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Facioscapulohumeral muscular dystrophy: 
genetics, gene activation and downstream 
signalling with regard to recent therapeutic 
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Abstract 

Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, 
recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches 
for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains 
an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene acti‑
vation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of 
chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, 
enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, 
detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored 
either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the 
symptoms triggered by its numerous targets.
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Introduction
Facioscapulohumeral muscular dystrophy (FSHD) is 
estimated to be the second most prevalent dystrophy 
after Duchenne muscular dystrophy [1] and affects 
approximately 870,000 people worldwide [2, 3]. How-
ever, the number of individuals with FSHD may be sig-
nificantly higher because of undiagnosed cases [4]. FSHD 
is a genetic disease with symptoms that develop between 
infancy and late adulthood, and generally  in the second 
decade of life [5]. Early onset can be seen as a marker 
for disease severity [6] and the disease is primarily 

characterized by asymmetric, progressive muscle weak-
ness [7]. FSHD is inherited in an autosomal dominant 
pattern and the rate of de novo cases is estimated to be 
around 30%. There also appears to be a high frequency 
of somatic mosaicism [8]. Two types of FSHD have been 
reported, FSHD1 and FSHD2, which induce the same 
phenotype (see “Genetics”) [9]. In general, FSHD ini-
tially affects the upper half of the body, specifically the in 
“face (facio), shoulder girdle (scapulo), and upper arms 
(humeral)” [4]. As illustrated in Fig.  1, early symptoms 
are scapular winging (scapula alata) and inability to raise 
the arms above shoulder height. This is accompanied by 
problems in closing eyes or moving lips due to particu-
larly affected musculi orbicularis oculi, oris and zygomat-
icus [10].
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FSHD subsequently spreads to several other muscle 
areas. The disease can affect the distal leg muscles (by 
weak foot dorsiflexion), the abdominal wall and trunk 
muscles, and the pelvic muscles resulting in foot drop, 
difficulty when climbing stairs, and problems when 
straightening up from a horizontal position, respectively. 
Although FSHD is a slowly progressing muscle disorder 
[11], the associated physical limitations can be signifi-
cant [9]. Moreover, respiratory issues—involving weak 
diaphragm and the expiratory abdominal muscles—are 
common in FSHD patients [12]. Respiratory function 
should therefore be evaluated during periodic clinical 
visits [13]. Nevertheless, most patients with FSHD have 
a normal life expectancy in contrast to those with Duch-
enne muscular dystrophy and Myotonic dystrophy [9]. 
FSHD generally begins at an approximate age of 20 years 
[14, 15]. The phenotype can range from minor restric-
tions to severe disability with disease severity varying 
widely between individuals [16]. This may explain the 
results of a cross-sectional study, by Hamel et al. (2019), 
involving 328 participants with FSHD which showed a 
high percentage of people experiencing a changed body 
image as disease burden (91.6%) besides factors such as 
physical limitations (96.9%) and pain (87.7%). Also, a 

substantial proportion (93.8%) of FSHD patients experi-
ence fatigue that significantly impacts their quality of life 
[17, 18]. Moreover, a qualitative study by Schipper et al. 
(2016), in which 25 FSHD patients suffering from severe 
fatigue (measured using the checklist individual strength 
(CIS) fatigue questionnaire) were interviewed, concluded 
that FSHD has a high influence on “participation, social 
contacts and quality of life” [19]. Chronic pain is another 
commonly described FSHD symptom  [20], and is caused 
by overburdened joints and (asymmetric) muscle wast-
ing that induces limb misalignments [21]. Nevertheless, a 
specific patient’s course of disease progression and mus-
cle weakness is predictable because disease severity cor-
relates with the number of D4Z4 repeats at chromosome 
4 (see “Genetics”). In fact, FSHD muscle weakness and 
progression is variable, even amongst siblings or between 
genders [4].

In case of early onset phenotype, which is estimated 
to occur in approximately 10% of disease carriers [22], 
patients usually show symptoms before the age of 5 [23] 
and are severely affected with rapid disease progression, 
marked muscular wasting, and weakness [24]. In this 
regard, comprehensive data on the clinical phenotype 
is missing. However, Goselink et  al. (2017) conducted a 
systematic literature search on the clinical characteris-
tics of early onset FSHD covering 43 articles with data 
on 227 patients. They found out 40% of patients were 
wheelchair-bound at the age of 18. Moreover, FSHD was 
frequently associated with extramuscular involvements, 
encompassing “hearing loss (40%), retinal abnormalities 
(37%) and developmental delay (8%)” showing a nega-
tive correlation between D4Z4 repeat size and disease 
severity, which is comparable with adult-onset FSHD (see 
“Genetics”). Other research on the infantile phenotype 
showed symptoms such as cardiac arrhythmia, respira-
tory insufficiency, and difficulties with swallowing [25]. 
Therefore, a bilevel positive airway pressure machine or 
ventilator to initially manage symptomatic respiratory 
issues may be necessary [4].

Genetics
There are two genetically distinct forms of FSHD known 
as FSHD1 and FSHD2. Although genetically distinct, 
both are the result of the inappropriate expression of 
a gene called Double Homeobox  4 (DUX4) gene [26]. A 
3.3 kilobase (kb) tandemly repeated sequence (D4Z4) 
located on chromosome 4q35 carries the gene [27]. It is 
usually expressed during embryogenesis, where it acti-
vates an early developmental program that marks the 
cleavage stage of embryogenesis [28–30] and is then 
effectively silenced [31]. While DUX4 is expressed only 
in the testis [32] and in the thymus at low levels [33], it 

Fig. 1  Overview of affected muscles in FSHD. The symptoms tend 
to start at the upper half of the body and then spread to lower body 
parts involving the pelvic girdle and the leg muscles. There is a high 
degree of clinical variability in disease severity and affected muscles 
are generally involved asymmetrically regarding the left–right body 
axis. In some cases, patients with foot drop can be supported by 
ankle–foot orthotics (AFOs) and knee-ankle–foot orthotics (KAFOs) 
[236]. Surgery to attach the scapula to the ribcage can enhance arm 
motion or alleviate pain [237–239]
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has detrimental effects when expressed in skeletal muscle 
resulting in FSHD [34].

Throughout the human genome there is a number of 
D4Z4-like sequences, mostly accompanying acrocentric 
chromosomes [35]. Also, a very homologous and equally 
polymorphic D4Z4 repeat is located on chromosome 
10q26 (~ 98% similarity to the 4q35 locus), which has 
never been associated with FSHD [36] as this chromo-
some has no permissive single nucleotide polymorphism 
(SNP) in the DUX4 Polyadenylation Signal (PAS) (see 
“DUX4 gene expression”) [26]. However, translocations 
between chromosomes 4 and 10 have been reported [37, 
38], which complicates diagnosis (see “Methods of diag-
nosis”). Healthy individuals carry 11–100 D4Z4 repeats 
that are positioned within heterochromatin. Therefore, 
DUX4 is not transcribed in somatic tissues [26]. FSHD1 
patients show a reduced number of 1–10 repeats referred 
to as a "contraction" [9]. This contraction correlates with 
a “loss of repressive epigenetic marks” regarding methyla-
tion levels within the D4Z4 macrosatellite, enabling small 
molecules to trigger the ectopic expression of the DUX4 
gene in muscle cells [39]. The hypomethylation in FSHD 
is restricted to the D4Z4 repeat as it is not detected in the 
region proximal to the repeat [40].

Ninety-five percent of patients with FSHD have 
FSHD1, with the remaining percentage having FSHD2 
[41]. In FSHD2 there is no contraction of the D4Z4 
repeats [42] as the 4q35 locus contains 11–20 repeats. 
However, the number of repeats is not always decisive as 
some patients are excluded from this definition [43, 44]. 
In the case of FSHD2, a mutation in the Structural Main-
tenance of Chromosomes flexible Hinge Domain Con-
taining 1 (SMCHD1) gene (> 80% of FSHD2), or (rarely) 
in the De Novo Methyltransferase 3B (DNMT3B) gene 
leads to the hypomethylation of the D4Z4 array thereby 
enabling the aberrant expression of the DUX4 protein 
[45, 46]. Recently, Hamanaka et al. (2020) also identified 
LRIF1 as disease gene for FSHD2 [47] (see “FSHD2 and 
related diseases”).

A lower repeat number correlates with a more severe 
disease progression in patients with FSHD1 and 1–6 
repeats. Most of the epigenetic factors that cause FSHD1 
symptoms in patients with 7–10 repeats are unknown 
[48], and rare cases can be induced by an SMCHD1 muta-
tion  although SMCHD1 is commonly related to FSHD2 
[49]. However, whilst there are the two major allelic 
forms 4qA and 4qB, only the former is associated with 
the disease. As illustrated in Fig.  2, the 4qA haplotype 
is further classified based on Simple Sequence Length 
Polymorphisms (SSLPs) proximal to the D4Z4 repeat. 
Only the SSLP variant 4A161 and the rare variants 4A159 
and 4A168 were shown to correlate with D4Z4 reduced 
alleles in FSHD patients [36]. The 4qA sequence carries 

a 9  kb beta-satellite repeat region—“immediately dis-
tal to the D4Z4 repeat”—which cannot be found in 4qB 
[11]. The variant ATT​AAA​ was discovered in the pLAM1 
sequence of the 4qA alleles. This provides a PAS enabling 
the expression of the most distal copy of the DUX4 gene 
[26, 50].

