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Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading

to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence

of microscopic residual infiltrating disease remaining after multimodality treatment.

Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant

tumor component that seeds ultimate tumor progression. Despite the key role of

CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks

driving their malignant behavior while simulating an accurate interaction with the tumor

microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor

platforms, such as organoids and 3D bioprinting, has allowed for a better representation

of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these

technologies have enabled a more detailed study of glioma biology, tumor angiogenesis,

treatment resistance, and even performing high-throughput screening assays of drug

susceptibility. First, we will review the foundation of glioma biology and biomechanics of

the TME, and then the most up-to-date insights about the applicability of these new tools

in malignant glioma research.

Keywords: glioma, tumor microenvironment, stem cell, bioprinting, organoids, organ-on-a-chip, tissue

engineering, spheroids

INTRODUCTION

Tumors are complex systems with dynamic and constant regulation of their different components
during initiation, maintenance, and progression. Gliomas, and particularly glioblastomas (GBM),
are some of the most comprehensively characterized cancers, and huge efforts have been done in an
attempt to overcome the therapeutic plateau existing after current standard, and even experimental
therapies. Unfortunately, despite all these efforts, there have not been significant advances in the
way we treat our patients, and the cure is far from our current achievements.

Therefore, there is a need to reconceptualize the process in which GBM biology is
being studied in order to find meaningful therapeutic approaches. In this setting, tumor
microenvironment (TME) is an inevitable masterpiece to consider, as the inherent crosstalk
between this and glioma CSCs is a defining driver of GBM heterogeneity, plasticity, and evolution.
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Three-dimensional (3D) models, derived completely from
patient tissue or incorporating biomaterials, are a new technology
that has risen as a potential tool to better recapitulate TME
dynamics. We aim to briefly summarize pertinent concepts
about glioma biology and the biomechanics of the TME, and
then describe recent advances and potential applications of
this technology.

GLIOMA CANCER STEM CELLS

Glioma cancer stem cells (CSCs) were first described in early
2000s (Uchida et al., 2000; Hemmati et al., 2003; Singh et al., 2003;
Galli et al., 2004) and were required to fulfill defining criteria
of normal stem cells (Uchida et al., 2000; Hemmati et al., 2003;
Singh et al., 2003; Galli et al., 2004). Therefore, glioma CSCs must
be able to self-renew and grow tumors resembling its original
histopathology. Several models have been suggested to explain
CSC maintenance (Figure 1A); however, it is most probably that
the evolutionary model of the CSCs hypothesis, or an even more
holistic understanding, could better serve on this purpose (Chen
et al., 2012).

Additionally, there is a lack of uniformity regarding the
nomenclature of CSCs, which generates confusion and may
redirect the research focus far from the study of CSC biology.
While the term stem cell is used, this does not necessarily
mean that CSCs derive from a distorted canonical stem cell
(Figure 1B). Regardless of the true cellular origin of CSCs, the use
of the term stem cell requires that these cells comply with at least
functional defining criteria such ability to self-renew and generate
different progeny with different hierarchies inside the tumor.

FIGURE 1 | (A) Cancer stem cell hypothesis. This hypothesis suggests that a subset of cancer cells is responsible for tumor initiation and growth, having

characteristics such as self-renewal and chemotherapy and radiotherapy resistance. (A) Traditional or hierarchical model. Suggesting the existence of a specific

cancer cell population with stem-like properties that function as the tumor initiating cells, this population of CSCs would be sufficient to initiate and drive the tumor

growth over time. (B) Clonal evolution model. It is proposed that many clones of CSCs would be functionally equivalent and able to maintain tumor growth; they would

remain under constant genetic pressure that can introduce new characteristics and create new clones. (C) Evolutional or stochastic model. Random genetic or

epigenetic events can transform any cell to a variety of cancer stem cells at any time within the tumor. This will presuppose a hierarchy of CSCs under constant

evolution due to natural selection and genomic instability (Chen et al., 2010). (B) Origin of glioma cancer stem cells. Evidence suggests that neural stem cells,

astrocytes, or oligodendrocyte precursor cells could be the origin of gliomas.

Several enrichment markers of stemness have been suggested
to identify CSCs. BMI1, SOX2, NESTIN, OLIG2, NANOG,
MYC, and IDI1 (inhibitor of differentiation protein 1), among
others, are crucial transcription factors and/or structural proteins
required for normal neural stem and progenitor cell (NSPC)
function. These markers are shared between glioma CSCs and
NSPCs. However, given that conventional methods used for
CSC selection (CSC enrichment), such as flow cytometry, are
limited in the use of intracellular proteins (as the ones stated
above), several surface biomarkers like CD133, CD44, CD15,
L1CAM, A2B5, and integrin α6 have been widely used instead.
Interestingly, some of these surface biomarkers have been related
to glioma cell–microenvironment interactions, which reflect the
relationship between TME and glioma biology.

