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Abstract: The chloride diffusivity of concrete is an important parameter for assessing the long-term
durability of coastal concrete structures. The purpose of this paper is to present a three-dimensional
random walk algorithm (RWA) for estimating the chloride diffusivity of concrete. By analyzing the
size distribution of aggregates, the equivalent interfacial transition zone (ITZ) thickness is derived in
an analytical manner. Each aggregate is combined with the surrounding ITZ to construct an equivalent
aggregate model (EAM) and the chloride diffusivity is formulated. It is found that the equivalent
ITZ thickness decreases with the increase of practical ITZ thickness and aggregate volume fraction.
The aggregate gradation influences the equivalent ITZ thickness to a certain extent. The relative
chloride diffusivity of the equivalent aggregate is almost directly and inversely proportional to the
equivalent ITZ thickness and the aggregate radius, respectively. The numerical results show that,
when the EAM is adopted, the computational time is greatly reduced. With the EAM, concrete can
be modeled as a two-phase material and the chloride diffusivity is estimated by applying the RWA.
It is shown that, with the increase of mean square displacement and number of Brownian particles,
the average chloride diffusivity of concrete approaches a stable value. Finally, through comparison
with experimental data, the validation of the RWA is preliminarily verified.

Keywords: concrete; chloride diffusivity; EAM; RWA; spherical aggregate

1. Introduction

Reinforced concrete structures built in a chloride-laden environment often suffer from corrosion
of reinforcement caused by penetration of chloride ions [1,2]. Many such engineering cases have been
reported throughout the world [3–5]. Since the long-term performance of concrete infrastructure is
greatly dependent on the diffusion rate of chloride ions in concrete, the chloride diffusivity plays a key
part in designing and assessing coastal concrete structures [6,7].

In the past twenty years, a considerable number of experimental studies and theoretical analyses
have been performed with a particular focus on the transport properties of concrete and on the key
influential factors. By taking the water/cement ratio and the sand content as the primary control
variables, three types of mortars were examined by a diffusion test and a migration test [6]. The test
results showed that addition of sand into cement paste modifies the microstructure and chloride
diffusivity of mortar. The tortuosity caused by sand particles exerts a more significant effect on the
diffusion of chloride ions in mortar than the interfacial transition zone (ITZ). Using an accelerated
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method, Yang and Su quantified the effects of dilution, tortuosity, and ITZ on the chloride diffusivity
of concrete based on the Bruggeman theory [8]. Caré [9] adopted a non-steady-state diffusion test to
further analyze the relative importance between two competing factors: ITZ and tortuosity. In the
theoretical aspect, a Padé approximation was proposed to estimate the chloride diffusivity of mortar [10].
An analytical solution was also presented for the chloride diffusivity of concrete with low aggregate
volume fractions [11]. Caré and Herve proposed a composite sphere model for the chloride diffusivity of
mortar [12]. The effects of various factors on the chloride diffusivity of concrete were comprehensively
evaluated by a transfer matrix method with an inhomogeneous ITZ model [13]. It was also shown
that aggregate shape influences the chloride diffusivity of concrete to a certain extent [14]. Besides a
few analytical methods [15,16], the unit cell model is widely used, in which the volume ratios among
various phase constituents are identical. In practical concrete, however, the ITZ thickness seems to be
the same no matter how large the aggregate is [17]. As a consequence, a larger aggregate is of a smaller
ITZ volume ratio in a unit cell. Thus, the prediction accuracy of the idealized unit cell with constant
volume ratios will be affected to a certain extent. Although numerical methods can avoid this defect by
simulating the heterogeneous structure of concrete, it is very time-consuming [18,19]. Therefore, it is
still essential to develop a numerical method, with which the chloride diffusivity of concrete can be
evaluated more reasonably.

This paper is aimed at developing a three-dimensional random walk algorithm (RWA) for
estimating the chloride diffusivity of concrete. In the RWA, an equivalent aggregate model (EAM)
is constructed to reduce the computational cost. Finally, the computational accuracy of the RWA is
assessed through comparison with experimental results.