Methylation levels of the D4Z4 macrosatellite in FSHD
FSHD methylation levels encompass both a low CpG 
methylation at D4Z4 DNA correlating with a reduced 
number of D4Z4 units [51–53] and a specific loss of 
H3K9me3 followed by the loss of heterochromatin pro-
tein 1 (HP1) and cohesin binding at D4Z4. This suggests a 
more relaxed chromatin structure [54]. There seems to be 
a relationship between DNA hypomethylation and clini-
cal severity in patients with an additional mutation in 
SMCHD1 and DNTM3B [46, 55]. Furthermore, there are 
indications that infantile FSHD patients show extreme 
epigenetic dysregulation of the FSHD locus [56]. To date, 
different methylation analyses have been conducted [51–
53, 57, 58]. However, the comparison of results proves 
difficult due to the evaluation of GpGs within different 
regions of the D4Z4 array and the use of different statisti-
cal tools. While Lemmers et al. (2015) consider the D4Z4 
array as a linear string of mathematical units to define 
global methylation [48, 52], Calandra et  al. (2016) high-
light the potential of one single CPG to distinguish indi-
viduals and point to the CpGs distal to the D4Z4 array 
[57]. Other study findings doubt that D4Z4 methylation 
mirrors the clinical expression of FSHD [59] and indi-
cate that measurement of this epigenetic mark must be 
interpreted with caution in clinical practice [58]. Accord-
ing to the hypothesis of Gaillard et  al. (2019), FSHD 
chromatin landscape is not inherited but progressively 
installed upon differentiation. Based on confocal imaging 
the authors showed long-distance interactions between 
the D4Z4 array, the telomere and the nuclear lamina (see 
“FAT1 in the context of long distance interactions”) [60]. 
The nuclear lamina impact on global chromatin archi-
tecture is poorly understood. Experiments in mice and 
Drosophila have already shown its major role in chroma-
tin organisation shaping the 3D genome [61, 62]. In this 
context, as chromatin regulation involves long-distance 
interactions [63], the entire location of the chromosome 
4 within the nucleus should be looked at more closely.

FSHD2 and related diseases
FSHD types 1 and 2 show a common pathomechanism 
that results from the stabilization of the DUX4 tran-
script. Prerequisites for FSHD2 are a mutant SMCHD1- 
or (rarely) DNMT3B allele and a permissive 4qA allele 
[45, 46]. In this case, the D4Z4 repeats on both 4q35 
copies and on chromosome 10 are hypomethylated 
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[64]. Moreover, Hamanaka et  al. (2020) recently identi-
fied LRIF1 as a rare FSHD2 disease gene, which was also 
shown to bind to the D4Z4 repeat array. Knockdown of 
the LRIF1 long isoform resulted in DUX4 expression as a 
result of partial chromatin relaxation. Interestingly, while 
almost all patients with FSHD2 show monoallelic muta-
tions in SMCHD1 or DNMT3B, LRIF1 mutation was 
demonstrated to be biallelic. According to the authors, 
LRIF1 mutations are a rare reason for FSHD and should 
thus only be considered in FSHD2 when tested negative 
for SMCHD1 mutations [47].

Interestingly, D4Z4 hypomethylation is not specific to 
FSHD. In this regard, mutations of the two FSHD2 mod-
ifiers—SMCHD1 and DNMT3B—could be reported in 
other diseases as well. Missense mutations in SMCHD1 
were shown to cause Bosma arhinia microphthalmia 
syndrome (BAMS) [65, 66], which is a very rare disease 
characterized by complete absence of the nose and pos-
sible ocular defects [66]. In contrast to FSHD2 individu-
als, BAMS patients show no signs of muscular dystrophy 
while SMCHD1 mutations in FSHD2 are not associated 
with craniofacial defects, which are characteristic for 
BAMS. Both diseases induce identical transcription of 

Fig. 2  Chromosome 4q35.2 in healthy- and in FSHD1-individuals. 11–150 D4Z4 repeats (dark blue) leading to a high methylation level within the 
D4Z4 macrosatellite (light blue), which represses the transcription of DUX4. There are two possible haplotypes A and B, which are equally common 
and a Simple Sequence Length Polymorphism (SSLP) proximal to the D4Z4 repeat further classifying haplotype A or B [36]. FSHD only occurs in 
individuals, which carry the 4qA allele. People with contraction and thus minor methylation at chromosome 4q35 are either also carrying 4qA and 
have FSHD or 4qB and are healthy. The 4qA haplotype is further classified based on SSLPs proximal to the D4Z4 repeat. Only the common SSLP 
variant 4A161 and the rare variants 4A159 and 4A168 are reported to correlate with D4Z4 reduced alleles in FSHD patients. This example: 1–10 
repeats/ FSHD1; the same conditions of a permissive Haplotype A apply for FSHD2 [36]. Haplotype A further carries the pLAM1 sequence (light 
green) and a beta-satellite repeat region immediately distal to the D4Z4 repeat (yellow). Detection is depicted via Southern Blot probe p13E-11 
(dark green). Chromosome 10q26 is also illustrated as it shows nearly 100% similarity to the 4q35 locus [36]
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the DUX4 gene and increased expression of some of its 
target genes. However, there are different mutations in 
SMCHD1, which seem to have no impact on transcrip-
tion, but on the epigenetic organisation of D4Z4, thus 
showing entirely different phenotypical outcomes [59]. 
SMCHD1 is involved in repairing DNA double-strand 
breaks [67] and in the epigenetic regulation of differ-
ent genes particularly mediated by the histone mark 
H3K9me3 [68]. Furthermore, it plays a role in inacti-
vating the X chromosome. In case of FSHD2 or BAMS, 
mutations do not affect X inactivation. While in most 
BAMS patients mutations induce gain of ATPase activ-
ity, there is a loss of function in FSHD2 regarding rem-
ethylation [59] (see “The ATPase domain of BAMS and 
FSHD2”). Intriguingly, the latter was found to be similar 
to what is observed in cells from patients with immuno-
deficiency, centromeric instability, and facial anomalies 
(ICF) syndrome [59, 69] as one of its subtypes, ICF1, 
arises from DNMT3B mutations. ICF1 is associated 
with reduced levels or absence of serum immunoglobu-
lins [70] and it affects facial appearance [46]. In contrast 
to FSHD2, which is caused by dominant mutation of 
DNMT3B, ICF1 is inherited in an autosomal recessive 
pattern. Whereas heterozygous ICF1-mutation carriers 
neither show any muscle dystrophy nor present immuno-
logical abnormalities, in FSHD2 the absence of an immu-
nological phenotype could be described by the presence 
of one wild-type DNMT3B allele. A low D4Z4-repeat 
size and a permissive 4qA allele containing a DUX4 PAS 
were reported to facilitate DUX4 expression when both 
DNMT3B alleles are mutated. However, in this case, next 
to the described features of ICF1, muscle weakness has 
never been reported. According to van den Boogaard 
et al. (2016), the short life expectancy of ICF1 individu-
als might be the reason for the lacking FSHD2 phenotype 
[46].

The ATPase domain of BAMS and FSHD2
In FSHD2, specific SMCHD1 mutations have been 
described across the whole coding sequence [59], 
whereas mutations inducing BAMS are localized within 
exons 3 to 13 [66]. In this context, the ATPase domain of 
SMCHD1 is an overlapping area of mutations in both dis-
eases. However, whilst FSHD2-specific variants are typi-
cally localised in the ATP binding pocket, BAMS variants 
are most often positioned at the dimer interface—being 
an area that may be essential for the dimerisation of the 
ATPase domain [71]. However, overlapping variants have 
also been discovered amongst the different mutations. 
Nevertheless, the individual diseases seem to be mutu-
ally exclusive as studies of extended FSHD2 families car-
rying BAMS-specific variants have shown no signs or 
symptoms characteristic for BAMS. Interestingly, one 

BAMS patient with FSHD symptoms, having a moder-
ately sized D4Z4 repeat on a 4qA allele, was found [11, 
65]. Lemmers et  al. (2019) suggested that BAMS might 
also incorporate another yet unknown locus [71]. But the 
mechanisms are still not fully understood and require 
further structural and biochemical analysis.

DUX4 protein
Tassin et al. (2013) presented a model of how an initially 
very low concentration of the DUX4 protein can poten-
tiate its effects. After the DUX4 gene is activated, it is 
transcribed into mRNA, which is translocated into the 
cytoplasm domain near the activated nucleus. Then it is 
translated into the DUX4 protein, which carries a nuclear 
localization signal (NLS). It diffuses in the cytoplasm and 
is transported into various neighbouring nuclei. Subse-
quently, the cascade initiation and amplification begins, 
as DUX4 activates other transcription factors which are 
imported into neighbouring nuclei. The number of acti-
vated nuclei and expressed genes grows at every point, 
thereby enabling an amplification of the initial trigger 
[72].

Snider et  al. (2010) showed in  vitro that FSHD mus-
cle expresses another splice form of DUX4 mRNA when 
compared with control muscle. Figure  3 shows that 
control muscle generates low amounts of a splice form 
of DUX4 encoding the amino-terminal part and both 
homeodomains, but it does not contain the C-terminal 
domain. This is referred to as DUX4-S (S for short) and 
is not toxic [73]. In contrast, FSHD muscle produces 
DUX4-FL (FL for full-lengths) mRNA that encodes 
the whole DUX4 protein, which contains 424 amino 
acids [32]. Previous in vitro studies showed that DUX4-
induced pathology requires both intact homeodomains 
and a transcription-activating domain (TAD) in the 
C-terminal region of the protein. Furthermore, it was 
found that non-toxic constructs with both homeodo-
mains intact could act as inhibitors of DUX4 transcrip-
tional activation, and is likely due to competition for 
promoter sites [74].

The two homeoboxes situated at the N-terminus of 
the protein are responsible for binding to the DNA. The 
C-terminal domain is relevant for target gene activation 
and contributes to the cellular toxicity of DUX4-FL by 
interacting with histone acetyltransferase p300 and tran-
scriptional coactivator CBP [75, 76] (see “DUX4 Down-
stream Signalling: p300”).

Zhang et al. 2016 analysed the DNA-binding sequence 
specificity of DUX4 by using Chromatin ImmunoPre-
cipitation DNA-Sequencing (ChIP-seq) analysis and 
identified a consensus containing two tandem TAAT 
motifs (TAAT[T/C][T/C]AATCA). They showed that all 
four variants could be identified by DUX4, but the motif 
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containing a central cytosine followed by a thymidine 
(TAA​TCT​AATCA) was the most preferred by DUX4, 
thus having the greatest transcriptional activity in  vivo 
[77].