Glioma CSC Markers and Its Interactions
With the Tumor Microenvironment
CD133 (Prominin-1)
Human neural stem cells were identified for the first time
by Uchida et al. (2000). The group harvested cells from fetal
brain tissue and found that the isolated CD133+ population
was able to fulfill the criteria required to be defined as stem
cells. This finding prompted a scientific hunt for brain tumor
stem cells, and soon after, CD133 was proposed as the first
biomarker for glioma CSCs (Uchida et al., 2000; Hemmati et al.,
2003). However, controversies about CD133 reliability raised
after two independent groups showed that GBM CD133− cells
could also embrace stem cell properties such as self-renewal
and differentiation in vitro and tumor formation in vivo (Beier
et al., 2007; Joo et al., 2008; Wang et al., 2008; Wei et al.,
2013). Furthermore, CD133− population would tend to grow as
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adherent tumorspheres under conventional in vitro conditions
and was proven able to give rise to cultures containing CD133+

glioma cells in vitro and in vivo (Wang et al., 2008; Chen et al.,
2010). Overall, it was clear that glioma CSCs could also present
as a CD133− population.

CD133, also known as prominin 1, is a cell surface
glycoprotein with five transmembrane domains. Given its
superficial location, detection of CD133 may vary depending
on several factors such as cell–microenvironment interactions
and epigenetic influences. Careful analysis of its informational
value is recommended as immediate cell–extracellular matrix
(ECM) disassociation, extended in vitro culture, and/or equivocal
epitope recognition may give rise to false-negative results
(Clément et al., 2009; Osmond et al., 2010; Campos et al., 2011).

Although a definitive role for CD133 on glioma CSCs
remains elusive, it is clear that the expression of CD133 may
vary according to several interactions with the TME. For
instance, changes in ECM composition (Logun et al., 2019)
or decreased oxygen tension on the TME is related to higher
CD133 expression (Platet et al., 2007; Soeda et al., 2009; Musah-
Eroje and Watson, 2019) and faster expansion and retained
undifferentiation in CD133+ gliomas cells. In the opposite
direction, CD133 can lead to activation of PI3K/Akt signaling
pathway leading to increased self-renewal and tumor formation
(Wei et al., 2013), as well as interleukin 1β signaling-mediated
downstream regulation of the TME through increased neutrophil
recruitment (Lee et al., 2017).

CD44 (Hyaluronic Acid Receptor)
CD44 is a cell membrane glycoprotein that binds extracellular
ligands present in the ECM, such as hyaluronic acid (HA) and
osteopontin. These interactions promote cell motility toward
ECM through the mechanotransduction involving CD44 linkage
to cytoskeletal components (Tsukita et al., 1994).

As CD133− glioma population was found to display stem
cell–like properties, other markers of stemness were sought.
The role of CD44 as a surface marker of glioma CSCs has
been described by several authors (Tsukita et al., 1994; Anido
et al., 2010; Xu et al., 2010); interestingly, CD44 would be the
most common shared marked of stemness among CSCs derived
from different malignancies (Mooney et al., 2016). CD44 has
been associated with GBM aggressiveness through increased
invasion and migration (upon binding with HA) (Radotra and
McCormick, 1997; Brown et al., 2015), increased proliferation
(Monaghan et al., 2000; Feng et al., 2014), and enhanced
chemoresistance (Xu et al., 2010).

CD15 (SSEA-1)
CD15, also known as Lewis X or SSEA-1 (stage-specific
embryonic antigen 1) is a cell surface carbohydrate antigen. CD15
was first suggested as a marker for glioma CSCs in 2009. Son
et al. (2009) found that, in GBM, CD15+ cells possess a 100-fold
tumorigenic potential when compared to CD15− population.
Furthermore, all CD15+ cells were also positive for CD133,
whereas most of the CD133+ cells were CD15+ as well.

L1CAM
The neural cell adhesion/recognition L1 molecule (L1CAM
or CD171) is a type 1 transmembrane glycoprotein of the
immunoglobulin superfamily; this protein is normally found
during central nervous system (CNS) development. In 2008,
Bao et al. (2008) reported that L1CAM supported glioma
CSC survival and clonogenicity in CD133+ cells through the
regulation of Olig2 and the tumor suppressor p21. Furthermore,
L1CAM function in GBM cell migration was determined by
the same group; ADAM10 would cleavage L1CAM ectodomain,
which then would activate EGFR and integrins (FAK-mediated
process) to promote glioma CSCmigration (Bao et al., 2008; Yang
et al., 2011).

A2B5
A2B5 is a cell surface ganglioside present in glial precursor
cells. Ogden et al. (2008) found that this epitope was also
present in a sizable population of glioma-initiating cells; even
more, most of the CD133+ cells were contained in the
A2B5+ population. The authors were able to show that A2B5
renders stem cell properties even in CD133− population (Ogden
et al., 2008). Similar results were also presented by other
authors (Tchoghandjian et al., 2010). Sun et al. (2015) showed
that CD133−/A2B5+ population possesses great migratory
and invasive potential and hypothesized that this could be
characterizing the infiltrative cells of the invasive tumor front
leading GBM posttreatment recurrence.

