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When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI)
electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional
classificationmethod based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks.
First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to
extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and
discrete wavelet transform (DWT). &e extracted features were fused for a further feature elimination. &en, the features were
selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA),
and extreme trees (ET).&e selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve
subjects’ EEG data from InnerMongolia University of Technology (IMUTdata), the 2nd BCI competition in 2003, and the 4th BCI
competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. &e results show that the
classification accuracy using themultidimensional fused feature extraction (AR+CSP+DWT) is 3%–20% higher than those using
the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model
method, outperforms RFE and PCA by 1%–9% in term of classification accuracies, when these three methods were applied to the
procedure of feature extraction, respectively.

1. Introduction

As a new method of human-computer interaction, brain-
computer interface (BCI) no longer relies on the output
pathways of conventional peripheral cerebral nerve and
muscle systems but directly uses peripheral auxiliary devices
such as sensors, amplifiers, and computers to collect and
analyze electroencephalogram (EEG) signals [1, 2]. &us, the
action intentions contained in brains can be extracted and
deciphered for the purpose of information interaction be-
tween brains and the outside world [3]. Motor imagery (MI),
as a typical BCI, refers to the act of imagining a specific
action but not actually performing that action, and has

received widespread attention in fields such as neuroscience
and artificial intelligence [4, 5].

&e EEG signals of different MI tasks are usually ac-
companied by different sensory-motor rhythm (SMR), i.e.,
increased and decreased power in specific frequency bands
in various brain regions, and mathematical feature vectors
can be extracted from the SMR using a feature extraction
algorithm and fed into a classifier for classification [6, 7].
&e classical feature extraction method on the time domain
is the autoregressive (AR). Wang and Chen used a hier-
archical vector AR [8], and Liu et al. proposed a feature
extraction method based on the combination of phase
synchronization and AR model coefficients [9]. &ese two
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feature extraction methods mainly focused on the feature
extractions in the time domain and obtained a satisfactory
classification accuracy for the investigated MI tasks [8, 9].
&e typical feature extraction method in the time-frequency
domain is the wavelet transform (WT).WTcan characterize
EEG signals in both time and frequency domains and de-
compose these EEG signals into multiple frequency bands
to reveal different time-frequency features. Nevertheless,
WT relies heavily on a priori knowledge to extract the
frequency bands of interest [10]. &is fact limits the ap-
plication scope of WT. In another aspect, the common
spatial pattern (CSP) extracts the features reflecting the
different power distributions in the spatial domain for
different MI tasks. Later, researchers combined CSP with
other optimization algorithms or classification methods to
improve its performance in classification accuracy. For
example, Feng et al. proposed a new correlation-based time
window selection (CTWS) algorithm [11]. &e algorithm
used correlation analysis to select an optimal reference
signal and the starting point of time windows for each class,
so that the average classification accuracy of MI-based BCI
was substantially improved in combination with the tra-
ditional CSP. Bao Liu et al. proposed a PSO-CSP-SVM that
was applied to MI feature extraction [12]. Gu et al. com-
bined CSP with a convolutional neural network (CNN) to
extract high-level characteristics of original data [13]. Pei
et al. considered that the CSP algorithm usually cannot
extract adequate frequency band features [14]. To overcome
this shortcoming of the CSP, the paper proposed a tensor-
based frequency feature combination (TFFC) method to
construct a new feature set by fusing broadband features
with narrowband features. &us, the dependence on a
classifier can be reduced and the adaptiveness of the features
can be increased.

Each of the aforementioned methods has its own ad-
vantages, but they also have limitations when they are ap-
plied to further improve the classification accuracy of MI
tasks in fact. &ese methods only consider some partial
aspects of features underlying MI EEG signals and cannot
fully reflect data characteristics and network information
flows. &is paper proposes a fused multidimensional clas-
sification method based on extreme tree feature selection
(FMCM-ETFS) in classifying motor imagery (MI) EEG
signals. &e specific process is as follows: First, the EEG
signals are filtered by a Butterworth filter to obtain a purified
EEG signal. Second, AR, CSP, and DWT are used to extract
the AR model coefficients, the variance and mean after CSP
filtering, and the wavelet coefficients. &ese three methods
can effectively extract time, frequency, and spatial domain
features of EEG signals together to meet the signal di-
mensional diversity and yield more comprehensive infor-
mation. &erefore, the three sorts of features were fused to
obtain an augmented feature vector including all features.
&en, the complexity of the classifier models is further
decreased by three feature selection methods according to
the support vector machine (SVM) classifier. &e three
methods are recursive feature elimination (RFE), principal
component analysis method (PCA), and extreme tree (ET).
Finally, a total of twelve subjects’ EEG data from Inner