2. Simulation of Concrete Mesostructure

In what follows, only the steady-state diffusion of chloride ions in saturated concrete is considered.
It is appreciated that transport of chloride ions in the pore solution is affected, to a certain extent,
by the interactions among ions and the electrical double layer [20–23]. In view of the complexity of the
two effects, they are neglected as a first step. To perform the random walk simulation, the concrete
mesostructure needs to be reproduced as realistically as possible. For this purpose, a cubic element
with a side length of a is selected. Aggregates are modeled as spherical and distributed at random
within the element [24]. If the aggregate is divided into N grades [Rj, Rj+1] (j = 1, 2, . . . , N) and the
volume percentage passing the sieve with radius Rj is Pv,j, the approximate probability density function
pv(R) with respect to the volume of aggregates is given by

pv(R) =
N∑

j=1

Pv,j+1 − Pv,j

Rj+1 −Rj
[H(R −Rj) −H(R−Rj+1 )], (1)

where H(x) is the Heaviside step function and defined as

H(x) =


1, x > 0
0.5 , x = 0
0, x < 0

. (2)

The corresponding cumulative distribution function Pv(R) is given by

Pv(R) =
∫ R

R1

pv(x)dx

= Pv,k +
Pv,k+1 − Pv,k

Rk+1 −Rk
(R−Rk), (3)
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where Rk ≤ R ≤ Rk+1 and k = 1, 2, . . . , N. The number of aggregates per unit volume of aggregate can
be formulated as

Nv =
3

4π

∫ RN+1

R1

pv(x)

x3 dx. (4)

By substituting Equation (1) into Equation (4), one has

Nv =
3

8π

N∑
j=1

(Rj + Rj+1)(Pv,j+1 − Pv,j)

R2
j R2

j+1

, (5)

It is easily shown that the probability density function pn(R) with respect to the number of
aggregates is given by

pn(R) =
3

4π
·

pv(R)

NvR3 . (6)

It follows from Equations (1) and (6) that

pn(R) =
3

4π

N∑
j=1

(Pv,j+1 − Pv,j)

Nv(Rj+1 −Rj)R
3
[H(R −Rj) −H(R−Rj+1 )]. (7)

The corresponding cumulative distribution function Pn(R) is given by

Pn(R) =
∫ R

R1

pn(x)dx

=
3

8π

k−1∑
j=1

(Rj + Rj+1)(Pv,j+1 − Pv,j)

NvR2
j R2

j+1

+
(R2
−R2

k)(Pv,k+1 − Pv,k)

Nv(Rk+1 −Rk)R
2
kR2

, (8)

where Rk ≤ R ≤ Rk+1 and k = 1, 2, . . . , N.
Knowing Pn(R) and the aggregate volume fraction fa, the aggregates to be distributed within the

cubic element can be generated [24]. These aggregates are placed into the element from largest to
smallest and no overlap is permitted between them. During the placement process, periodic boundary
conditions are imposed to eliminate artificial wall effects. Finally, the reconstruction of concrete
mesostructure is completed once each aggregate is surrounded with an ITZ of thickness h.

3. Equivalent Aggregate Model and ITZ Thickness

It has been shown that there are two opposite effects on the diffusion of chloride ions in concrete.
The dilution and tortuosity induced by aggregates decelerate the movement of chloride ions. On the
other hand, the ITZ has a larger water/cement ratio (w/c) and higher porosity compared with the
bulk cement paste. Furthermore, for a sufficiently high aggregate volume fraction, the ITZ percolates
throughout the concrete specimen [25]. Thus, the ITZ and percolation effects accelerate the movement
of chloride ions. Since the ITZ reduces the water/cement ratios of neighboring zones and the effect is
internally balanced, its net effect on the movement of chloride ions is actually small [13]. To reduce the
computational cost [26], an EAM is constructed as follows.

Since the microstructure of ITZ is different from that of bulk cement paste, it is more reasonable
to model the ITZ as a distinct phase. Compared with the aggregate size, the ITZ thickness is usually
much smaller [27]. As a result, when a Brownian particle walks near an ITZ, it will spend a great deal
of time to walk even a short distance [18]. Therefore, the random walk simulation cannot efficiently be
performed on the mesostructure of concrete.