ROLE OF TUMOR MICROENVIRONMENT
IN GLIOMA BIOLOGY

TME is a crucial teamster of CSC heterogeneity, plasticity, and
evolution (Charles et al., 2010). However, CSCs can reciprocally
regulate the microenvironment. Glioma CSCs not only secure
self-renewal (Man et al., 2014), malignant proliferation (Fan et al.,
2010), and segregation into different tumor cells, but also interact
in a multidirectional way with different tumor components
such as the ECM, the cellular compartment (cancer-associated
fibroblast, immune cells, differentiated neural cells, etc.), and
even the blood–brain barrier (BBB) through tumor-derived
pericytes in order to establish a favorable niche able to support
further malignization and treatment resistance (Cheng et al.,
2013). In this section, we will review this reciprocal crosstalk and
its implications in glioma treatment behavior and resistance.

Components of Glioma TME
Extracellular Matrix
The ECM constitutes the non-cellular compartment of the TME.
This is a 3D molecular network built with water, proteins, and
polysaccharides (Frantz et al., 2010). The specific composition of
each ECM is driven by a real-time biochemical and biophysical
feedback between cells and their surrounding microenvironment
(Gattazzo et al., 2014). CSCs are in constant interaction with
the ECM via several multifunctional transductors as we reviewed
above (CD133, CD44, L1CAM, integrin α6, and others). CSCs are
able to give rise to more differentiated cells that can later regulate
the production of extracellular components in order to promote
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tumor niche homeostasis. It is noteworthy that abnormal
ECM remodeling affects endothelial and immune cells, tumor
angiogenesis, and drug penetration, thus influencing tumor
aggressiveness and progression. Several ECM components, such
as integrins, laminins, and cadherins, among others, have been
linked to treatment response and patient survival (Figure 3)
(Ljubimova et al., 2004; Lathia et al., 2012).

Laminins are a family of extracellular T-shaped heterotrimeric
glycoproteins consisting of one α, one β, and one γ chain. In
vertebrates, different genes codifying for five α, three β, and
three γ chain exist. Although 45 combinations are possible, only
18 isoforms have been identified up to date (Laminin isoforms
8 and 9 are some of them). Laminins are usually located on
basement membranes, a kind of “ECM residing in the outer
layer of the blood vessels,” from where they can interact with
other ECM molecules or cell receptors. Laminin location is
usually α chain–specific, i.e., CNS tissue use to home α2 and α4
laminins (laminins containing an α2 or α4 chain, respectively).
They can trigger downstream signaling for different biological
processes including migration, adhesion, proliferation, and
survival (Durbeej, 2010). In GBM, aberrant overexpression of α4
laminins has been described, and a positive correlation between
their expression and tumor grade has been described (Sun et al.,
2019). Particularly, laminin isoform 8 (α4β1γ1, or laminin 411

according to the new nomenclature) appeared overexpressed
on GBM blood vessels and surrounding healthy tissue and was
linked to higher recurrence and shorter survival (Ljubimova
et al., 2001; Lathia et al., 2012). Furthermore, inhibition of
laminin isoform 8 through CRISPR/Cas9 techniques has proven
to suppress Notch pathway, rendering decreased intracranial
tumor growth and longer survival in a glioma animal model (Sun
et al., 2019). Lathia et al. (2012) showed that α2 laminins provided
by perivascular non-CSCs and endothelial cells (ECs) were
critical for GBM CSC maintenance and proliferation, promoting
glioma CSC radioresistance through enhancing DNA repair. The
use of laminin during routine in vitro culture of adherent glioma
CSCs supports the importance of ECM proteins on glioma CSC
biology. Overall, these observations highlight the role of the ECM
on glioma treatment response.

Cadherins are surface glycoproteins involved in calcium-
dependent cell–cell adhesion. The role of cadherins in glioma
progression is not well-understood yet. However, the interaction
between CSCs and other cellular components of the TME, such
as those forming the white matter tracts that glioma cells used
to migrate through or ECs from the BBB, has recently acquired
great relevance (Drumm et al., 2019). Although previous studies
reported differing results regarding the concentration level of
cadherins and glioma cell invasion capacity, it was finally clear
that rather than the concentration of cadherins available, the
most important factor determining migration and invasiveness
in GBM cell lines was the instability and disorganization of
cadherin-mediated junctions (Barami et al., 2006). Cadherin E
is common in epithelial cancers where, at some point along their
evolution, cadherins undergo a process called switching. Despite
its rarity within the CNS, cadherin E has been found in some
GBM tumors. Here, contrary to epithelial tissues, high levels
of cadherin E have been associated with aggressive invasiveness

(Lewis-Tuffin et al., 2010). Cadherin 11 has been associated
with increased migration and proliferation in different cancers.
In GBM, cadherin 11 seems to support migration and survival
in vitro and in vivo. Cadherin 11 also serves as a marker of
mesenchymal phenotype, GBM subtype that is associated with
worse prognosis (Kaur et al., 2012).