DUX4 gene expression
In FSHD muscle only DUX4 from the most distal repeat 
unit can be expressed in a stable manner. This is due to 
genetic elements downstream to the repeat that are nec-
essary for mRNA processing [32, 78]. As illustrated in 
Fig.  4, the DUX4-FL gene is composed of three exons. 
While its open reading frame (ORF) is entirely incor-
porated in the first exon, exon 2 and 3 are non-coding 
regions (3′UTR) [39]. Besides, exon 3 is positioned out-
side of the D4Z4 repeats. On permissive chromosomes, 
in the last copy of the DUX4-FL gene the third exon sta-
bilizes the transcript due to the presence of the PAS [26, 
79].

Reverse Transcription Polymerase Chain Reaction (RT-
PCR) and immunofluorescence studies showed a small 
number of myonuclei, which express relatively high lev-
els of DUX4-FL. There is no uniform low expression level 
in all nuclei [32, 79] leading to difficulties in detecting 

its expression from patient samples when searching for 
the disease’s origin [72]. Interestingly, two isoforms of 
DUX4-FL were discovered as a result of alternative splic-
ing events. Snider et  al. (2010) showed the existence of 
DUX4-FL mRNA and the DUX4-FL-3′ splice form in 
muscle biopsies of FSHD patients. Control muscle cells 
did not contain noticeable amounts of DUX4-FL mRNA. 
DUX4-S was expressed in all control samples with the 
SSLP 4A161 and in some of the FSHD samples. These 
data demonstrate that FSHD as well as control mus-
cle cells “actively transcribe DUX4.” [32]. In the follow-
ing paragraphs DUX4-FL will be referred to as DUX4 
because it is considered to cause FSHD.

According to Lim et  al. (2020) “the FSHD phenotype 
may be the cumulative result of extensive aberrant sig-
nalling across time” [80] with unpredictable bursts of 
expression [81]. Since DUX4 induces hundreds of dif-
ferent target genes, also affecting the induction of apop-
tosis [82] and atrophic muscle fibres [7] (see “DUX4 
Downstream Signalling”), its repetitive expression over 
years may lead to noticeable loss of the specific muscle 
areas (see Fig. 1). In this regard Mariot et al. (2015) sug-
gested, that FAT1 levels might determine which muscles 

Fig. 3  DUX4-FL protein. This protein contains 424 amino acids and is expected to have well-defined tertiary structures in each of the two 
DNA-binding homeodomains (amino acids 19–79 and 94–154) and in the most C-terminal region (amino acids ∼ 365–424). The C-terminal region 
includes the transcription-activating domain (TAD) and a p300-binding domain. The region between the second homeodomain and the C-terminal 
domain (amino acids ∼ 155–364) is predicted to be disordered. The protein contains a potential nine amino acid TAD (9aaTAD) at amino acids 
371–379 (classified as a 92% match) [74]
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will exhibit early and late disease onset, while DUX4 may 
worsen the muscle phenotype [83] (see “FAT1 in the con-
text of long distance interactions”). Whilst the nature of 
DUX4 has been researched extensively and great knowl-
edge has been gathered in the last decade, the context of 
genetic interaction regarding methylation levels is not 
fully understood and direct target genes, which bind to 
the DUX4 promoter, are still not fully known. Never-
theless, molecular key features of DUX4, such as exon 
3 which is specifically associated with the pathogenic 
DUX4 transcript, could be revealed. This allows for 
promising treatment approaches in the context of future 
drug development (see “AOs” in “Molecular treatment 
strategies”).

Methods of diagnosis
Diagnosis of FSHD is commonly performed using South-
ern Blotting [84] with the blot hybridization probe 
p13E-11 [85]. Double enzyme digestion using EcoRI 
and BlnI—from the 4q35 and the 10q26 regions—is per-
formed as the probe identifies two pairs of EcoRI alleles. 
As depicted in Fig. 5, 4q35 was found to be BlnI-resist-
ant, whilst 10q26 is BlnI-sensitive [86–88]. EcoRI cuts at 
both ends thereby releasing complete D4Z4 repeat arrays 
with little flanking sequences. The EcoRI fragments from 
10q26 are shortened to below the detection limit due to 
BlnI [84].  Another restriction enzyme—called XapI—is 
also used for diagnosis of FSHD. In contrast to BlnI, XapI 
leaves chromosome 10-type units undigested when frag-
menting chromosome 4-type D4Z4 units [36].

Both alleles of the 4q35 locus are examined whilst 
observing the molecular results from EDTA blood. One 
allele is typically normal-sized compared to healthy indi-
viduals [89], whilst the other allele contains fragments 
(≤ 43  kb) after EcoRI cleavage and fragments (≤ 40  kb) 
after EcoRI and BlnI double digestion. Morover, frag-
ments associated with FSHD can no longer be detected 
after XapI cleavage. Eight and nine D4Z4 repeats (32–
35 kb EcoRI fragment size) are currently defined as dis-
ease-associated [90–92]. Other researchers point out 
that 10–11 repeats (38–41 kb) are a “grey-zone” [93] or 
“borderline” [94]. However, there is consensus that repeat 
numbers above 12 (≥ 45  kb) are beyond the diagnostic 
range for FSHD1 [92, 93].

The determined EcoRI fragment size provides informa-
tion about the approximate repeat number at the locus as 
each D4Z4 repeat of chromosome 4q35 is approximately 
3.3  kb long. Approximate D4Z4 repeat numbers can be 
determined from EcoRI-fragment sizes by using the for-
mula [93, 95, 96]:

For FSHD2 diagnosis, methylation analysis of the D4Z4 
region and SMCHD1 sequencing on chromosome 18 is 
performed. This is done only if chromosome 4 also offers 
the “permissive” 4qA allele [55, 97] as FSHD2 is inherited 
in a digenic manner [45].

The traditional genetic FSHD diagnosis method is 
labour-intensive, requires a lot of time, and needs a 
large quantity of high-quality DNA. Therefore, whole 

Repeats =
EcoRi fragment size in kb− 5kb flanking sequence

3.3kb

Fig. 4  Requirements for DUX4 gene expression. DUX4 expression is only possible at the most distal D4Z4 repeat of the 4qA alleles. Exon 3, which 
is located outside the D4Z4 repeats in the pLAM1 region is carrying the variant ATT​AAA​ that provides a PAS enabling the expression of the most 
distal copy of the DUX4 gene into DUX4 mRNA and then DUX4 protein [39]. Whilst healthy individuals especially generate the non-toxic splice form 
of DUX4-S (encodes the amino-terminal part and both homeodomains; does not contain the C-terminal domain) [73], FSHD muscle produces toxic 
DUX4-FL mRNA [32]
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genome optical mapping is now commonly used—
especially for prenatal diagnosis. In this regard, Zheng 
et al. (2019) showed that Bionano optical mapping can 
identify the number of D4Z4 repeats and avoid inter-
ference of the 10q26 homologous region. Moreover, 
whole genome optical mapping combined with kar-
yomapping results in a quick and precise diagnosis of 
FSHD1. Whilst the Southern Blot-method is only able 
to estimate the number of D4Z4 units, whole genome 
optical mapping is faster and more accurate [89]. How-
ever, the whole genome optical mapping technique also 
shows some insufficiencies as the estimated proportion 
of mosaicism might be less precise when several alleles 
differ significantly in the number of repeats [98].

Molecular combing to directly visualize allelic combi-
nations correlating with FSHD—by identifying “somatic 
mosaicism, 4q-10q translocations, p13E-11 deletion, 
and other non-canonical modifications” [99]—has been 
developed for more complex disease variations [100]. 
Southern Blot alone may be insufficient for interpret-
ing results in instances where translocations have 
been shown in both healthy individuals and FSHD 
patients [101]. 4qA-10qA translocations may arise 
and 10qB alleles have been reported as result from the 

translocation of 4qB alleles [44] due to the high level of 
sequence homology between chromosome 4q and 10q, 
which facilitates inter-chromosomal exchanges [87]. 
Common Southern Blot is usually the first method used 
for the diagnosis of patients presenting FSHD pheno-
type, followed by Molecular Combing—which can be 
performed to specify results [99].

Disease monitoring
Regular neurologist or physiatrist visits help monitor the 
progress of FSHD, especially as there can be deficits in 
respiratory function over a long period of time without 
any severe symptoms. Furthermore, respiratory compen-
satory mechanisms can allow the organism to adapt to 
increasing amounts of carbon dioxide (CO2) in the blood 
during the night due to sleep-related hypoventilation. 
This is known as hypercarbia (hypercapnia) [102, 103], 
and has been reported to cause symptoms that patients 
may become tolerant of, such as morning headaches, 
cognitive difficulties, or daytime fatigue [104]. In more 
severe cases when gas exchange worsens due to deficits 
in respiratory function, an early support with non-inva-
sive ventilation (NIV) must be considered as there is a 
risk of acute respiratory failure [103].