To overcome this difficulty, an EAM is constructed by combining each aggregate with the
surrounding ITZ, as shown in Figure 1. In practical concrete, when the surface-to-surface distance
between two aggregates is smaller than twice ITZ thickness, their ITZ layers will overlap each other.
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As a result, the ITZ thickness heq in the EAM is smaller than the practical thickness h. To determine the
equivalent ITZ thickness, the kth moment of area <Rk> of pn(x) about the origin is defined as [28]

〈Rk
〉 =

∫ RN+1

R1

xkpn(x)dx. (9)

It is evident that <R>, 4π <R2>, and 4π <R3>/3 represent the average radius, surface area,
and volume of spherical aggregates, respectively. By substituting Equation (7) into Equation (9),
one has

〈Rk
〉 =


3

4π

N∑
j=1

(Pv,j+1−Pv,j) ln(Rj+1/Rj)

Nv(Rj+1−Rj)
, for k = 2

3
4π

N∑
j=1

(Pv,j+1−Pv,j)(R
k−2
j+1−Rk−2

j )

(k−2)Nv(Rj+1−Rj)
, for other cases

. (10)
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Figure 1. (a) Three-phase concrete; (b) equivalent aggregate; and (c) two-phase concrete.

An algorithm was presented for evaluating the ITZ volume fraction fi based on the statistical
geometry of composites [11,29]. According to this algorithm, fi is given by

fi = (1− fa)[1 − exp( − t1h− t2h2
− t3h3 )] (11)

where the coefficients t1, t2, and t3 are expressed in terms of fa and <Rk> as [29]

t1 =
3fa

〈
R2

〉
(1− fa)

〈
R3

〉 (12a)

t2 =
3fa〈R〉

(1− fa)
〈
R3

〉 +
9f2

a

〈
R2

〉2

2(1− fa)2
〈
R3

〉2 (12b)

t3 =
fa

(1− fa)
〈
R3

〉 +
3f2

a〈R〉
〈
R2

〉
(1− fa)

2
〈
R3

〉2 +
wf3

a

〈
R2

〉3

(1− fa)
3
〈
R3

〉3 (12c)

with w being 0, 2, or 3. It was found that the effect of w on the computational accuracy is negligibly
small but best results will be achieved for w = 0 [11]. Thus, w is set to be zero in this paper. Since the
ITZ volume fraction in the EAM should be equal to that in practical concrete, the equivalent ITZ
thickness heq satisfies the following equation

4π
3

∫ RN+1

R1

Nvfapn(x)(3x2heq + 3xh2
eq + h3

eq)dx = fi. (13)
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By substituting Equation (9) into Equation (13), one has

Nvfa(h
3
eq + 3〈R〉h2

eq + 3〈R2
〉heq) =

3
4π

fi. (14)

Solving Equation (14) for heq, one has

heq =
3

√
−

q
2
+

√
q2

4
+

p3

27
+

3

√
−

q
2
−

√
q2

4
+

p3

27
− 〈R〉 (15)

where p and q are equal to
p = 3(〈R2

〉 − 〈R〉2) (16a)

q = 2〈R〉3 − 3〈R〉〈R2
〉 −

3
4π
·

fi

Nvfa
. (16b)

It will be seen below that heq is closely related to the ITZ volume fraction in each equivalent
aggregate and therefore the chloride diffusivity of concrete. It is interesting to investigate the effects of
fa, h, and aggregate gradation on heq, as seen from Equations (11), (15), and (16). To evaluate these
influential factors in a quantitative manner, the Fuller gradation is first adopted with sizes from 0.15
to 16 mm. Thus, heq/h is plotted against fa in Figure 2 [24,30], which demonstrates that, for a small
value of fa, heq/h approaches unit and therefore ITZs seldom overlap. As fa increases, more and more
ITZs overlap and heq/h decreases. For a given fa, heq/h decreases with the increase of h. This is due
to the fact that a larger h results in more overlaps of ITZs. For a given fa at 0.6, 0.7, and 0.8, heq/h at
h = 0.05 mm is smaller than that at h = 0.01 mm by 5.76%, 10.1%, and 20.1%, respectively.
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Figure 2. Effect of interfacial transition zone (ITZ) thickness on heq/h.