Integrins are heterodimeric transmembrane glycoproteins
important in cell migration and cell adhesion. Although they
are not a component of the ECM, they are key mediators
of the interaction between different cellular components and
the ECM. For this purpose, integrins function as receptors of
laminins and fibronectins. In GBM, integrins are key in many
complex processes, such as angiogenesis, tumor invasion, and
proliferation (Nakada et al., 2013; Tilghman et al., 2016). The
laminin-specific receptor, integrin α6β1, is highly expressed on
perivascular glioma CSCs and is critical for their self-renewal
and tumor formation capacity (Lathia et al., 2010). Integrin
α6β1is also present in ECs from the perivascular glioma niche;
upon laminin-binding, it has been shown to inhibit proapoptotic
signals mediated by TNFR1, through NF-κB, by increasing cFLIP
and XIAP, and promote EC growth (Figure 2) (Huang et al.,
2012). Integrin α6 has also been reported as an enrichment CSC
marker in GBM (Lathia et al., 2010). The invasive behavior of
GBM CSCs seems to be mediated by another integrin. Integrin
α3 was found overexpressed on glioma CSCs, especially in those
leaving the tumor bulk and in those around the perivascular
niche. Higher expression of integrin α3 correlated with increased
migration and invasion via ERK1/2 signaling (Nakada et al.,
2013). Integrin α5β1 is another integrin found in human GBM
cells and was related to chemoresistance to temozolomide
(Janouskova et al., 2012; Renner et al., 2016). Other integrins have
been also reported to be involved in the crosstalk between CSCs
and ECM (Haas et al., 2017).

Vascular Compartment: Perivascular and Hypoxic

Niches
Similar to neural stem cells located in specific anatomical brain
niches: the subventricular zone (SVZ) and the subgranular layer
inside of dentate gyrus of the hippocampus (SGZ) (Quiñones-
Hinojosa et al., 2006), glioma CSCs are present around the
vascular compartment of the microenvironment. Researchers
have suggested that this would represent a perivascular niche
of glioma CSCs given the presence of CD133+ and NESTIN+

cells surrounding the tumor blood vessels (Calabrese et al., 2007).
This statement was supported by the fact that culturing glioma
CSCs along with ECs increases CSC proliferation in vitro, as
well as by the deleterious effect of anti–vascular endothelial
growth factor (VEGF) therapies on tumor growth (Calabrese
et al., 2007). There is, in fact, an active crosstalk between
the vascular endothelium and glioma CSCs. Bao et al. (2006)
showed that glioma CSCs can secrete VEGF supporting the local
angiogenesis. In turn, EC would produce Notch ligands that
are widely known as a key determinant of CSC maintenance
and proliferation and even would be able to recruit glioma
CSCs and differentiate them into vascular pericytes (Figure 2)
(Zhu et al., 2011; Cheng et al., 2013). As previously discussed,
interactions between α2 laminins from the vascular basement
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FIGURE 2 | Vascular compartment. Glioma CSCs and endothelial cells interaction in the perivascular niche. Brain CSCs are located within a vascular niche

interacting with the surrounded cells. The perivascular niche is critical to maintaining the CSC phenotype. The secretion of growth factor by endothelial, ECM, and

hypoxic conditions preserves stem-like characteristic accelerating tumor growth. Hypoxic glioma niche. Decreased oxygen tension triggers the expression of

HIF-related genes, which in turn increases the production of several factors such as VEGF, decreasing the TH1 CD4+ cells, and increasing T regulatory cells,

macrophage polarization, immunosuppressive profile, and glioma CSC proliferation. Created with BioRender.com.

membrane and the integrin α6β1 present in CSCs surface
are important determinants of glioma CSC proliferation and
migration. However, it is undeniable that CSCs are also present
far from this hypothetical niche. Glioma CSCs from the hypoxic
tumor core, as well as those moving away from the infiltrative
border of the tumor bulk, are crucial for healthy tissue infiltration
and tumor progression.

Hypoxic conditions have proven to facilitate glioma CSC
self-renewal. Hypoxia-inducible factor 1α (HIF-1α) and HIF-
2α as well as carbonic anhydrase IX, support CSC malignant
potential and are correlated with poor patient prognosis (Li
et al., 2009; Mohyeldin et al., 2010; Pistollato et al., 2010;
Proescholdt et al., 2012; Xu et al., 2018). Thus, a hypoxic niche
seems to be another realistic TME with a particular dynamic.
HIF-1 would repress core-derived glioma cell differentiation
through the suppression of Smad activation (Pistollato et al.,
2009a,b), maintaining a higher number of stem cells that
express greater levels of the DNA repair protein MGMT (O6-
methylguanine-DNA-methyltransferase) and consequently turn
to be more radioresistant (Pistollato et al., 2009a, 2010). Also, low
oxygen tension leads vascular ECs within the hypoxic niche to
produce several factors, such as VEGF-A, which confer a more
aggressive behavior to glioma CSCs and polarize immune cells
into an immunosuppressive phenotype, as it is demonstrated by
tumor-associated macrophage (TAM)M2 polarization, increased

regulatory T cells, and higher rates of PD-1+ CD8+ T cells,
leading to treatment resistance to traditional and modern
approaches such as immunotherapy (Escribese et al., 2012;
Tamura et al., 2018, 2019a,b) (Figure 2).