Fig. 5  Schematic representation of the methods used for FSHD1 diagnosis. The D4Z4 repeat array is indicated with triangles (in dark blue). D4Z4 
repeat units on chromosomes 4 and 10 can be separated because all repeats on 10q contain BlnI restriction sites (whereas all D4Z4 repeats on 4q 
contain XapI restriction sites) [238]
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Some early-onset patients may have “moderate to 
profound bilateral sensorineural hearing loss and sight-
threatening retinal abnormalities “[105] (Coats’ Syn-
drome [106]). In this case, it is essential to regularly 
check hearing and vision [105]. FSHD is a slowly progres-
sive disease, making it difficult to evaluate modifications 
which may be triggered by relatively short-term treatment 
approaches. Therefore sensitive prognostic biomark-
ers are highly valuable for clinical trial design. Magnetic 
resonance imaging (MRI) is one technique that also indi-
cates an early phase of muscle damage. MRI recognizes 
muscle injury by increased signal on short-tau inver-
sion recovery (STIR) sequences demonstrating oedema/
inflammation which anticipates fatty replacement of sin-
gle muscles. This is consistent with the suggested model 
of disease pathophysiology which states that bursts 
of DUX4 expression initiate a cascade of downstream 
events, also possibly encompassing an inflammatory-
immune response (see “DUX4 Downstream Signalling”). 
Against this background, STIR positive (STIR +) muscle 
lesions have been suggested as biomarkers regarding dis-
ease activity. According to Monforte et al. (2019) exami-
nation of patients with STIR + muscles—who are thus 
more exposed to disease progression in a short period of 
time—would strongly improve the chance to discover a 
considerable impact of an investigational treatment. Fur-
thermore, a higher amount of STIR + muscles at baseline 
was shown to anticipate deterioration at follow-up stud-
ies. This confirms the association between STIR + lesions 
and disease progression [107].

Electrical impedance myography (EIM) is an alterna-
tive tool that measures changes in muscle. EIM uses elec-
trical current to identify the impedance to current flow 
through a specific muscle or muscle group [108]. EIM has 
been used in several neuromuscular diseases—including 
FSHD [109]—indicating its reliability [109–113]. Accord-
ing to LoRusso et  al. (2019) EIM is “painless, requires 
minimal training, and does not require specific expertise 
in post-processing” [108]. Nevertheless, in a later study 
encompassing 32 patients EIM did not detect meaning-
ful disease progression over one year in a clinically stable 
group of patients [108]. According to Mul et al. (2018), it 
is unclear whether this is because of technological limi-
tations or the slow disease progression in that cohort of 
FSHD patients during the specific time frame [110].

Trial readiness
Apart from manual muscle testing (MMT) and quantita-
tive myometry (QMT), there are no approved outcome 
measures which can be consistently used in clinical tri-
als. Besides, individual functional measures may not be 
sensitive to disease progression over 12 months [108]. A 
large, international, multi-centre prospective study was 

therefore initiated in March 2018 in order to improve 
clinical trial tools and methodology in the context of 
drug development for FSHD [108]. The estimated com-
pletion date of the study is March 2022 (clinicaltrials.gov: 
NCT03458832) [114]. The 18-month long study includes 
220 FSHD patients from the United States and Europe. 
The primary goal is to “hasten drug development for 
FSHD by validating two novel clinical outcome assess-
ments (COAs) and refining clinical trial strategies” [108]. 
Novel COAs are the functional FSHD composite outcome 
measure FSHD-COM and the skeletal muscle biomarker 
EIM (see “Disease monitoring”). FSHD-COM encom-
passes 18 evaluator-administered motor tasks in the areas 
of shoulder/arm, hand, core/abdominal, leg, and balance 
function. Reliability and sensitivity to disease progres-
sion are yet to be proved [108, 115]. The focus is set on 
the evaluation of the “test–retest reliability, validity, and 
sensitivity to disease progression, and minimal clinically 
important changes” of the new COAs [108]. Visits are at 
baseline and at months 3, 12, and 18. Statistical methods 
will be further implemented at each point to specify sub-
groups, likely to progress over 12–18 months in varying 
degrees. The aim of the study is to analyse links between 
demographic, genetic factors and disease progression in 
order to refine eligibility criteria for future clinical trials 
[108].

FAT1 in the context of long distance interactions
FSHD is known to affect specific muscles whilst other 
muscles are spared [83]. In this regard, FAT Atypical 
Cadherin 1 (FAT1) has been found to affect muscle mor-
phogenesis as it influences the shape of subsets of face 
and shoulder muscles, partly by polarizing the direc-
tion of collectively migrating myoblasts [116]. Mariot 
et al. (2015) demonstrated that levels of FAT1 are lower 
in muscles that are affected at early stages of FSHD pro-
gression than in healthy muscles or muscles that are 
affected later in time. Furthermore, the authors demon-
strated that FAT1 expression is independent of DUX4 
[83]. The locus of chromosome 4 might therefore be par-
ticularly important as (in contrast to chromosome 10) 
the telomere of 4q is localized at the nuclear envelope. 
Intriguingly, mediation of interaction with the nuclear 
envelope was associated with genomic regions proximal 
to the D4Z4 repeat, such as D4S139, a variable number 
tandem repeat (VNTR) locus [117] that also interacts 
with FAT1. Gaillard et al. (2019) showed the existence of 
functional long distance-interactions between D4Z4, the 
nuclear lamina, and the telomere by using three-dimen-
sional Fluorescent In  Situ Hybridization (3D FISH). 
According to the authors, the 4q35 locus encompasses 
two topologically associating domains (ToADs) encom-
passing four domains connected with the nuclear lamina 
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(Lamin Associated Domains, LADs), with each one over-
lapping with different gene areas. The most proximate 
LAD to D4139 overlaps with an area encompassing the 
FAT1 gene. It was shown that the mean distance between 
the D4S139 region and FAT1 was particularly higher in 
control cells than in FSHD cells, and that interaction of 
D4S139-FAT1 was restricted to FSHD. To illustrate these 
findings, Fig. 6 shows the different interactions found in 
control cells and in FSHD cells. There is an overall loss 
of interaction with other gene areas in the case of FSHD. 
(The data also demonstrated the involvement of other 
genes as well. For detailed information see Gaillard et al. 
2019.) However, in the case of FSHD2 and the non-con-
tracted allele of FSHD1, interactions between FAT1 and 
Sorbin and SH3 domain-containing protein 2 (SORBS2) 
could be detected further. The loss of interaction regard-
ing the contracted FSHD1 allele [60] might contribute 

to FSHD1 pathogenesis as SORBS2 could be, inter alia, 
detected at the Z-line in skeletal muscle [118].

As D4Z4 is reported to act as transcriptional repres-
sor CTCF—which organizes long distance-interactions 
between the telomere—subtelomeric regions and the 
nuclear lamina by distance-dependant mechanisms, it 
could be hypothesized that decreased levels in FAT1 
expression might be the result of a changed communi-
cation between the involved genes. If so, further ques-
tions—including,“When does FAT1 expression level 
trigger FSHD? Is it during fetal development, after birth, 
or both?” [83]—as in the case of DUX4 may be answered 
as “both” because interaction has been shown in muscle 
biopsies from foetuses as well as adult individuals [60]. 
However, the type of interaction/ the direct impacts of 
interaction on protein expression have not been explored 
further.

Fig. 6  Overview of DUX4 signalling. Antagonists of DUX4 are depicted on the left; Signalling pathways for DUX4 gene activation have been 
associated with MAPK, especially p38α/β, bottom); DUX4 is located within the D4Z4 macrosatellite, which interacts with subtelomeric regions and 
the nuclear lamina via long distance-interactions, influencing (1) methylation levels and (2) gene expression. Interactions found in control cells and 
in FSHD are depicted at the top of the graphic. (For reasons of clarity, interactions of FSHD2 cells are not illustrated here, but are mentioned in the 
text.) FAT1 gene is shown to aggravate FSHD, when expressed at low levels. Muscles are more sensitive to gene deregulations and become affected 
earlier [83]; DUX4 generally requires help of p300/CBP and H3.X/H3.Y for target gene expression; Depicted on the right: DUX4 expression affects 
multiple genes, which are either upregulated or downregulated by DUX4 protein. ROS seem to have a prominent role in disease mechanism and 
are probably activated directly by DUX4 itself and indirectly through further targets of DUX4 
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DUX4 downstream signalling
When reactivated in skeletal muscle, the early embryonic 
program of DUX4 [69] activates several hundreds of tar-
get genes (e.g. ZSCAN4, MBD3L2, TRIM43… [28, 119]) 
and initiates numerous detrimental events including the 
activation of the inflammatory immune response [120], 
the induction of apoptosis [82], atrophic muscle fibres 
[7], oxidative stress [121], and an altered muscle cell dif-
ferentiation in myogenesis [122]. Affected FSHD muscles 
show fibro-fatty replacement [123, 124]. It is still unclear 
if inflammation displays a protective effort against the 
DUX4-driven damaging effects or a direct deleteri-
ous component of the DUX4 cascade [107]. Most find-
ings described in this paragraph have been obtained in 
in vitro cell models or in transgenic mice overexpressing 
DUX4. Figure 6 shows an summary of the literature find-
ings of DUX4 pathogenesis. Also FAT1 is depicted as it is 
reported to influence disease severity [83].

β‑catenin
Whilst Block et  al. (2013) showed that activation of the 
Wnt/β-catenin signalling pathway suppressed DUX4 
transcription [125], Banerji et  al. (2014) identified 
β-catenin as the “main coordinator of FSHD-associated 
protein interaction signalling” [126]. Pathways encom-
passing HIF1-α (see “DUX4 downstream signalling: 
HIF1-α”), tumor necrosis factor (TNF)-α and c-Jun N-ter-
minal kinases (JNK) were shown to be clearly disturbed 
[126] by β-catenin. The latter are involved in oxidative 
stress-induced cell death (see “DUX4 Downstream Sig-
nalling: ROS”), revealing that β-catenin is highly influ-
encing DUX4-mediated toxicity. According to Lim et al. 
(2020), “this consequently results in a negative feedback 
loop wherein DUX4 activates Wnt/β-catenin signalling, 
which represses its own expression.” This may be the 
reason for the low amount of detectable DUX4 nuclei in 
FSHD muscle cells [80].

dsRNA, RNASEL and EIF2AK2
Shadle et  al. (2017) found that DUX4 expression 
increased nuclear double-stranded RNA (dsRNA) accu-
mulation. This can trigger a signalling cascade that inhib-
its translation and induces apoptosis. The appearance of 
dsRNAs activates expression of RNASEL and EIF2AK2, 
which are effectors of the innate immune response par-
ticularly against viral invasion by either cleaving intrud-
ing RNAs or inhibiting translation [82].