Mongolia University of Technology (IMUT data), the 2nd
BCI competition in 2003 [15], and the 4th BCI competition
in 2008 [16] are applied to validate the effectiveness of the
proposed FMCM-ETFS. &e experimental results show that
the FMCM combined with ET obtained 1%–9% higher
accuracy than the FMCM combined with RFE or PCA on
average.

2. Feature Extraction Methods

2.1. ARModel. &e AR model is a fundamental technique in
time-series analysis and is widely used in BCI data pro-
cessing [17]. &e definition of the AR model is as follows: if
there is a time series y(t); t � 1, 2, . . . , n  consisting of n
sample points at an equal time period, the time series can be
regressed (or predicted) on its values at multiple previous
moments, using the following formula:

y(t) � − 

p

i�1
aiy(t − i) + e(t), (1)

where e(t) is a white noise series with mean 0, p is the order
of the AR model, and ai are the coefficients of the AR model
[18].

2.2. CSP. &e CSP algorithm is a spatial domain filtering
and feature extraction algorithm for two categories tasks,
capable of extracting the spatially distributed characteris-
tics of each class frommulti-channel EEG signals. &e basic
principle of CSP algorithm is to find a set of optimal spatial
filters for yielding a projection. &is projection uses
matrix diagonalization to maximize the difference
between the variances of the two categorical signals,
thus obtaining feature vectors with a high degree of
discrimination [19].

&e experimentally measured EEG data is represented as
an M × N matrix X, where M is the number of channels and
N is the number of sampling points per channel [20]. Using
R1 and R2 to denote the normalized covariance matrices of
the left-handed motion imagery and the right-handed
motion imagery. &en, a normalized covariance matrix of
EEG data is as follows:

R1 �
X1X1

T

traceX1X1
T
,

R2 �
X2X2

T

traceX2X2
T
.

(2)

Respectively, the mixed-space covariance matrix can be
represented as follows:

Rm � R1 + R2. (3)

An eigenvalue decomposition is carried out according to
the mixed space covariance matrix by the following
equation(4):

Rm � UλU
T
, (4)
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where matrix λ is the diagonal matrix with the eigenvalues of
Rm andU is the corresponding eigenvector matrix of λ.&us,
the whitened matrix P of Rm is derived as follows:

P �

���

λ− 1


U
T
. (5)

&en, two transformations of R1 and R2 is performed as
follows :

S1 � PR1P
T
,

S2 � PR2P
T
.

(6)

After principal component decompositions of S1 and S2,
it can be proved that the eigenvector matrices of S1 and S2 are
equal, and the sum of λ1 and λ2 is the identity matrix. &us,
the spatial filter W is constructed as follows:

W � B
T
P, (7)

where B is the eigenvector matrix of S1 and S2.

2.3. DWT. WT is a transform analysis method, inheriting
and developing the idea of localization in a short-time
Fourier transform. As an ideal tool for the time-frequency
analysis of signals, WT overcomes the shortcoming that the
time-frequency window is fixed and cannot be adjusted with
frequency [21]. &e continuous wavelet transform (CWT) is
defined as follows:

Wx(a, b) � |a|
− 1/2

 x(t)ψ
t − b

a
 dt �〈x(t),ψa,b(t)〉, (8)

where ψa,b(t) � |a|− 1/2ψ(t − b/a) is a wavelet function. &e
parameter a is the scaling factor of the wavelet function, and
b is the translation parameter of the wavelet function. &e
two parameters adjust the frequency scale and the time scale,
respectively. &e subsequent wavelet transforms of the same
signal can vary for different mother wavelets. &e discrete
wavelet transform (DWT) requires the discretization of
CWT:

Wx(j,r) � 2−j/2
x(t)ψ 2−j

t − r dt �〈x(t),ψj,r(t)〉, (9)

where Ψj,r(t) � 2− j/2Ψ(2− jt − r) is called a dyadic wavelet.