Cellular Compartment
Apart from the ECM, glioma microenvironment contains a
number of cell types as another component of the tumor
dynamics. These cells actively interact with glioma cells and
the ECM (Wang et al., 2018c); they can secrete several factors
triggering different signaling pathways onCSCs, as well asmodify
ECM composition in response to bilateral tumor cell–non-tumor
cell interactions.

Astrocytes play a key role in CNS homeostasis. Astrocytes
present in GBM tumor as well as surrounding brain parenchyma
are thought to modulate disease progression via displacement
and degradation of astrocytic endfeet in the BBB (Watkins et al.,
2014). As glioma cell migration has also been reported to happen
along the vasculature, these cells could impact migration and
invasion. Tumor-associated astrocytes have also been related to
malignant transformation of surrounding healthy tissue, as well
as resistance to chemoradiation (Chen et al., 2015, 2016; Wang
et al., 2018c; Brandao et al., 2019).

Immune cells are an extremely important component of
the TME. Myeloid linage cells, such as infiltrating peripheral
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macrophages and brain-resident microglia (tumor-associated
macrophages/microglia or TAM), represent around 30 to 50%
of the tumor mass (Lisi et al., 2017). From this group, around
40% are macrophages, 20% tumor-resident microglia, and the
other 40% are myeloid-derived suppressor cells (Gabrusiewicz
et al., 2016). Lymphocyte linage cells are also present in the
TME. GBM-associated T cells and B cells (tumor-infiltrating
lymphocytes or TILs) have been extensively described as
having an exhausted phenotype; which correlates with their
inability to control disease progression (Ma et al., 2018). This
immunosuppressive tumor environment has been referred to as
a “cold tumor.”

Brain tumor–associated mesenchymal stem cells have
acquired relevance recently; these cells play a role in supporting
glioma microenvironment (Behnan et al., 2014; Guo et al.,
2014; Svensson et al., 2017; Yi et al., 2018). Shahar et al. (2017)
showed that a high percentage of them in the tumor population
have been correlated with poor clinical prognosis. Although
fibroblasts are not a major component in GBM composition,
GBM-associated stromal cells closely resemble tumor-associated
fibroblasts found in other tumors. They are particularly located
in the periphery of the tumor and have been found to enhance
tumor growth (Clavreul et al., 2012).

Biomechanics of ECM: Implications in
Glioma Behavior
The effect of mechanical interaction on the cells was first
proposed by His (1874); however, it was almost completely
abandoned until recently. For many decades, research on
cellular and molecular biology has been focused on intrinsic
cellular biological processes without including biomechanical
information about cell–ECM interaction (Paluch et al., 2015).
In 1920, Alexander Forbes suggested that the collaborations
between different scientific fields, such as biology and physics,
will bring a better understanding of the living matter (Forbes,
1920). However, the communication flowed slowly until recent
years in which new technologies facilitated access and cross-
pollination of a huge amount of human knowledge. Recent
multidisciplinary scientific work has led to important advances
in understanding the influence of external physical forces in cell
behavior, specifically mechanical forces such as tension, elasticity,
stiffness, weight, friction, and others.

The process of sensing and responding to mechanical stimuli
is known as mechanotransduction (Rice et al., 1973; Herberman,
1981; Wang et al., 1993). Cell migration, differentiation,
proliferation, apoptosis, gene expression, and signal transduction
(Sharma et al., 2019) are all influenced by mechanical stimuli
(Chen and Wang, 2019; Moran et al., 2019).

Mechanical properties of the ECM can induce and maintain
the stem-like phenotype in cancer cells. However, the response
of cancer cells to the ECM mechanical properties varies between
cancer types and even among cellular subpopulations within
the tumors. For example, soft matrices induce the expression of
self-renewal markers in melanoma CSCs, whereas stiff matrices
induce their differentiation, but the opposite occurs in breast
cancer (Nallanthighal et al., 2019). Moreover, the stiffness

gradient in the TME in breast cancer is associated with specific
CSC phenotypes, CSC CD24−/CD44+ localized in the tumor
edges is quiescent, and CSC ALDH+ (more stem) is found in
the tumor core (Sulaiman et al., 2018). Indeed, changes in the
type and proportion of proteins that constitute ECM can alter
its stiffness by modifying the cross-linking ratio, amount of
specific proteins, and cell–ECM interactions. Thus, it has been
shown that these changes may induce FAK, FGF5, and JKT
signaling activation, which contributes to the CSC phenotype
(Cazet et al., 2018). Furthermore, mechanical properties in the
ECM composition and organization could induce epithelial-to-
mesenchymal transition (EMT) in cancer cells, this phenotype
confers stem cell–like properties to cancer cells and is associated
with chemoresistance and relapse (Singh and Settleman, 2010).