P53 vs. BMP2
While Wallace et al. (2011) suggested that DUX4-induced 
cell death relies on the p53 pathway [127], other study 
findings doubt that p53 is a direct consequence of DUX4 
expression [128]. Interestingly, DUX4 overexpression 

in  vitro showed Cyclin Dependent Kinase Inhibitor 1A 
(CDKN1A) expression, a major p53 target, which codes 
for p21. However, studies that observed this did not 
show upregulation of p53 [129, 130], but knockdown of 
CDKN1A was shown to enhance the proliferative capac-
ity of DUX4-transfected cells. In this context, it could be 
shown in  vivo that DUX4-induces binding of specific-
ity protein 1 (sp1) to p21 promoter [129]. According to 
Xu et al. (2014) DUX4 may activate CDKN1A expression 
through the bone morphogenetic protein (BMP)-2 signal-
ling pathway, which is an upstream actor of Sp1. Accord-
ing to the authors, BMP2 mRNA increased after enforced 
DUX4 expression and was accompanied with an increase 
of Sp1 and p21.

Apart from this, p53 might be triggered by other events 
as it is reported to correlate with Reactive Oxygen Spe-
cies (ROS) by acting either as an antioxidant or a pro-
oxidant regulating redox homeostasis. p53 is described 
to either reduce ROS levels or to induce cell cycle arrest, 
senescence, and apoptosis [131].

MYC
DUX4 upregulates MYC, which functions in cell cycle 
progression and as a mediator of extrinsic and intrinsic 
pathways of apoptosis. DUX4 overexpression enhances 
MYC-mediated cell death by stabilizing MYC mRNA 
[82].

Estrogen
Teveroni et  al. (2017) suggested that the reason why 
females tend to be less severely affected by FSHD than 
males is due to estrogens counteracting the differentia-
tion impairment of FSHD myoblasts by estrogen receptor 
β (ERβ). While they observed an enhanced recruitment of 
DUX4 transcription factor in the nucleus during muscle 
differentiation, ERβ intervened against this recruitment 
by returning DUX4 into the cytoplasm [132]. How-
ever, according to recent clinical findings, differences in 
endogenous estrogen exposure during life did not appear 
to have a clinically relevant modifying impact on disease 
severity in female patients. It suggests that additional sex-
related aspects might also play a role in the further pro-
tection from DUX4-induced muscle damage [133].

β2‑AR
Prior to the discovery of β2-adrenergic recep-
tor  (β2-AR)-agonists influencing FSHD pathogenesis, 
several trials with β2-AR like clenbuterol or salbuta-
mol had been conducted due to their anabolic effects 
[134–136]. Although they were tried as anabolic agents, 
they appear to have a direct effect on a DUX4-induced 
mechanism. While further trials in FSHD patients with 
salbutamol have shown no major impact as a routine 
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treatment for FSHD [18, 137–139], investigations on 
β2-AR have revealed an involvement in the regulation 
of the D4Z4 array in somatic cells [140]. The partici-
pation of molecules and the interconnection between 
different pathways is still not fully understood [141]. 
β2-AR-agonists increase cAMP levels via adenylate 
cyclase stimulation through trimeric Gs proteins (see 
Fig.  7). Efforts to further explore this signalling path-
way led to the identification of p38 mitogen activated 
protein kinase (MAPK) as a major regulator of DUX4 

expression. In  vitro experiments demonstrated that 
clinically advanced p38α or p38β inhibitors are able to 
suppress DUX4 expression in FSHD myoblasts and dif-
ferentiating myocytes. This demonstrated that each of 
these kinase isoforms plays a different role in activat-
ing DUX4. It was shown that p38 inhibitors successfully 
suppressed DUX4 expression in a mouse xenograft 
model of human FSHD gene regulation (see “Therapeu-
tic approaches”) [34, 141].

Fig. 7  Model of DUX4 regulation by β-2 adrenergic signalling. β-2AR binding of agonists induces G protein-mediated activation of adenylyl 
cyclase, which subsequently catalyzes the formation of cAMP. Downstream effectors of cAMP are PKA-dependent and PKA-independent pathways. 
β-2 agonist-mediated inhibition effects on DUX4 expression are likely mediated through PKA-independent pathways acting through signalling 
molecules such as phosphatases (PPtases) and MAPKs to effect chromatin modifiers, e.g. lysine methyltransferases (KMTases), to influence 
transcription of the DUX4 gene [140]
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MRF
DUX4 expressed at high levels causes rapid cell death, 
but at low levels it interferes with master myogenic 
transcription factors—predominantly with MyoD. The 
latter is part of the myogenic regulatory factor (MRF) 
family, which also comprises the muscle specific pro-
teins Myf5, myogenin (MyoG), and MRF4 (Myf6) [122, 
142]. (Several reviews and textbooks regarding the dif-
ferent steps of myogenesis are available.) Whilst Myf5 
mRNA was shown to be upregulated by DUX4 possibly 
representing a compensatory mechanism, Knopp et  al. 
(2016), who analyzed transgenic mice carrying a human 
D4Z4 genomic locus from an FSHD-affected individual, 
showed that DUX4 inhibits both MyoD and MyoG gene 
expression to produce a differentiation defect that can-
not be controlled by upregulation of Myf5. DUX4 and its 
transcriptional activity can be discovered in differentiat-
ing human myoblasts [32, 78, 143–145]. There is a “main-
tenance of a stem-cell-like and less-differentiated state” 
[143] due to DUX4 expression.

Atrogin1 and MuRF1
DUX4 induces the expression of the muscle-specific E3 
ubiquitin ligases Atrogin1 (MAFbx) and MuRF1. The 
ubiquitin proteasome pathway plays a major role in regu-
lating protein degradation and muscle atrophy [146, 147]. 
Lagirand-Cantaloube et  al. (2009) further showed that 
Atrogin1 suppresses MyoD specific transcriptional activ-
ity among the muscle fibre [148].

PAX7
Whilst PAX3 influences early skeletal muscle formation 
in the embryo, PAX7 dominates during post-natal growth 
and muscle regeneration in adult individuals [149]. In 
FSHD skeletal muscle PAX7 target genes are globally 
repressed [150]. The paired-homeobox transcription 
factor stimulates proliferation whilst inhibiting differ-
entiation [151], thus regulating the expansion of satel-
lite cells during myogenesis [149, 152]. Studies in mice 
showed that PAX7 could prevent DUX4-mediated toxic-
ity in a dose-dependent way and re-establish myogenic 
gene expression [130]. While Bosnakovski et  al. (2017) 
suggested some type of competitive interaction [122], 
Haynes et al. (2017) observed that nuclei do not express 
both DUX4 and PAX7 proteins and that the transcription 
factors may not compete for the same genomic binding 
sites [153]. Remarkably, “DUX4 and PAX7 homeodo-
mains show 100% identity in their DNA-binding amino 
acids” [80]. PAX7 target gene repression is a significant 
biomarker as it correlates with disease severity indepen-
dently of DUX4 [154].

UPF1
The evolutionarily conserved protein Up-frameshift pro-
tein 1 (UPF1) is one of the main effectors of nonsense-
mediated mRNA decay (NMD) [155]. Feng et  al. (2015) 
reported that DUX4 stimulates the degradation of UPF1, 
inducing global accumulation of RNAs, usually degraded 
as NMD substrates [156]. Interestingly, DUX4 mRNA 
itself is degraded by NMD. Therefore, “inhibition of 
NMD by DUX4 protein stabilizes DUX4 mRNA through 
a double-negative feedback loop in FSHD muscle.” [157]

CRYM
Vanderplanck et  al. (2011) showed that DUX4 induces 
CRYM (μ-Crystallin) by direct promoter activation. The 
thyroid-hormone binding protein with nicotinamide 
adenine dinucleotide phosphate (NADPH)-dependent 
activity influences differentiation and oxidative stress 
responses [146, 158]. The physiologic function in skel-
etal muscle remains to be elucidated. Interestingly, it is 
additionally expressed in the cochlea and vestibule of the 
inner ear [159], potentially explaining the occurrence of 
retinal abnormalities [160] and high-frequency hearing 
loss [161] in some FSHD patients with severe phenotype.

PITX1
The paired-like homeodomain transcription factor 1, 
which encodes a transcription factor that is the “master 
switch for hindlimb development in embryogenesis” [35], 
is particularly triggered in FSHD muscles as compared to 
11 neuromuscular disorders [7]. It has been discussed as 
direct DUX4 target gene [78, 127]. However, according to 
Zhang et al. (2016) it does not interact physically or func-
tionally with the PITX1 promoter sequence as there is no 
optimal CT motif [77] (see “DUX4 Protein”). PITX1 has 
been suggested to explain the asymmetric involvement 
of FSHD muscles due to its role in creating left–right 
asymmetry [80]. It is still not well understood how PITX1 
contributes to FSHD pathogenesis [7] apart from causing 
atrophy in adult skeletal muscles and its involvement in 
inflammation.

H3.X and H3.Y
Resnick et al. (2019) showed that DUX4 induces expres-
sion of the histone variants H3.X and H3.Y. Following 
a brief pulse of DUX4, these histones incorporate into 
genes transcriptionally induced by DUX4 and contrib-
ute to higher persistence and to improved reactivation of 
DUX4 target gene expression [162].

P300
Svensson et  al. (2020) demonstrated a general require-
ment for p300 including CREB-binding protein (CBP) 
in skeletal muscle contractile function, transcriptional 
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homeostasis, and organism survival [163]. DUX4 protein 
also interacts with the transcriptional coactivator p300 
and utilizes its acetyltransferase activity to induce expres-
sion of many of its target genes [34, 75, 164].