Second, the effect of aggregate gradation on heq/h is analyzed. For this purpose, two typical
gradations, Fuller and equal volume fraction (EVF) [24,30], are considered and h = 0.03 mm.
Thus, heq/h is plotted against fa in Figure 3, indicating that, for a given fa at 0.6, 0.7, and 0.8, heq/h for
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concrete with the EVF gradation is smaller than that with the Fuller one by 5.29%, 9.82%, and 20.1%,
respectively. This attributes the fact that more small aggregates in the EVF gradation result in more
overlaps of ITZs.
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4. Chloride Diffusivity of Concrete

Duan et al. [31] proposed a completely explicit formula for the conductivity tensor of multi-phase
media with various inclusions. From the formula, the chloride diffusivity of the equivalent aggregate
shown in Figure 1 is given by

Dea = Di + Di

( Va

Va + Vi
·

Da −Di

Di + (Da −Di)/3

)−1

−
1
3

−1

(17)

where Da and Di are the chloride diffusivities of aggregate and ITZ, respectively, and the aggregate
volume Va and the ITZ volume Vi are equal to

Va =
4π
3

R3 (18a)

Vi =
4π
3
[(R + heq)

3
−R3]. (18b)

The chloride diffusivity of bulk cement paste is denoted by Dbcp. Since Da is much smaller than
Di and Dbcp, Da is set to be zero. Thus, Equation (17) becomes

Dea =
2Vi

3Va + 2Vi
Di. (19)
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By substituting Equations (18a) and (18b) into Equation (19), one has

Dea =
2[(R + heq)3

−R3
]

2(R + heq)3 + R3 Di. (20)

It is seen from Equation (20) that, besides heq, Dea/Di is also dependent on the aggregate size. If R1

and RN+1 are set to be 0.075 and 8 mm, respectively, Dea/Di is plotted against R in Figure 4, indicating
that, since heq is much smaller than R, Dea/Di is almost directly and inversely proportional to heq and
R, respectively, as also seen from Equation (20).
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With the EAM, concrete can be regarded as equivalent aggregates dispersed in a cement paste
matrix. In this way, the RWA can directly be applied to the two-phase concrete [18,19].

In the beginning, a Brownian particle is randomly placed at a point, called the origin o, in concrete,
as shown in Figure 5. Then, it walks step by step until hitting the spherical surface Γ of radius R0,
i.e., the mean square displacement, centered at o for the first time. During the whole walk process,
two cases should be considered separately. When the Brownian particle arrives at a point whose
distance from any interfaces is larger than the prescribed value (=0.001 mm in this paper), a maximum
sphere centered at the Brownian particle tangent to the interface is created. A random point is selected
on the surface. If the spherical radius is ri and the chloride diffusivity of the phase included in the
sphere is D(i), the mean time t(ri) for the Brownian particle to jump to the random point is [18]

t(ri) =
r2

i

6D(i)
. (21)
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It should be pointed out that Einstein and Smoluchowski derived an equation for Brownian
movement in one dimension only under the assumption of Maxwell-Boltzmann distribution [32].
Later, the equation was extended to three dimensions. The theory of Brownian motion is usually
developed for a system with no real boundaries. When the Einstein–Smoluchowski equation is directly
applied to the diffusion of chloride ions in cementitious materials, the Brownian particle is restricted
to three orthogonal directions [33]. When the Brownian particle encounters an impermeable solid
phase, it is not permitted to step into the solid phase but the time spent is still counted for such
an attempt [33]. There are two disadvantages of applying the Einstein–Smoluchowski equation to
cementitious materials. First, this RWA simulates the detailed zigzag walk of the Brownian particle
with small finite steps and is at least an order of magnitude slower than the Torquato and Kim one [34].
Second, when the Brownian particle comes near an interface between two permeable phases, it is
difficult to compute the mean time and probability for it to cross the interface. To overcome these
difficulties, Torquato and Kim [18] derived Equation (21) using the first passage time probability
distribution. Based on Equation (21), the Brownian particle can walk directly to a random point on the
surface of the maximum sphere, as stated above. Thus, there is no need to simulate the detailed zigzag
walk of the Brownian particle with finite step sizes. Furthermore, when the Brownian particle is near
an interface, they also formulated the mean time and probability for it to walk through the interface,
as stated below.

