. The whitening occurred only in the inner part in between two electrode
holes where there is an influence of the electric field, indicating that it is an effect of the
electric field.
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Changes in color during sintering of hydroxyapatite have been reported [38–41].
Bystrov et al. [40] noticed a change in the bandgap when sintering hydroxyapatite and a
specific visible light is absorbed to give it a blue color. This is due to the oxygen vacancies
in the OH and PO4 group, and they reported that the color depth varies with the amount
of oxygen vacancies formed. Yubao et al. [41] reported that oxidation of the manganese
impurity made a change to blue color. However, quantitative analysis by ICP-OES of the
initial powder used in this study showed that the manganese content in the raw powders
was less than 1 ppm, being insufficient to give a blue color. The color change observed in
the presintered sample may be due to the formation of oxygen vacancies and change in the
depth of bandgap.

The whitening started at the anode and proceeded toward the cathode. The times spent
for whitening samples were the same regardless of the presintering condition or applied
voltage. It is reasoned that the whitening was nothing to do with a flash phenomenon.
During whitening, neither the electric current nor the temperature of the sample surface
did not increase. When the sample was cooled before the completion of whitening, one
could observe the front line of whitening on the sample surface. XRD analysis of the sample
with whitening (Figure 7) showed barely any phase other than the hydroxyapatite was
detected, implying that the color change is not caused by phase transformation. Blue color
of the presintered sample is a result of formation of oxygen defects. When an electric field
is applied at high temperature, the whitening occurs because of change in oxygen defect
concentration and band gap levels.
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4. Conclusions

The onset temperature of flash occurrence during flash sintering of hydroxyapatite
sample under various processing conditions was investigated. Flash occurred at a lower
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temperature by 50–100 ◦C in vacuum than in air because of the higher defect concentration.
Under the elevating temperature condition, multiple flashes occurred due to the increase
in defect concentration with temperature. The thicker the sample, the lower the flash onset
temperature. It was because of the decrease in specific surface area and the decrease in the
amount of heat loss. Flash occurred not only in the green sample but also in the presintered
samples having a density of 86%–100% and a grain size of 0.2–0.9 µm. It was observed
that the higher and larger the density and grain size of the sample, the higher the flash
onset temperature. This was because electrical conduction through the grain boundary and
the surface of the pores was suppressed due to decrease of the fraction of grain boundary
and the surface area with an increase of density and grain size. When the sample was
presintered in air without applying an electric field, its color changed from white to a pale
blue. When the presintered sample was flash sintered by applying an electric field, the
color changed back to white. However, the color change was not a part or prerequisite of
the flash sintering process.
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