Biophysical Properties of Glioma ECM
The characterization of the mechanical properties of soft tissues
in humans represents a great challenge because these are
integrated by numerous components. Individual analysis of
each of these components has granted insight into tumor
mechanobiology; however, under real conditions, these
elements work coordinately supporting tumor progression.
A roadblock to overcome in order to better understand the TME
mechanobiology is that tumor mechanical data obtained from
biopsies may not be completely representative, as their value is
relative to the location from where the samples were taken.

Young’s modulus [force/area, in N/m2 or Pascals (Pa)]
refers to the amount of force needed to deform a substance,
and it is commonly used to measure tissue stiffness. Brain
tumors have mechanical properties different from those of
their surrounding tissue (Chauvet et al., 2016; Pepin et al.,
2018). On average, normal brain stiffness is lower than 200 Pa;
however, stiffness in gliomas gradually increases accordingly with
glioma aggressiveness (World health Organization grade) and
ranges from 100 to 10,000 Pa (Miroshnikova et al., 2016). These
differences in tumor stiffens have been explained by elevated
levels of collagen IV and HA, which turn to be associated with
tumor progression.

Lately, a key piece of mechanotransduction has been
described. For instance, Chen et al. (2018) described the role of
the mechanosensitive ion channel PIEZO1 in glioma. PIEZO1
is a transmembrane protein that locates at various tumor
cell regions including focal adhesions. Physical force–induced
membrane tension opens the channel to allow ion permeation,
leading to a genetic interaction with integrin FAK signaling,
which in turn increases ECM proteins production (laminins, HA
synthases, etc.) and glioma aggressiveness. Overall, this leads to
an increase in tissue stiffening, which further promotes PIEZO1
upregulation in a reciprocal manner promoting glioma invasion
and proliferation (Chen et al., 2018).

Other authors have also published results in accordance with
the positive relationship between ECM stiffness and glioma
aggressiveness. Thus, glioma cells with aberrant expression of
EGFR have been shown preference for stiffer microenvironments
(Sivakumar et al., 2017), and softness of the glioma tissue
positively correlated with higher tumor grade and IDH1
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mutation (Pepin et al., 2018). Overall, these findings are a call for
more comprehensive studies on ECM–CSC interactions.

Components of ECM and Glioma Aggressiveness
The soft physical consistency of the brain tissue is owed to its
ECM composition, which is abundant in proteoglycans such as
hyaluronan, tenascin C, brevican, neurocan, and phosphocan
(Miroshnikova et al., 2016). CSCs in the brain are exposed
to this exclusive microenvironment in which the matrix–cell
interaction activates pathways for stem phenotype maintenance,
ECM remodeling, and proliferation (Manini et al., 2018). For
instance, CD44 is highly expressed in gliomas; this protein
interacts with HA to enhance CSC properties by activating
NANOG (Pietras et al., 2014; Wang et al., 2017). Integrins
are cell-surface proteins that work as transmembrane links
between ECM and intracellular cytoskeleton by bidirectional
signaling. In cancer, the expression and localization of integrins
vary from normal cells; for instance, in GBM, integrin α6 (a
receptor for the ECM protein laminin) is overexpressed; the
interactions between integrin α6 and laminin regulate CSC
distributions and maintenance, as we have mentioned above
(Lathia et al., 2010). Integrin α3 is also highly expressed in
glioma CSCs, this integrin interacts with fibronectin and laminin
and has been localized in the CSC niche, promoting glioma
invasion via ERK pathway (Nakada et al., 2013). Integrin α7 is
aberrantly expressed in aggressive gliomas and correlates with
poor prognosis, is highly expressed especially in glioma CSC
subpopulations, and promotes tumor growth and spreading via
AKT (Haas et al., 2017).

ECM and Glioma Treatment Response
Heterogeneity and genetic plasticity present in GBM allow for
numerous mechanisms of therapeutic resistance. Interaction
between glioma cells and the ECM plays a fundamental role
as drivers of these two GBM properties. The ECM can induce
EMT in CSCs, which confers stem-like properties as well
as chemoresistance and radioresistance. Fibulin-3 is an ECM
protein absent in normal brain tissue but upregulated in gliomas;
this protein activates Notch signaling to promote resistance to
apoptosis, chemoresistance, and tumor growth (Hu et al., 2012).
Wtn proteins from the ECM confer high chemoresistance and
radioresistance to temozolomide (Auger et al., 2006; Han et al.,
2017). Additionally, the overexpression of fibrillary proteins in
the glioma ECM has been reported as physical barriers against
drug dissemination (Shergalis et al., 2018).

Modeling TME to Study Treatment
Resistance
As we have previously described, TME characteristics, such
as ECM composition and biomechanical properties, as well as
its vascular and cellular compartments, clearly influence CSC
behavior and treatment response. Thus, it is not surprising that
the use of two-dimensional (2D) cell cultures is associated with
poor representation of the therapeutic response to chemotherapy
and radiotherapy when compared to original tissues or even 3D
models (Storch et al., 2010; Luca et al., 2013).