ROS
Several indices for the accumulation of ROS in FSHD 
muscle have been reported. For example, Dimitriev 
et  al. (2016) showed constitutive DNA damage in cul-
tured myoblasts from FSHD, which could be dimin-
ished by addition of an antioxidant [121]. Furthermore, 
several markers for increased oxidative stress, including 
4-hydroxynonenal-modified proteins, protein carbonyla-
tion, and a lower glutathion (GSH)/ glutathione disulfide 
(GSSG) ratio have been found in FSHD muscle biop-
sies [165]. Importantly, DUX4 was shown to reduce the 
expression of several glutathione redox pathway-associ-
ated genes—including phospholipid hydroperoxide glu-
tathione peroxidase (GPX4), glutathione S-transferase 
A4 (GSTA4) and glutathione S-transferase omega-1 
(GSTO1)—in a DUX4-inducible myoblast in vitro model 
[130]. In muscle biopsies of FSHD patients, however, 
higher levels of glutathione S-transferase, superoxide dis-
mutase (SOD), catalase, and glutathione reductase have 
been found—contradicting the aforementioned in  vitro 
results [165, 166]. In this regard, p53 and its perfor-
mance as an antioxidant or pro-oxidant under different 
stress levels could be taken into account. Whereas the 
antioxidant function of p53 is particularly attained via 
upregulating the typical antioxidant enzymes, the pro-
cedures by which p53 increases ROS are less understood 
(see “DUX4 Downstream Signalling: P53 vs. BMP2”) 
[131]. Apart from this, it is currently hypothesised, that 
increased expression of antioxidant defence system pro-
teins is a result of compensatory mechanisms, activated 
by prolonged and increased oxidative stress [167]. The 
exact origin of increased ROS, however, still remains 
unclear. Mitochondrial dysfunction is currently dis-
cussed as major source for increased ROS, resulting 
from decreased oxygen storage capacity [167]. However, 
muscle cells from FSHD patients are generally acknowl-
edged to have an increased susceptibility to oxidative 
stress, also emphasizing that mechanisms generating 
small amounts of ROS should be taken into consideration 
[165–168]. Increased lactate concentrations, for example, 
are known to induce low amounts of ROS [169]. Under 
physiological conditions, this low increase in ROS results 
in an increased antioxidant defence system or can induce 
erythroid differentiation [170, 171]. In FSHD muscle, an 
increase of lactate is evident, as an increased expression 
of lactate dehydrogenase has been observed in vitro and 
in vivo [172, 173]. In line, lower levels of myoglobin and 
higher activity of HIF1-α strongly indicate a lower oxygen 

storage capacity in combination with increased anaero-
bic production of lactate [126, 172, 174, 175]. There-
fore, higher basal ROS levels may be partially caused by 
increased lactate levels. However, this hypothesis awaits 
further confirmation by future studies. Also, it should 
be noted that the release of interleukin (IL)-6, a central 
mediator of inflammation, can be induced by ROS [176, 
177]. Therefore, the extensive inflammation reported 
in FSHD muscle could be induced by an initial increase 
in ROS [167, 178]. As several types of immune cells are 
known to produce ROS at the site of inflammation, this 
may result—in combination with the perturbed antioxi-
dative defence system in myocytes—in a chronic inflam-
mation that is held constant via a paracrine mechanism. 
This may further result in a fatal loop [121] as increased 
ROS was also identified as the central mediator in the 
formation of atrophic myotubes.

HIF1‑α
Lek et al. (2020) conducted an unbiased screen utilizing 
a genome-wide CRISPR-Cas9 loss-of-function library 
in order to detect possible targets that influence DUX4-
mediated cell death. Focus was set on genes, in which 
loss-of-function contributed to survival of muscle cells 
when DUX4 was expressed. A pathogenic association to 
the cellular hypoxia response was shown. This was found 
to be the main driver of DUX4-induced cell death. Under 
hypoxic conditions, hypoxia-inducible factor 1 (HIF1)-α 
is stabilized and transfers into the nucleus. It dimerizes 
with ARNT and shapes the HIF transcription factor. 
HIFs—in combination with the coactivators CBP and 
p300—mediate transcription of hypoxia response genes 
and CDKN1A (one of its target genes). This combina-
tion is reported to mediate hypoxia-related growth arrest 
[179].

Animal models
The D4Z4 macrosatellite encoding the DUX4 retro-
gene is “specific to old world primates” [180, 181]. This 
negates the possibility of working with a “natural” model 
of the disease in commonly used laboratory animal spe-
cies. Modelling FSHD in non-primate species that do not 
express endogenous DUX4 raises concerns of whether 
the same downstream gene targets and regulatory net-
works exist, and can be activated as a consequence of 
DUX4 misexpression to cause disease as in primates 
[180].

In cultured human FSHD muscle cells there are 
bursts of DUX4 expression from only a minority of 
myonuclei [162]. Moreover, protein has not been found 
directly in patient biopsies. Approaches to model 
DUX4 myopathy in mice have proven to be too cyto-
toxic, resulting in embryonic lethality, or in lacking 
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muscle phenotypes [182]. The majority of current 
laboratory animal models of FSHD try to mimic DUX4 
misexpression via the transgenic insertion or injection 
of DUX4. An example of this would be FLExDUX4—
which is a line of conditional floxed DUX4-FL trans-
genic mice—that was developed by Jones and Jones 
(2018) in order to overcome “developmental toxicity 
of low DUX4 expression from leaky transgenes” and 
create the conditions for DUX4 animal experiments 
on mice that are viable and fertile (see: “Therapeutic 
approaches: AOs”) [120]. Also, other promising mouse 
models have been introduced, such as the doxycycline-
inducible model iDUX4pA (pa for PAS) of Bosnakovski 
et al. (2017)—which makes DUX4 expression depend-
ent on its endogenous relatively inefficient PAS [182] 
or the tamoxifen-inducible (TIC)-DUX4 mouse model 
of Giesige et al. (2018)—which conditionally expresses 
DUX4 in muscles after tamoxifen injection [183]. 
Mueller et  al. (2020) developed a promisingly accu-
rate primate analogue model of FSHD by generating a 
procedure to xenograft immortalized human muscle 
precursor cells from FSHD patients into immunode-
ficient mice to create human muscle xenografts. They 
reported that FSHD cells “mature into well-organized 
and innervated human muscle fibres with minimal 
contamination of murine myonuclei” [184]. They were 
also managed to reconstitute the satellite cell niche 
within the xenografts. The xenografts are reported to 
be structurally comparable to intact human skeletal 
muscle as human myofibers are innervated and associ-
ate with human satellite cells [184]. Nevertheless, the 
host’s immune system must not reject tissue or cells 
from the donor for cross-species transplantation to 
be successful. X-irradiation is usually used to disrupt 
the host satellite cell niche for studies that aim to avoid 
host-derived muscle regeneration, whilst myotoxins or 
mechanical injury is used to destroy host muscle fibres 
[185]. Therefore, due to the use of immune-compro-
mised mice, one disadvantage of the procedure would 
be the lack of information regarding the contribution 
of the immune system to disease and disease progres-
sion [186, 187].

According to Huml et al. (2020)—who compared lit-
erature findings regarding several animals with disease 
phenotype—there is no single, ideal model that can 
currently be used to wholly represent FSHD [4]. There 
are published models in mice, zebrafish, and dogs—
each engineered through a different approach and pro-
ducing different results [180]. Therefore, it is suggested 
that stakeholders should give high priority to collabo-
rating to commit resources to developing an all-encom-
passing model for FSHD—inclusive of most muscle 
phenotypes—in one animal [4]. It may then be useful to 

analyse and use comparable parameters within differ-
ent organisms. Hendrickson et  al. (2017) showed that 
DUX4 and its mouse ortholog, DUX, share central roles 
in cleavage-specific gene expression and a partial over-
lap of regulated genes. Determination of the extent of 
similarity in their transcriptional programs might pro-
vide more information about the design of mouse mod-
els for FSHD [28].

Molecular treatment strategies
Current molecular treatment strategies are illustrated 
in Fig. 8 and include modulating DUX4 repressive path-
ways, or targeting DUX4 mRNA, DUX4 protein, or cel-
lular downstream effects of DUX4 expression.

p38 inhibition
Efforts to further explore the signalling pathway of 
β2-adrenergic receptor-agonists led to the identifica-
tion of p38 MAPK as a major regulator of DUX4 expres-
sion (see “DUX4 Downstream Signalling: β2-AR”) [34, 
141]. The four isoforms of p38 (α/β/γ/δ) are strongly 
triggered by several types of environmental stress and 
inflammatory cytokines, including “oxidative stress, UV 
irradiation, hypoxia, ischemia, IL-1, and TNF-α” [188]. 
P38α seems to be the main p38 isoform and is part of 
the inflammatory response, as its elimination in epi-
thelial cells was reported to decrease proinflammatory 
gene expression [188]. P38α MAPK is also regarded as a 
“molecular switch for the activation of myogenic differ-
entiation” [189]. In fact, p38α binds to—and regulates—
many promoters during myogenesis [190]. While the 
factors that directly activate DUX4 gene expression are 
still unknown [140], in  vitro experiments demonstrated 
that clinically advanced p38α/β inhibitors are able to 
reduce DUX4 expression without disrupting muscle dif-
ferentiation [141]. Observations showed DUX4 expres-
sion is exquisitely sensitive to p38 inhibition and requires 
much less inhibitor than in the case of blocking differen-
tiation. According to Oliva et al. (2019), when xenograft 
mice had been treated with the p38 inhibitor losmapimod 
for 14 days, the total number of both human and mouse 
muscle cells increased compared to nontreated animals. 
The molecular mechanisms that tie DUX4 expression 
to p38 activity remain to be elucidated [34]. However, 
due to these findings, the study “ReDUX4” was initiated 
by Fulcrum Therapeutics/ USA to assess “the safety and 
efficacy of losmapimod” in patients with FSHD1 [191]. 
Recruitment of volunteers for the trial started in August 
2019 and enrollment was completed in February 2020. 
The trial involves 80 patients who are randomly allo-
cated to either placebo or losmapimod [191]. Patients are 
given 15 mg of losmapimod or placebo twice a day as two 
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7.5 mg tablets per oral dose—for a daily total of 4 pills or 
30 mg (clinicaltrials.gov: NCT04264442) [192].