3. Feature Selection Methods

3.1. Recursive Feature Elimination. RFE works by searching
a subset of features starting from all features of the training
data and successfully removing features until a desired
number of features are retained in performing classifications
by SVM [22].&is is achieved by fitting a givenmathematical
model, ranking the features by their importance, discarding
unimportant features, and refitting the model recursively.
&is process is repeated until a specific number of features
are retained [23]. &e description of the RFE algorithm is
described as follows:

(1) &e training samples are
x � x1, x2, . . . , xk, . . . , xn 

T. &e class labels are

y � y1, y2, . . . , yk, . . . , yn 
T. External estimators

are selected as the basis of constructing an SVM.
(2) &e estimators are trained using the squared weight

coefficients w2 as the feature importance criterion.
&e formula for the weight vector is as follows:

w � 
k

αkykxk, (10)

where αk is the Lagrange multiplier.
(3) &e feature weight values are ranked and the features

with the smallest contribution are removed, one
feature at a time.

(4) Steps 2 and 3 are repeated until the number of
features reaches a specified threshold.

3.2. Principal Component Analysis. &e main purpose of
PCA is to explain most of the variation in the original data
with fewer variables by transforming many highly correlated
variables into variables that are uncorrelated with each other
[24]. Usually, a few new variables, called principal com-
ponents, are selected to explain most of the variation in the
data instead of using all the original variables. PCA attempts
to reduce the dimensionality of the original variable space,
simultaneously losing less information as possible. &e
detailed procedure of PCA was surveyed in [25].

3.3. Tree-Based Model. As a sort of embedded feature fil-
tering algorithm, tree-based model algorithms are based on
machine learning theory to analyze the importance of fea-
tures, so the most important feature can be preserved and
selected. Random forests (RF) and extreme trees (ET) are
two sorts of typical tree-based model algorithms.

RF is an integrated learning method based on bagging
method, and the advantage of this integrated algorithm is
that each decision tree is constructed by random variables
[26]. &e randomness of RF lies in: sample randomization,
feature randomization, parameter randomization, and
model randomization. ET is a variant of the RF algorithm
with a different stochastic process [27]. ET uses all training
samples as training samples to build each decision tree, and
randomly draws segmentation rules on each node to select
the optimal segmentation rules by scores [26]. &erefore,
another characteristic of randomness, i.e., split randomness,
is introduced. &is spilt randomness greatly enhances the
independence between each decision tree, thus, it improves
the training speed and generalization ability of the classifiers.
ET algorithm is described as follows:

(1) All original D training samples are selected as
training data input.

(2) A decision tree is constructed from m features
f1, f2, . . . , fm  randomly selected from the whole
M features without replacement. In general, m is
smaller than or equal to M.

(3) &e division values d1, d2, . . . , dm  are randomly
selected between their maximum and minimum
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values for each of these m features sequentially, and
the optimal split value dj(j � 1, 2, . . . , m) is selected
by a particular normalization of the information
gain. &e formula for the particular normalization of
the information gain is as follows:

ScoreC(d, D) �
2I

d
C(D)

Hd(D) + HC(D)
, (11)

whereHC(D) is the (log) entropy of the classification
in D, Hd(D) is the split entropy, and Id

C(D) is the
mutual information of the split outcome and the
classification [27].

(4) Steps 2 and 3 are repeated until the multiple decision
trees are constructed to obtain an extreme forest.