When the Brownian particle arrived at a point x whose distance from an interface is smaller the
prescribed value, the mean time can be evaluated as follows. If the projection of x on to the interface is
denoted by x0, a sphere of radius rj is then created centered at x0, as shown in Figure 6. The interface
divides the sphere into two domains Ω(1) and Ω(2) with volumes V(1) and V(2) and chloride diffusivities
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D(1) and D(2) and the surface into two parts Γ(1) and Γ(2) with surface areas A(1) and A(2), respectively.
The probabilities p1 and p2 for the Brownian particle to reach the surfaces Γ(1) and Γ(2) are equal to [18]

p1 =
A(1)D(1)

A(1)D(1) + A(2)D(2)
(22a)

p2 =
A(2)D(2)

A(1)D(1) + A(2)D(2)
(22b)
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The mean time t(rj) for the Brownian to jump to a random point on the spherical surface is
formulated as

t(rj) =
(V(1) + V(2))r2

j

6(V(1)D(1) + V(2)D(2))
. (23)

It follows from Equations (21) and (23) that the mean time t(R0) is obtained as

t(R0) =
∑

i

r2
i

6D(i)
+

∑
j

(V(1) + V(2))r2
j

6(V(1)D(1) + V(2)D(2))
. (24)

On the other hand, when concrete is homogenized, it becomes a uniform medium of chloride
diffusivity Dcon, as shown in Figure 7. Thus, for a sphere of radius R0, the mean time t(R0) for the
Brownian particle to walk from the spherical center to a random point on the spherical surface is
obtained as [18]

t(R0) =
R2

0

6Dcon
. (25)
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Figure 7. Homogenized concrete of chloride diffusivity Dcon.

From Equations (24) and (25), one can obtain Dcon as

Dcon =
R2

0∑
i

r2
i

D(i) +
∑
j

(V(1)+V(2))r2
j

V(1)D(1)+V(2)D(2)

. (26)

Based on the developed algorithm, a computer program is written with FORTRAN language
for reconstructing the mesostructure of concrete and for implementing the random walk of
Brownian particles.

During the whole random walk process, the Brownian particle possibly walks outside the cubic
element. In such a situation, periodic boundary conditions are imposed. When it walks across the
face BCC1B1 shown in Figure 8a, the edge BC shown in Figure 8b, or the vertex C shown in Figure 8c,
the line segment yz, which extends beyond the element boundaries, will be reflected into the element
on the opposite face ADD1A1, the edge A1D1, or the vertex A1, respectively, i.e., the line segment
y1z1. When it walks across the other faces, edges, or vertexes, the procedure can be performed in a
similar manner. To demonstrate the detailed walk process of a Brownian particle, a two-dimensional
simulation square with a side of 60 mm is considered. The aggregate content is 0.5, h = 0.03 mm, and the
Fuller gradation is adopted with sizes from 0.3 to 9.5 mm. The random walk paths are illustrated in
Figure 9. Figure 9 shows that the Brownian particle first wanders in the lower left domain and then
shifts to the upper left domain by crossing the bottom edge. After that, it explores the central domain
for a while and finally comes near the upper right vertex.
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Figure 8. Brownian particle located close to (a) face; (b) edge; and (c) vertex.
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Figure 9. Random walk paths for (a) R0 = 20 mm; (b) R0 = 30 mm; (c) R0 = 40 mm; and (d) R0 = 60 mm.

Before applying the RWA to concrete, a reasonable value of R0 needs to be known. Although
a larger R0 results in a more accurate Dcon, a higher computational cost is required. In addition,
the finite element size also leads to a slight fluctuation of Dcon for different initial locations of the
Brownian particle. The two shortcomings could be overcome by applying the ergodic hypothesis [35],
i.e., Dcon is taken as the average value over the random walks of M Brownian particles. For this
purpose, a cubic element with a side of 20 mm is selected. The Fuller gradation is adopted with sizes
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from 0.3 to 9.5 mm, fa is 0.1, 0.3, 0.5, and 0.7, and Di/Dbcp = 5. Thus, Di/Dbcp is plotted against R0