It was envisioned that the primary endpoint of the 
study will be in the first quarter of 2021, and that all 
data—encompassing all secondary and exploratory end-
points—will be obtained in the second quarter of 2021. 
Results from the interim analysis in the first 29 rand-
omized subjects indicate that DUX4-driven gene expres-
sion did not show a separation from placebo at 16 weeks. 
However, muscle biopsies with the highest levels of 
DUX4 expression before the start of the trial showed 
a 38-fold reduction in DUX4-driven gene expression 
following treatment with losmapimod compared to a 
5.4-fold reduction with placebo. According to Fulcrum 
Therapeutics the results indicate that muscle biopsies 
within the higher levels of DUX4-driven gene expres-
sion may be needed to observe a reduction from baseline 
[193].

miRNAs and AOs
Whilst vector-based approaches for RNA interference 
(RNAi) therapy with miRNAs “have remained largely in 

the pre-clinical realm”, antisense oligonucleotide (AO)-
based approaches have seen more advancement [194]. 
AOs and miRNAs share a fundamental principle: they 
bind target RNA through Watson–Crick base pair-
ing. Whilst AOs are developed as short synthetic single 
strands, miRNA functions as a duplex which is associated 
with a so-called RNA-induced silencing complex (RISC). 
In the latter case, one strand (the passenger strand) dis-
appears and the remaining strand (the guide strand) 
interacts with RISC to bind complementary RNA. The 
differences between the two approaches show different 
strengths and weaknesses regarding drug development 
[195, 196].

miRNAs
The human organism uses miRNAs for gene silenc-
ing by creating small sequences with 19–25 nucleotides 
that target mRNA, thus inhibiting protein production 
[197]. miRNAs play an essential role in a large number 
of biological cellular processes such as development, 
cell differentiation, cell proliferation, or cell death [198]. 
Each miRNA can possibly regulate hundreds of different 

Fig. 8  Current approaches for targeted treatment: modulating DUX4 repressive pathways, targeting DUX4 mRNA, DUX4 protein, or cellular 
downstream effects of DUX4 expression. Regarding DUX4 mRNA LNA gapmer AOs are further illustrated on the right; These are single-stranded, 
short oligonucleotides containing a DNA portion flanked by LNA. The LNA parts increase the affinity for the target and provide nuclease resistance, 
DNA parts activate RNase H [207, 240, 241]; The extra methylene group of LNAs is attached between the 2′-O-and the 4′-positions “locks” the 
ribofuranosyl-ring in its 3′-endo conformation (shown under the magnifying glass) [240]
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mRNAs, suggesting that a significant proportion of 
eukaryotic genes are regulated by miRNAs [199]. Wallace 
et al. (2018) recently tried to silence DUX4 with adeno-
associated viral vectors “to deliver targeted microRNA 
expression cassettes” (miDUX4s) [194]. They showed 
proof of concept for this procedure in mice, and made 
additional efforts to assess matters of safety associated 
with miDUX4 overexpression and sequence-related off-
target silencing. They reported improvements in vector 
design and enhancement of their miDUX4 sequence rep-
ertory as well as differential toxicity—providing data to 
help advance RNAi gene therapy for FSHD [194].

The functionality of miRNAs has been researched 
extensively, but there remain several difficulties  regard-
ing "off-target effects" [200], toxicity [201], and undesira-
ble immune responses [202]. The success of synthetically 
developed miRNAs highly depends on the availability of 
a safe and efficient transport system for the synthetically 
modulated RNA sequence into the cell [203].

AOs
While there have been promising studies regarding the 
use of AOs [204–206], there remains a need to more 
effectively knock down DUX4 expression and screen for 
AOs against DUX4. Lim et  al. (2020) used AO chemis-
tries that directly degrade target mRNA and that do not 
passively act via mRNA processing interference. They 
worked with locked nucleic acid (LNA) gapmers to knock 
down DUX4 pre-mRNA [207, 208]. LNA gapmers con-
sist of a central segment of DNA flanked by short LNA 
stretches (see Fig. 8 (left)) They bind targets by sequence 
complementarity, producing a DNA/RNA hybrid that is 
cleaved by RNase H—which leads to gene knockdown 
[209]. LNAs are a class of modified RNA-nucleic acid 
analogous that carry a supplementary methylene bridge. 
This modification makes them resistant to nucleases 
and increases affinity to complementary RNA sequences 
[210]. Apart from sugar modifications, phosphorothioate 
backbones are used along the entire length of the AOs to 
provide further nuclease resistance [207, 211] when bind-
ing to RNA targets. Lim et al. (2020) targeted DUX4 pre-
mRNA [207, 208], which is generally processed through 
post-transcriptional modification such as capping, poly-
adenylation or splicing before it can leave the cell nucleus 
as mRNA and is available as a template for translation 
[212]. Lim et  al. (2020) showed in  vitro that LNA gap-
mer AOs successfully knock down DUX4 in immortal-
ized FSHD myoblasts and the FLExDUX4 FSHD mouse 
model. They chose to mainly target DUX4 exon 3, which 
is specifically associated with the pathogenic DUX4 tran-
script (see “DUX4 gene expression”). They also found 
potential functional benefits of AOs on muscle fusion 

and structure in  vitro. In  vivo injection of one LNA 
reduced DUX4 mRNA expression (by 84% one day after 
injection and 70% after repeating the experiment and 
collecting muscles seven days post injection). According 
to the authors, while the designed LNA gapmers could 
knock down DUX4 expression in skeletal muscle sig-
nificantly and selectively, effects on muscle structure and 
function, and an evaluation of the pharmacokinetic prop-
erties of LNA gapmers in vivo, remain to be determined 
with a systemic treatment study [207, 208].

CRISPR‑Cas13
Another prospective treatment for FSHD regarding DNA 
level was introduced by Rashnonejad et  al. (2019), who 
developed a new Cas13/CRISPR mediated DUX4 mRNA 
silencing method which does not cleave DNA. The treat-
ment can be accurately directed to a RNA transcript of 
interest utilizing a sequence-specific guide RNA (gRNA), 
thereby reducing the risk of permanent DNA damage. 
The authors targeted distinct parts of DUX4 mRNA and 
showed their ability to markedly suppress DUX4 and 
inhibit cell death in  vitro and in  vivo. According to the 
authors, “additional in vivo studies are underway” regard-
ing the capabilities of the AAV-delivered CRISPR/Cas13 
system [213].

G‑quadruplex ligands
Ciszewski et  al. (2020) have detected a number of 
G-quadruplexes (GQs) by using bioinformatic analysis of 
the genomic DUX4 locus. These are shaping sequences 
and their presence was demonstrated “in synthetic oli-
gonucleotiode sequences derived from the enhancer, 
promoter and transcript of DUX4 through circular 
dichroism and nuclear magnetic resonance analysis.” 
[214]. The authors subsequently analysed the binding 
character of berberine, a naturally appearing GQ stabi-
lizing compound, to these structures. An in  vitro study 
in FSHD patient myoblasts was conducted using berber-
ine as a treatment. Interestingly, there was a reduction of 
DUX4 and its target genes. Additional analysis using a 
DUX4-mouse model validated the therapeutic impact of 
berberine on downregulating DUX4 protein expression 
preventing muscle fibrosis, and hence rescuing muscle 
function [214].

Inhibition of HA biosynthesis
DeSimone et al. (2019) hoped to identify molecular path-
ways that mediate DUX4 toxicity by using the DUX4-
inducible human myoblast cell line MB135-DUX4i.

MB135-DUX4i has been demonstrated to have simi-
lar molecular disease pathologies such as FSHD myo-
genic cells. In contrast to FSHD cells, which sporadically 
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express DUX4 in only a few nuclei at different times (1 in 
every 200 to 1000 cells [179]), MB135-DUX4i cells can be 
simultaneously stimulated to induce high-level expres-
sion of DUX4. This enables molecular analysis of DUX4 
pathologies “under controlled and acute experimental 
conditions” [215].

The authors used proteomic coimmunoprecipitation 
(co-IP) assays and found that increased hyaluronic acid 
(HA) levels correlate with observed and several unob-
served cellular pathologies. The latter include distur-
bance of the usually perinuclear localization of C1QBP 
(a HA-binding protein) and the mitochondria. It was 
demonstrated that DUX4 expression supports accumu-
lation of HA in DUX4-expressing cells and that multi-
ple DUX4-induced molecular pathologies are mediated 
by HA which accumulates following DUX4 induction. 
DUX4-expressing myoblasts, treated with the competi-
tive HA biosynthesis-inhibitor 4-methylumbelliferone 
(4MU), inhibited DUX4-mediated accumulation of HA 
and the initiation of the pathologies without having 
an observable influence on DUX4 protein amount or 
nuclear localization. These findings demonstrate HA as 
an important influencer of DUX4 pathology that operates 
at an early stage in DUX4 pathogenesis [215].

Inhibition of the cellular hypoxia response
A pathogenic connection to the cellular hypoxia 
response—which is the main influencer of DUX4-
induced cell death (see “DUX4 downstream signalling: 
HIF1-α”)—was demonstrated by conducting a genome-
wide CRISPR-Cas9 screen to detect genes whose loss-
of-function provide survival in case of DUX4 expression. 
Studies that used the immortalized myoblast line MB135-
DUX4i, combined with a doxycycline-inducible DUX4 
transgene to guarantee continuous DUX4 expression in 
all cells, showed that the cellular hypoxia response can 
be disturbed with inhibitors of the phosphatidylinositol 
3-kinase (PI3K)/Akt/mTOR [216] and Ras/mitogen-acti-
vated protein kinase (MAPK) signalling pathways [217] 
(see “Therapeutic approaches: p38 inhibition”-MAPK 
inhibitors are also used in context of β2AR signalling). 
When treating patient cells, PI3K/Akt/mTOR inhibitors 
showed more effectiveness at a lower dose and were thus 
selected for further analysis. Inhibition led to enhanced 
DUX4 protein turnover and reduction of the cellular 
hypoxia response and apoptosis. Furthermore, FSHD dis-
ease biomarkers could be decreased in patient myogenic 
lines, whilst structural and functional attributes in two 
zebrafish models of FSHD could be improved [179].