4. Algorithm Structure of FMCM-ETFS

4.1. Overview of FMCM-ETFS Algorithm Structure. &e
proposed FMCM-ETFS includes two procedures: 1. &e
experiment procedure collecting MI EEG dataset from
IMUT (6 subjects) or the direct use of dataset III from the
2nd BCI competition 2003 (1 subject) and dataset 2b from
the 4th BCI competition 2008 (5 subjects); 2. &e data
processing procedure consisting of data processing, feature
extraction, feature selection, and pattern classification. A
scheme of FMCM-ETFS is shown in Figure 1. For the data

preprocessing, the collected EEG signals are band-pass fil-
tered by a Butterworth filter since most of the response
frequency band of MI EEG signal is 8–30Hz. &erefore, the
passband frequency of the filter is set at 8–30Hz. At the same
time, the order of the filter is set at 4. For the feature ex-
traction, three methods: AR, CSP, and DWT, are used to
obtain the features of EEG signals both in the time-fre-
quency domain and the spatial domain. &en, all the
extracted features are fused to obtain a whole feature vector.
In the subsequent feature extraction, the fused features are
selected by three methods: RFE, PCA, and ET to obtain the
optimal subset of features and eliminate irrelevant and re-
dundant features. Finally, the screened features are classified
by a SVM, and the performance of the three feature selection
methods is compared in terms of classification accuracy.

4.2. Feature Fusion Method. MI EEG signals always include
complex and diverse information from various brain
regions. However, extracting features from one dimension
alone does not reflect this comprehensive information.
&erefore, this paper uses a feature fusion algorithm to
obtain fused features in time, frequency, and spatial do-
mains, which represent three-dimensional characteristics of
brain networks. First, the coefficients of the AR model are
extracted by the AR algorithm to construct a feature vector,
so the time-domain features of the EEG signals can be
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obtained initially. Second, the spatial domain features of the
EEG signals are obtained by CSP with the variance of each
channel as the feature vector. Finally, the time-frequency
domain features of the EEG signals were extracted by DWT
using Daubechies class db4 wavelets for 3-layer decompo-
sition, and the mean value of the squared coefficients in layer
3 of each channel was used as the feature vector.

4.3. Feature Selection Method. &e fused features usually
have some irrelevant and redundant features while the in-
formation content accumulates.&is makes the classification
model too complex and overfitted, which causes the pre-
diction accuracy to decrease. To address this difficulty, this

paper adopts three feature selection algorithms: RFE, PCA,
and ET, to screen the fused features and reduce the di-
mensionality of the features while ensuring the necessary
information content of the features is preserved.

REF uses a support vector regression (SVR) model to
train the EEG data and removes one feature at a time, which
is based on the weight coefficients in the models, until 20
features are left. In PCA, the number of principal compo-
nents is set at 20, and then dimensionality reduction on the
fused features is performed subsequently. &e last applied
approach is ET, which is a sort of tree-based model algo-
rithm. &e performance of ETdepends on the adjustment of
three parameters, i.e.m, nmin, and R.&e notationm denotes

Table 1: &e statistics of experimental datasets from IMUT and BCI competitions (Graz University of Technology).

Dataset Experimental dataset Public datasets
IMUT data III BCI 2003 2b BCI 2008

Number of subjects 6 1 5
Number of channels 3 3 3
Number of experiments (times/person) 80 280 240

Table 2: Classification accuracy for IMUT data using different feature extraction methods.

Dataset
Experimental dataset

IMUT data
a b c d e f

AR+ SVM 0.660 0.641 0.575 0.486 0.720 0.721
CSP + SVM 0.638 0.567 0.656 0.569 0.511 0.778
DWT+SVM 0.558 0.630 0.498 0.518 0.650 0.780
CSP +DWT+SVM 0.613 0.763 0.825 0.613 0.625 0.800
AR+DWT+SVM 0.725 0.800 0.513 0.600 0.825 0.838
AR+CSP+ SVM 0.675 0.850 0.788 0.525 0.813 0.875
AR+CSP+DWT+SVM 0.700 0.837 0.812 0.600 0.825 0.875

Table 3: Classification accuracy for datasets III BCI 2003 and 2b BCI 2008 using different feature extraction methods.

Dataset
Public datasets

III BCI 2003 2b BCI 2008
aa bb cc dd ee ff

AR+ SVM 0.622 0.416 0.397 0.649 0.551 0.596
CSP + SVM 0.420 0.493 0.580 0.786 0.541 0.622
DWT+SVM 0.451 0.573 0.668 0.742 0.657 0.585
DWT+CSP+ SVM 0.693 0.659 0.775 0.808 0.617 0.658
AR+DWT+SVM 0.636 0.725 0.667 0.792 0.758 0.700
AR+CSP+ SVM 0.650 0.783 0.633 0.808 0.683 0.675
AR+CSP+DWT+SVM 0.650 0.725 0.742 0.817 0.733 0.675

Table 4: Classification accuracy for IMUT data of using different
feature selection methods.