in Figure 10, which indicates that Di/Dbcp first decreases gradually with the increase of R0 and then
keeps unchanged when R0 exceeds 20 mm. By taking R0 as 40 mm, Di/Dbcp is plotted against M in
Figure 11, which indicates that Di/Dbcp fluctuates slightly for a smaller value of M. When M exceeds
250, Di/Dbcp keeps unchanged. The results are similar for other fa, Di/Dbcp, and aggregate gradations.
As a conservative estimate, R0 = 40 mm and M = 450 are adopted in this paper.
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Figure 10. Effect of R0 on chloride diffusivity of concrete.
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As stated in the previous section, the EAM is constructed in this paper to reduce computational
cost. To show the validity of the EAM, a computer simulation is performed on a cubic element with
a side length of 20 mm on a Thermaltake workstation. In the simulation, the Fuller gradation is
adopted with sizes from 0.3 to 9.5 mm, fa varies from 0.1 to 0.6, and Di/Dbcp is taken as 5, 10, and 15.
The estimated Di/Dbcp is plotted in Figure 12, indicating that Di/Dbcp with EAM is very close to
that without EAM. For a given value of Di/Dbcp at 5, 10, and 15, the average relative error between
them is 0.858%, 1.88%, and 2.56%, respectively. However, the computational time is greatly reduced.
For example, when the EAM is adopted, the computational time for concrete with fa = 0.5 decreases by
72.6%. Therefore, the EAM gives similar results but at significantly reduced computational cost.Materials 2020, x, x FOR PEER REVIEW 14 of 20 
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5. Experimental Verification

To verify the validity of the developed RWA, a chloride diffusion test was performed. In the
test, specimens with a w/c of 0.6 were cast with ordinary Portland cement. The Fuller gradation was
adopted with sizes from 0.3 to 9.5 mm and fa was 0.0, 0.15, 0.35, 0.55, and 0.75. After 24 h of casting,
these specimens were demolded and cured in water at 21 ◦C for 28 days. The electrical conductivity
method was adopted to measure Dcon [36]. The test device is schematically shown in Figure 13.
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Since h was not measured, it has to be estimated. It was confirmed that, for normal-strength
concrete, h is in the range between 0.01 to 0.05 mm [27]. Thus, h is set to be 0.03 mm, i.e., the average
between 0.01 and 0.05 mm. In this test, Dbcp (i.e., for concrete with zero aggregate volume fraction) was
measured as 15.4 × 10−12 m2/s. At present, it is very tough to directly determine Di in the laboratory,
and therefore this paper resorts to experimental calibration. In this test, Dcon at fa = 0.75 was measured
as 5.38 × 10−12 m2/s. Thus, Di is obtained, by the inverse method, as 62.5 × 10−12 m2/s. With these
parameters known, the random walk is performed to estimate Dcon, as shown in Figure 14, which shows
a good agreement between the RWA and the measured Dcon. The relative error between them is 4.99%,
0.70%, and 3.25% for fa = 0.15, 0.35, and 0.55, respectively.
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Figure 14. Comparison of numerical method with self-conducted experimental results.

To further verify the RWA, the experimental data of Zheng and Zhou [37] are chosen. In their
experiment, the cement type, aggregate gradation, accelerated method, and curing conditions are
the same as those in the last experiment. But w/c was 0.5 and fa was 0.0, 0.3, 0.4, 0.5, 0.6, and 0.7.
The experimentally measured Dcon was shown in Figure 15. Likewise, h = 0.03 mm. In the test, Dcon