Current therapy approaches
Antioxidants
Antioxidant treatment of FSHD is considered a rea-
sonable approach given that increased oxidative stress 
seems to be a central mechanism in this disease. Sev-
eral reports demonstrate the beneficial effects of anti-
oxidants on FSHD muscles in  vitro, including a higher 
resistance against H2O2, reduced DUX4-induced toxicity 
and improved myotube formation [121, 218]. However, 
results are inconclusive in FSHD patients. Whilst a com-
binatory treatment with vitamin C, vitamin E, zinc, and 
selenium improved the maximum voluntary contraction 
and endurance of quadriceps in FSHD patients, results 
from a two-minute walk test, were insignificantly differ-
ent [219]. Contrary to the above results, supplementation 
of methionine and folic acid (both potent antioxidants 
[220, 221] could not demonstrate a beneficial effect on 
muscle health or disease state [222]. Interestingly, a com-
bined supplementation of docosahexaenoic acid, eicosa-
pentaenoic acid, vitamin E, curcumin, acetyl-L-carnitine, 
vitamin C, coenzyme Q10, dry extract of the roots of 
scutellaria, and dry extract of green tea, demonstrated 
significant positive effects on a 6 min walk distance and 
the isokinetic knee extension in FSHD patients [223]. 
It should be noted that the sample size was less than 27 
subjects per group in all studies, potentially masking 
any beneficial effect from the corresponding treatment. 
Therefore, conclusions from antioxidant treatments are 
unreliable given the low number of studies and small 
population sizes. Nevertheless, the limited beneficial 
effects observed provide a rationale to conduct larger 
multi-centred trials.

Aerobic exercise and strength training
Five cardiovascular training trials done by  111 FSHD 
participants proved the positive effects that aerobic exer-
cise training has on patients with FSHD [224]. Muscle 
mass diminishes 3–8% per decade after the age of 30, 
and decreases at a higher rate after the age of 60. In this 
regard, exercise training and appropriate nutrition can 
have remarkable effects on muscle mass and strength 
[224–227]. Therefore, in the case of FSHD, exercis-
ing regularly is vital as untrained muscles accelerate the 
aging process and lead to reduced muscular resilience 
and chronic muscle pain [226]. Also, strength training—
involving several repetitions with light weights [228]—
is considered a valid option for FSHD patients. "High 
Intensity Interval Training “ (HIIT) should only be done 
under medical supervision [226]. Furthermore, training 
should be combined with physical therapy and adapted to 
individual needs in order to counteract physical overload 
[229]. A combination of aerobic exercise and strength 
training (and cognitive-behavioural therapy) should 
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therefore be considered given the benefits that aerobic 
exercise has demonstrated [224, 230, 231]. In a study by 
Bankolé et  al. (2016), sixteen FSHD patients were ran-
domly split up in training (TG) and control (CG) groups 
(both n = 8) in a 6-month home-based training program. 
(The CG-patients also did an identical exercise interven-
tion after this time period.) The training-schedule con-
sisted of cycling 3 times a week for 35 min. Remarkable 
improvements could be shown in the peak oxygen uptake 
and maximal aerobic power by week 6—up to week 24. 
Improvements in muscle endurance, maximal quadriceps 
strength, and 6-min walking distance was demonstrated. 
Moreover, fatigue was reported to decrease. “Muscle 
fibre cross-sectional area and citrate synthase activity 
increased by 34% and 46%, respectively.” [231]. How-
ever, according to Voet et al. (2019), many studies remain 
insufficient for subgroup analyses (regarding patients 
with severe or mild phenotype), sample size, duration, 
or evaluation of dose–response relationships. Additional 
research with strong methodology and more participants 
is required [224].

Conclusion
The aim of this review is to provide an overview of FSHD 
regarding genetics, pathophysiology, currently discussed 
therapy approaches, and future aspects of methodology. 
There remains potential in the role of modifier genes 
that have not been identified yet, looking at direct D4Z4 
binding proteins [140] or gender specific effects of DUX4 
signalling [133]. An early intervention of DNA levels in 
order to minimize DUX4-effects may have the most posi-
tive results given that DUX4 is believed to induce hun-
dreds of different target genes [28, 119]. In this context, 
the locus of the 4q telomere at the nuclear envelope [117] 
and the long distance interactions of D4Z4 seem to be 
particularly important in disease progression considering 
both methylation levels of the 4q35 locus and a changed 
gene expression [60, 118] beyond DUX4 expression.

Also, further research of signalling pathways behind 
the effect of β2 adrenergic receptor-agonists showed that 
p38 mitogen-activated protein kinase is a mediator of 
DUX4 expression [34]. Use of LNA gapmer AOs recently 
lead to the successful inactivation of DUX4 at pre-RNA 
levels [207, 208].

Investigations into the CRISPR/Cas13 system are cur-
rently being conducted [213].

It was found that DUX4 protein uses different sys-
tems such as the hyaluronic acid pathway [215] and 
G-quadruplexes [214] for further action. Although 
chemical inhibitors have been shown to suppress DUX4 
effects, further research is needed to build upon the new 
findings. Researchers are beginning to use screens of 
small molecules to discover drugs that influence D4Z4 

methylation or translation of DUX4. Regarding DUX4 
targets, ROS seem to have an important role in alleviat-
ing the effects of DUX4 toxicity in the disease mecha-
nism, whilst current research has linked the main driver 
of apoptosis to cellular hypoxia response [179]. The grow-
ing pace of drug development has generated an urgent 
requirement for clinical trial readiness [108]. The rel-
evance of clinical trial planning is prominent, and stand-
ardization is becoming more necessary. Current therapy 
approaches try to counteract muscle loss and weakness. 
In this context, antioxidants combined with aerobic exer-
cise and light strength training are considered to be vital 
in alleviating DUX4 toxicity [223, 226, 231]. However, in 
this regard, several studies use small sample sizes whilst 
specifications regarding the examination criteria remain 
unclear [224]. Therefore, the international multicentre 
study ReSolved (March 2018—March 2022) may result 
in more efficient clinical trial designs [108]. Against this 
background, further research should focus on disease 
severity (in relation to age and gender), pre-exercised 
muscle, lifestyle, affected muscle groups regarding pain, 
quality of life, and the individual genetics. FSHD is a 
genetically complex type of muscular dystrophy. There-
fore, detailed information about study participants, cat-
egories regarding disease severity, and standardization of 
methodology may significantly help to interpret results.

Outlook
Patient registries, biomarkers (see “Disease monitoring”), 
and clinical outcome measures (see “Trial readiness”) 
have to be included in order to facilitate targeted therapy 
and diagnostics. Disease progression can be adequately 
monitored by using standardized clinical evaluation such 
as the Comprehensive Clinical Evaluation Form (CCEF) 
[232–234] in combination with parameters like the clini-
cal severity score by Ricci et al. (“Ricci score”) [233] and 
the FSHD clinical score [235]. These tools are especially 
important for the standardization of follow-up-studies. 
Also, family studies must be conducted in order to eluci-
date the extent of disease variability.

It is uncertain if methylation analysis is a useful tool 
for FSHD diagnosis and prognosis given that the fac-
tors which influence the methylation status of the D4Z4 
macrosatellites are currently not fully understood. In this 
regard, Nikolic et al. (2020) observed a high variable dis-
tribution of D4Z4 methylation whilst investigating D4Z4 
methylation status at 4q35 in a large cohort of patients 
through methylation-sensitive restriction enzymes 1 
(MRSE1)[58].  Therefore, methylation techniques per 
se are not sufficient. Exactly how the nuclear lamina 
impacts on global chromatin architecture needs to be 
further examined. In FSHD, the short D4Z4 array seems 
to interrupt interaction amonst D4Z4, the telomere, and 
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the nuclear periphery (which is usually organized via long 
distance loops, encompassing 2 ToADs in the context of 
a higher order chromatin organisation). The altered gene 
expression in this regard involves genes such as FAT1 and 
SORBS2, which should be included in further investi-
gations as both genes have been shown to play a role in 
skeletal muscle [60, 116, 118].

Stakeholders should prioritize collaboration and 
commitment of resources in order to develop an all-
encompassing FSHD model that includes most muscle 
phenotypes in a single animal [4]. However, attempts 
to model FSHD in animal models are difficult since 
the pathophysiological mechanisms of DUX4 expres-
sion are not fully understood. No model has yet been 
able to encompass all the characteristic effects of DUX4 
expression regarding differently affected muscle parts, 
extramuscular manifestations, right-left asymmetry, or 
gender-specific effects. Therefore, it might be useful to 
analyse and use comparable parameters within different 
organisms (see “Animal models”). Neverthlesss, differ-
ences in animal models are currently inevitable especially 
given that FSHD is a disease for which non-primate ani-
mal models remain imperfect.

Recently a Cas13/CRISPR mediated DUX4 mRNA 
silencing method has been developed which targets 
RNA (not DNA) and  can be specifically directed to a 
RNA transcript of interest utilizing a sequence-specific 
guide RNA [213]. This, in combination with the strate-
gies illustrated in this review, seems to be a promising 
approach especially as it makes Cas13 a potentially sig-
nificant therapy for influencing gene expression without 
altering genome sequence. Additional in vivo studies are 
underway regarding the capabilities of the AAV-delivered 
CRISPR/Cas13 system. The results of this method may be 
an exciting field for future investigations.
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