Dataset
Experimental dataset

IMUT data
a b c d e f

RFE+ SVM 0.700 0.850 0.775 0.600 0.825 0.875
PCA+ SVM 0.700 0.837 0.825 0.600 0.825 0.875
ET+ SVM 0.737 0.862 0.862 0.625 0.850 0.887

Table 5: Classification accuracy for datasets III BCI 2003 and 2b
BCI 2008 using different feature selection methods.

Dataset
Public datasets

III BCI 2003 2b BCI 2008
aa bb cc dd ee ff

RFE+ SVM 0.650 0.750 0.742 0.833 0.675 0.708
PCA+ SVM 0.664 0.725 0.742 0.808 0.733 0.675
ET+ SVM 0.692 0.783 0.775 0.850 0.750 0.717
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the total number of randomly selected features for each
node, which is usually set to

��
M

√
. &e notation M denotes

the total number of features. &is default setting has proven
to be the optimal way to solve various problems [27]. &e
notation nmin represents the minimum sample size for the
splitting nodes. Smaller values of nmin result in deeper
forests, and in this paper nmin � 2 is used as a default value. R
denotes the number of trees. In practice, the larger the value
of R is, the higher the accuracy can be arrived [24]. However,
a large tree number usually causes the algorithm difficult to
converge. In this paper, R is at 10. Finally, the classification
accuracies of the three feature elimination methods are
compared to determine the choice of elimination methods.

4.4. Classification Algorithm. &ere are four kernel func-
tions, for examples, linear kernel, polynomial kernel,

Sigmoid kernel, and radial basis kernel, commonly used to
construct different classifiers in SVM methods [28]. In this
paper, the following linear kernel function is used:

k xi, xj  � xi · xj, (12)

where xi and xj denote the i-th and j-th samples, respec-
tively. For the SVM classifier, the error penalty factor C is a
major parameter that affects the performance of the SVM
classifier. &e parameter is determined by a grid search and
validated by a 10-fold cross-validation.

5. Experiment

5.1. Experimental Data Set. &e dataset used in this paper
comes from three sources: 1. MI EEG dataset III in 2003 BCI
competition fromGraz University of Technology; 2. MI EEG
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Figure 3:&e comparison of classification accuracies with feature selection and without any feature selections for IMUTdata. (a) Before and
after RFE; (b) before and after PCA; (c) before and after ET.
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dataset 2b in 2008 BCI competition from Graz University of
Technology; 3. EEG dataset from Inner Mongolia University
of Technology (IMUT data) recoded by a 32-channel EEG
acquisition device from Brain Products (BP) Inc., Germany.

&e 2003 BCI competition dataset III contains 7 sets of
experiments with 40 trials for each set of experiments, totally
yielding 280 trials of MI data. &e EEG acquisition device
consisted of a G.tec amplifier and Ag/AgCl electrodes to
acquire EEG data with a sampling frequency of 128Hz, and
the EEG data of 3 channels namely C3, C4, and Cz were
recorded.&e experimental data were divided into two parts,
i.e., the training set and the testing set, each of which in-
cluded 140 trials of experiments (70 experiments for left-
handed MI and 70 experiments for right-handed MI).

&e 2008 BCI competition dataset 2b contains 6 runs
with ten trials per run. Each subject participated in two

screening sessions without feedback, recorded on two dif-
ferent days within two weeks. &is resulted in 20 trials per
run and 120 trials per session. Data of 240 repetitions of each
MI class were available for each subject in total. An EEG
acquisition device acquires the EEG data with a sampling
frequency of 250Hz, and the EEG data of 3 channels C3, C4,
and Cz were recorded.