Studies in Radiobiology and Radioresistance
Bauman et al. (1999) pioneered the studies on radiation responses
in 3D glioma models. In 1999, the authors used glioma tumor
spheroids implanted into a gel matrix of collagen type I to
study the effect of radiation on proliferation (Ki67), apoptosis,
and invasion. After applying single and fractionated doses of
(Pistollato et al., 2010). Co irradiation delivered at 200 cGy/min,
they found differences in these variables according to the regional
distribution along the spheroid. Cells at the surface of the
neurosphere were more affected by radiation, whereas apoptosis
and proliferation decrease was minimal or null at the core of
the neurosphere. The invasion was affected in a dose-dependent
manner, whereas fractionation seemed to confer associated with
partial recovery. Taken together, this model showed to resemble
qualities of in vivo models of malignant gliomas. Despite these
results, efforts were not resumed until 15 years later (Jiguet
Jiglaire et al., 2014; Yahyanejad et al., 2015) reported on the
simultaneous comparison of a 3D spheroid model and an in
vivo rodent model with regard to response to radiation therapy.
They used the small animal radiation therapy platform (X-
RAD SmART R©) and performed a delivery plan delineating the
tumor as gross total volume and the brain as an organ at risk
(OAR), planning target volume was equal to GTR (225 kVp
at 12mA, 300 cGy/min). They found that the 3D model could
be reliable for radiation efficacy evaluation (Yahyanejad et al.,
2015). In this same line, 3D glioma models have been also proven
effective in studying glioma radiosensitivity to different types of
radiation modalities. Chiblak et al. (2016) used 3D clonogenic
survival assays on patient-derived neurospheres and the classical
radioresistant U87-MG GBM cell line to study radiosensitivity
and measure the relative biological effect (RBE) of photon,
proton, and carbon irradiation. The authors found that carbon
irradiation RBE ranged from 2.21 up to 3.13 when compared to
photon radiation and that the inability to repair double-strain
DNA breakdowns after heavy ion irradiation could be a potential
explanation for their findings (Chiblak et al., 2016).

In an attempt to represent not only the cell–cell interactions
of the TME but also cell–ECM interactions, Jiguet Jiglaire
et al. (2014) studied the role of 3D scaffolds based on an HA-
rich hydrogel in the screening of radiation and chemotherapy
response of commercial or patient-derived glioma cell lines.
The 3D model showed good morphological representation when
compared to patient-derived tissue specimens. Commercial cell
line U87-MG did not show differences in radiation response
when 2D and 3D cultures were compared; however, patient-
derived glioma cell lines were proven radioresistant when
cultured on the 3D model but not in conventional 2D cultures
(Jiguet Jiglaire et al., 2014). Interestingly, the authors did not
account for the difference in HA concentration between 2D
and 3D cultures. Gomez-Roman et al. (2017) showed that,
under the same culture conditions, architectural modifications
(2D vs. 3D) did not generate differences in radiotherapy
resistance. Conventional 2D cultures were compared with 3D
cultures using scaffolds of polystyrene, both coated with laminin
and using regular serum-free stem cell media. 3D cultures
improved the morphological representation including hypoxic
gradients characteristic of TME, but this did not represent an
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increment in radioresistance. When the 3D culture was enriched
with additional laminin, increased radioresistance was evident
(Gomez-Roman et al., 2017).

Overall, it is clear that in vitro models need to be perfected in
order to better represent glioma biology and treatment response;
a complex representation of TME biomechanical factors, ECM,
and cellular compartments is necessary in order to achieve that
goal. Foundations, adequate nomenclature, and applications of
traditional and novel 3D models in glioma CSC research will be
described in the next section.

THREE-DIMENSIONAL MODELS IN
CANCER RESEARCH

Every cell in the human body is immersed in a three
dimensional microenvironment that regulates its behavior and
potentially, its fate. In this setting, in vitro models aiming
to understand glioma biology in order to develop effective
therapies should ideally mimic the TME. Unfortunately, the
traditional methods used for this purpose usually include the use
of 2D cell lines cultures, which lack the aforementioned ideal
requirement. The 2D approach introduces inherent limitations
such as (1) genetic and epigenetic modifications due to the
lack of CSC-TME interactions (Figure 2) (De Witt Hamer
et al., 2008; Luca et al., 2013; Wang et al., 2018c), (2)
absence of O2, nutrients and pH microenvironment gradients
(Figure 2) (Bristow and Hill, 2008; Mikhailova et al., 2018),
(3) lack of physiological inputs from other metabolically active
organs such as liver, kidney, etc., and (4) genomic alterations
after long-term culture (De Witt Hamer et al., 2008; Torsvik
et al., 2014). Additionally, after a successful initial experimental
phase involving 2D cultures, the next conventional step is
usually carried out through animal studies, which are expensive
and time-consuming. Furthermore, animal models have also
demonstrated limited chances to translate these data into human
outcomes (Shafiee and Atala, 2016).