was measured as 8.21 × 10−12 m2/s and 4.29 × 10−12 m2/s for fa = 0.0 and 0.7, respectively. The former
is Dbcp, i.e., Dbcp = 8.21 × 10−12 m2/s and the latter is adopted to calibrate Di, which is obtained as
51.6 × 10−12 m2/s. Thus, Dcon is computed by the RWA, as shown in Figure 15, indicating that the RWA
agrees well with the experimental results. When fa = 0.3, 0.4, 0.5, and 0.6, the relative error is 5.94%,
4.26%, 0.36%, and 4.08%, respectively.
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Further, the experimental data of Yang and Su [8] are considered. In this experiment, mortar
specimens with water/cement ratio 0.4 were cast with ASTM Type I Portland cement and fa was
0.0, 0.1, 0.2, 0.3, and 0.4. The aggregate volume percentage Pv,j passing the sieve with radius Rj at
0.075, 0.15, 0.30, 0.59, 1.18, 2.375, and 4.75 mm is 2.83%, 11.4%, 40.3%, 68.1%, 91.6%, 99.7%, and 100%,
respectively. After 24 h of casting, the mortar specimens were demolded and cured in water at 23 ◦C for
12 months. A migration method was used to determine Dcon. As in the above two verification examples,
h = 0.03 mm, Dbcp was measured as 2.03 × 10−12 m2/s, and Di was calibrated as 10.2 × 10−12 m2/s from
the value of Dcon measured at fa = 0.4. Thus, a comparison between the RWA and the experimental
results is made as shown in Figure 16, which shows a good agreement between them. When fa = 0.1,
0.2, and 0.3, the relative error between them is 1.53%, 0.520%, and 1.90%, respectively. Therefore,
the validation of the RWA is preliminarily verified.

Recently, Shafikhani and Chidiac [38] derived an approximate analytical solution of the chloride
diffusivity of concrete based on phenomenological multi-scale models. By considering the effects
of aggregate and ITZ on the diffusion of chloride ions in concrete separately, the solution can be
expressed as

Dcon =
3(1− fa)2

3− fa
·

12 + 18hSa

12− 9hSa
Dbcp (27)

where Sa is the aggregate surface area per unit volume of concrete and given by

Sa = 4π
〈
R2

〉
Nvfa (28)
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With the size distribution of aggregates and Dbcp known, the approximate analytical solution can
be calculated as shown in Figure 16. It is seen from Figure 16 that, compared with the numerical method,
the approximate analytical solution underestimates the experimental results and the diviation from
the experimental results increases with the increase of fa. The relative error between them is 0.941%,
3.09%, 10.7%, and 17.2% for a given fa at 0.1, 0.2, 0.3, and 0.4, respectively. The reason for this could be
that the interactions between aggregates and ITZs are not fully considered. Therefore, the numerical
method developed in this paper is of higher accuracy than the approximate analytical solution.

As seen in the previous sections, there are two limitations in this study. First, to increase the
computational efficiency, the EAM is adopted. As a result, the connectivity of ITZs cannot be fully
embodied and the accelerated effect is neglected. Second, two of data points from each experimental
database have to be chosen to calibrate the chloride diffusivities of bulk cement paste and ITZ, thereby
reducing the number of data points that are used for verification. Therefore, further experimental
investigations with more data points need to be conducted to provide enough statistical evidence for
the validity of the RWA.

When the chloride diffusivity of concrete is determined, Fick’s second law can be used to compute
the chloride profiles in concrete analytically or numerically [39–41] and the time for the reinforcement
surface to reach the critical chloride content [42,43], which is beyond the scope of this paper.

6. Conclusions

Based on the RWA, a numerical method has been proposed for evaluating the chloride diffusivity
of concrete. The concrete mesostructure with periodic aggregate distribution has been reconstructed
for a given aggregate volume fraction and gradation and an estimated ITZ thickness. When the
chloride diffusivities of two sets of concrete samples are measured, the inverse method has been used
to calibrate that of ITZ. To decrease the computing cost, an EAM has been constructed. The ITZ
thickness and chloride diffusivity of the equivalent aggregate have been derived. It has been shown
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that heq/h decreases with increasing fa and h and that, compared with the Fuller gradation, the EVF
one has a smaller value of heq/h. Dea/Di is almost directly and inversely proportional to heq and R,
respectively. With the EAM, concrete is simplified as a two-phase material. The chloride diffusivity has
been estimated with the three-dimensional RWA with periodic boundary conditions on the movement
of Brownian particles. The main advantage of the RWA is that there is no need to simulate the detailed
zigzag walk of a Brownian particle with finite step sizes and therefore the computational time is greatly
reduced and the sensitivity of chloride diffusivity to the step size is eliminated. Finally, the validation
of the RWA has preliminarily been verified with experimental results.
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