&e data from IMUT were collected using a 32-channel
EEG acquisition device from BP Inc. at a sampling frequency
of 500Hz. &e subjects include six males around 25 years of
age, and the experiments were conducted in a quiet envi-
ronment. &e experimental timing diagram is shown in
Figure 2. At the beginning of the experiment (t� 0 s), the
screen was black and the subject remained at rest; two
seconds later, the screen appeared a “+”cross, prompting the
subject to get ready; one second later, the screen appeared a
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Figure 4: &e comparison of classification accuracies with feature selection and without any feature selections for datasets III BCI 2003 and
2b BCI 2008. (a) Before and after RFE; (b) before and after PCA; (c) before and after ET.
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left or right arrow lasting 6 s prompting the subject to start
MI of the left or right hand. A total of 80 experiments were
performed for each set of experimental data, including 40
left-handed MI experiments and 40 right-handed MI ex-
periments. &e details of the data are shown in Table 1.

5.2. Experimental Results. Table 2 provides a comparison of
the classification accuracies between using AR features, CSP
features, DWT features, and AR+CSP+DWT features,
which reflect the multidimensional fused features for the
laboratory-collected IMUT data. &e accuracy of using
AR+CSP+DWT features is on average 14.1% higher than
that of using AR features, 15.5% higher than that of using
CSP features, and 16.9% higher than that of using DWT
features. &e datasets III BCI 2003 and 2b BCI 2008 also
validates a similar trend that the average classification ac-
curacy using AR+CSP+DWT features is higher than the
average classification accuracy using a single category of
features.&e results for the two public datasets are presented
in Table 3. &e accuracy of using AR+CSP+DWT features
is on average 18.5% higher than that of using AR features,
15% higher than that of using CSP features, and 11.1%
higher than that of using DWTfeatures. We have deleted the
feature categories one by one in the sequence of AR, CSP,
and DWT. For IMUT data, the average classification ac-
curacies are as follows: 0.707 for CSP+DWT+SVM, 0.717
for AR+DWT+SVM, and 0.754 for AR+CSP+ SVM (see
Table 2). Compared to AR+CSP+DWT+SVM,
CSP+DWT+SVM shows a decrease of 0.068, which is the
largest decreasemagnitude among the other two decreases of
CSP+DWT+SVM and AR+DWT+SVM. &erefore, the
feature category of AR contributes most to the proposed
AR+CSP+DWT+SVM in terms of classification accuracy.
&e same conclusion can also be obtained for datasets III
BCI 2003 and 2b BCI 2008 (see Table 3).

Table 4 shows a comparison of the classification accu-
racies using three feature selection algorithms (RFE, PCA,
and ET) for the laboratory-collected IMUT data. ET works
better than REF and PCA because the classification accuracy
of ET+ SVM is on average 3.3% (p� 0.0346 <0.05, t-test)
higher than that of RFE+ SVM and 2.68% (p� 8.9771e-4
<0.01, t-test) higher than that of PCA+ SVM. A similar trend
also applied to the datasets III BCI 2003 and 2b BCI 2008.
&e experimental results are demonstrated in Table 5, where
ET+ SVM outperforms 3.5% (p� 0.014 <0.05, t-test) than
RFE+ SVM and 3.65% (p� 0.0014 <0.01, t-test) higher than
PCA+ SVM. &e advantage of feature selections also is
shown in Figures 3 and 4. Figures 3 and 4 show a comparison
of the classification accuracy with and without the feature
selection algorithm under the IMUT data, datasets III BCI
2003 and 2b BCI 2008, respectively. In Figures 3 and 4, the
classification accuracy using the fused features selected by
ET is significantly higher than that using the fused features
without any feature selection. F_feature represents using the
fused features without any selection. RFE_F_feature rep-
resents using the fused features with RFE model selection,
PCA_F_feature represents using the fused features with
PCA selection, and ET_F_feature represents using the fused
features with ET model selection. A similar situation also
happened when using RFE and PCA as feature selection
methods.

To further verify the effectiveness of the proposed
FMCM-ETFS, another feature selection algorithm ReliefF
proposed in the literature [29], was selected to compare with
the ET feature selection method. &e comparison result is
detailed in Figure 5, where the average classification accu-
racy of the ET+ SVM algorithm for IMUT data is 2.43%
(p� 0.0029 <0.01, t-test) higher than that of ReliefF + SVM
algorithm (see Figure 5(a)). &e same trend retains in
datasets III BCI 2003 and 2b BCI 2008, where the average
classification accuracy of the ET+ SVM algorithmwas 2.99%
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Figure 5: Comparison of classification accuracies between ETand ReliefF for IMUTdata, datasets III BCI 2003 and 2b BCI 2008. (a) IMUT
data; (b) datasets III BCI 2003 and 2b BCI 2008.
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(p� 0.0061 <0.01, t-test) higher than that of the
ReliefF + SVM algorithm (see Figure 5(b)).

6. Conclusion

In this paper, we propose a fused multidimensional classi-
fication method based on extreme tree feature selection in
the task of discerning MI EEG. &e fused multidimensional
features include the features extracted by AR, CSP, and
DWTalgorithms that reflect the complex information of MI
EEG signals from various dimensions: time, frequency, and
space domain. Furthermore, to avoid the overfitted model
problem, three feature selection methods, RFE, PCA, and ET
are applied to lower the complexity of the machine learning
models. &e experiment results for the datasets from IMUT
and Graz University show that the accuracy of using
AR+CSP+DWT features is 3%–23% higher than that of
using the single-dimensional features and ET has 3%–4%
higher accuracy than the other two feature selection algo-
rithms. &is result of the study convergingly verifies that a
fused multidimensional classification method based on
extreme tree feature selection (FMCM-ETFS) can signifi-
cantly improve the performance of the MI EEG classifiers.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

&e authors declare that there are no conflicts of interest.

Acknowledgments

&is work was supported by the National Natural Science
Foundation of China (61364018 and 61863029), Inner
Mongolia Natural Science Foundation (2016JQ07,
2020MS06020, and 2021MS06017), Inner Mongolia Scien-
tific and Technological Achievements Transformation
Project (CGZH2018129), and Science and Technology Plan
Project of the Inner Mongolia Autonomous Region (Key
Technology Project).

References

[1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks et al., “Brain-
computer interface technology: a review of the first inter-
national meeting,” IEEE Transactions on Rehabilitation En-
gineering, vol. 8, no. 2, pp. 164–173, 2000.

[2] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer
interfaces, a review,” Sensors, vol. 12, no. 2, pp. 1211–1279,
2012.

[3] J. R. Millán and J. Carmena, “Invasive or noninvasive: un-
derstanding brain-machine interface technology,” IEEE En-
gineering in Medicine and Biology Magazine, vol. 29,
pp. 16–22, 2010.

[4] M. Radman, A. Chaibakhsh, N. Nariman-zadeh, and H He,
“Feature fusion for improving performance of motor imagery
brain-computer interface system,” Biomedical Signal Pro-
cessing and Control, vol. 68, Article ID 102763, 2021.

[5] Y. Wang, Bo Hong, X. Gao, and G. Shangkai, “Imple-
mentation of a brain-computer interface based on three states
of motor imagery,” in Proceedings of the 29th Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 5059–5062, IEEE, Lyon, France, October
2007.

[6] G. Pfurtscheller, “Event-related synchronization (ERS): an
electrophysiological correlate of cortical areas at rest,” Elec-
troencephalography and Clinical Neurophysiology, vol. 83,
no. 1, pp. 62–69, 1992.

[7] J. Li, J. Liang, Q. Zhao, J. Li, K. Hong, and L. Zhang, “Design of
assistive wheelchair system directly steered by human
thoughts,” International Journal of Neural Systems, vol. 23,
no. 3, Article ID 1350013, 2013.

[8] J. Wang and C. Chen, “Multi-channel EEG feature extraction
using hierarchical vector autoregression,” Acta Automatica
Sinica, vol. 42, no. 08, pp. 1215–1226, 2016.

[9] L. Liu, J. Chen, Li Song, and L XU, “Feature extraction of EEG
in motion imagery based on phase synchronization and AR,”
Software guide, vol. 17, no. 03, pp. 7–10, 2018.

[10] N. Yahya, H. Musa, Z. Y. Ong, and I Elamvazuthi, “Classi-
fication of motor functions from electroencephalogram (EEG)
signals based on an integrated method comprised of common
spatial pattern and wavelet transform framework,” Sensors,
vol. 19, no. 22, p. 4878, 2019.

[11] J. Feng, E. Yin, J. Jin et al., “Towards correlation-based time
window selection method for motor imagery BCIs,” Neural
Networks, vol. 102, pp. 87–95, 2018.

[12] B. Liu, M. Cai, Y. Bo, and X. Zhang, “A feature extraction and
classification algorithm based on PSO-CSP-SVM for motor
imagery EEG signals,” Journal of Central South University
(Science and Technology), vol. 51, no. 10, pp. 2855–2866, 2020.

[13] X. Gu, Z. Wei, H. Liu, and P. Shen, “EEG signal classification
based on typical spatial pattern and convolutional neural
network,” Laser Journal, vol. 42, no. 04, pp. 100–104, 2021.

[14] Yu Pei, Z. Luo, H. Zhao et al., “A tensor-based frequency
features combination method for brain–computer interfaces,”
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 30, pp. 465–475, 2022.

[15] L. Wu, H. Lu, and N. Gao, “&e comparison of EEG feature
extraction of motor imagery between CSP algorithm and
wavelet packet analysis,” Journal of Biomedical Engineering
Research, vol. 36, no. 3, pp. 224–228, 2017.

[16] R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, and
G Pfurtscheller, “Brain–computer communication: motiva-
tion, aim, and impact of exploring a virtual apartment,” IEEE
Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 15, no. 4, pp. 473–482, 2007.

[17] E. Maiorana, D. La Rocca, and P. Campisi, “On the perma-
nence of EEG signals for biometric recognition,” IEEE
Transactions on Information Forensics and Security, vol. 11,
no. 1, pp. 163–175, 2016.

[18] S. Ma, C. Dong, T. Jia, X. Zhiyun, C. Xiaoyan, and L. Zhang,
“A feature extraction algorithm of brain network of motor
imagination based on a directed transfer function,” Compu-
tational Intelligence and Neuroscience, vol. 2022, Article ID
4496992, 2022.

[19] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “De-
signing optimal spatial filters for single-trial EEG classifica-
tion in a movement task,” Clinical Neurophysiology, vol. 110,
no. 5, pp. 787–798, 1999.

[20] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Opti-
mal spatial filtering of single trial EEG during imagined hand

Computational Intelligence and Neuroscience 9



movement,” IEEE Transactions on Rehabilitation Engineering,
vol. 8, no. 4, pp. 441–446, 2000.

[21] S. Ma, C. Dong, T. Jia, and C. Xiaoyan, “Classifying motor-
imagination signals in brain-computer interface based on
feature extraction of parametric AR model,” in Proceedings of
the In 2020 39th Chinese Control Conference (CCC),
pp. 6291–6294, IEEE, Shenyang, China, July 2020.

[22] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene se-
lection for cancer classification using support vector ma-
chines,”Machine Learning, vol. 46, no. 1/3, pp. 389–422, 2002.

[23] S. Liu, J. Meng, J. Yang, X. Zhao, and H. Feng, “Within-
stimulus Emotion Recognition May Inflate the Classification
Accuracies Based on EEG signals,” in Proceedings of the in
2015 IEEE 7th International Conference on Awareness Science
and Technology (iCAST), pp. 115–118, IEEE, Qinhuangdao,
China, September 2015.

[24] J. Lever, M. Krzywinski, and N. Altman, “Points of signifi-
cance: principal component analysis,” Nature Methods,
vol. 14, no. 7, pp. 641-642, 2017.

[25] S. Wold, K. Esbensen, and P. Geladi, “Principal component
analysis,” Chemometrics and Intelligent Laboratory Systems,
vol. 2, no. 1-3, pp. 37–52, 1987.

[26] C. Désir, C. Petitjean, L. Heutte, M. Salaun, and L&iberville,
“Classification of endomicroscopic images of the lung based
on random subwindows and extra-trees,” IEEE Transactions
on Biomedical Engineering, vol. 59, no. 9, pp. 2677–2683, 2012.

[27] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[28] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[29] R. Moein, C. Ali, Z. N. Nariman, and H. Huiguang, “Feature
fusion for improving performance of motor imagery brain-
computer interface system,” Biomedical Signal Processing and
Control, vol. 68, 2021.

10 Computational Intelligence and Neuroscience