To overcome these limitations, a great variety of 3D models
or biocomplexes incorporating biomaterials and different tumor
cells have been studied (Chang et al., 2010; Shafiee and Atala,
2016). Biomaterials are synthetic or natural nontoxic elements
that can be engineered to obtain specific physicochemical
characteristics; this attribute makes them a perfect fit to create
biomimetic platforms able to resemble the 3D TME (Hildebrand
Hartmut, 2013). Current technologies allow for recreating
controlled patterns and stiffness properties of the ECM, which
might provide the required microenvironment for CSCs to
mimic their in vivo behavior (Shafiee and Atala, 2016). In vitro
3Dmodels in cancer research can be classified in spherical cancer
models (which include the tumorspheres or neurospheres),
organoids, and 3D scaffolds.

Spherical Cancer Models
Spherical cancer models consist of sphere-like structures mainly
or totally composed of cancer cells (Friedrich et al., 2009).
Due to their easy production, they are the most commonly
used 3D in vitro model. There are several spherical cancer

models described since almost four decades ago; however,
their use and nomenclature have been confusing ever since.
For instance, the terms sphere or spheroid have been misused
in the literature to refer to cellular aggregates. Although
both are a specific type of spherical cancer models, this
misuse should be avoided as cellular aggregates differ from
spheroids and spheres. Contrary to spheroids, aggregates
are not compact enough to allow for manipulation and
transfer; they easily detach and have no spherical geometry
and probably no cell–cell and cell–matrix interactions,
which impact their biological features (Weiswald et al.,
2015).

Weiswald et al. (2015) classified the spherical cancer models
into four principal types (main features and culture conditions
are described in Table 1 and Figure 3, with an emphasis on
glioma research). Tumorspheres, or neurospheres in the case of
gliomas, are one of the four different types of spherical cancer
models. They are proliferations of single-cell suspension of
tissue-derived cancer cells, circulating cancer cells, or established
cell lines (clonal expansion) and were first described for gliomas
by Singh et al. (2003). Tumorspheres are able to maintain CSC
multipotency, resemble 3D interactions, and even resemble the
tumor gradient of oxygen and nutrients. Thus, they present a
quiescent necrotic core and a more proliferative outer layer.
Tumor spheroids can be grown in suspension in the regular
specific stem cell media or submerged in a gel, which has allowed
them to be used as an important tool for high-throughput drug
screening (Mirab et al., 2019).

In the gel-embedded systems, cancer cells are surrounded
by an artificial matrix to simulate cell–ECM interaction. In
this strategy, the biomaterial properties can be modified to
imitate ECM mechanical and structural characteristics, which
could help resemble the TME. Currently, several commercial
matrices such as Matrigel R© are commercially available for this
purpose. Agarose hydrogels conformed asmicrowells allowed the
size control of tumoroids to evaluate the effect of therapeutic
drugs, this technology can contribute to the advancement of
personalized medicine (Mirab et al., 2019).

To date, neurospheres are the most common type of tumor
spheroid used in glioma research (Table 2). Patient-derived
neurospheres are grown in enriched EGF/bFGF media under
low attachment conditions; when these factors are replaced by
serum, glioma CSCs phenotypically change their appearance,
loosen cellular adhesions, and turn the neurosphere into a 2D cell
culture with decreasing CSC marker expression and telomerase
activity (Lee et al., 2006; Claes et al., 2008). Furthermore,
it has been reported that neurosphere-derived cells retain
their ability to grow diffusely infiltrating tumors, whereas the
same glioma cells grown under serum conditions could only
produce well-demarcated tumors (Lee et al., 2006; Claes et al.,
2008).

Multicellular tumor spheroids (MCTSs, usually known as
glioma tumor spheroids) are the second type of spherical cancer
model. The initial development of MCTSs was based on the work
of Sutherland et al. (1971) dating back to the early 1970s, and
its role in glioma research appeared in 1989 with Mashiyama
et al. (1989) Despite the model was described a long time
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TABLE 1 | Different types of spherical cancer models in cancer biology research.

Spherical cancer model Origin Culture conditions

Tumorspheres

Other names:

• Tumor spheres

• Neurospheres

Proliferations of single-cell suspension of tissue-derived cancer

cells, circulating cancer cells or stablished cell lines (clonal

expansion) (Singh et al., 2003)

No non-neoplastic cells are present

*First described for gliomas by Singh et al. (2003)

Serum-free medium (no FBS)

FGF-2 and EGF are required (stem cell medium) (Lee et al.,

2006; Claes et al., 2008)

Grown in low-attachment conditions (i.e., no laminin-coated

plates in case of glioma CSCs)

Low seeding density to avoid aggregation and to foster

clonal expansion

Multicellular tumor

spheroids (MCTS)

Other names:

• Tumor spheroids

Aggregation and compaction of single-cell suspension from

well-stablished cancer cell lines

Rarely from single-cell suspension of tissue-derived cancer cells

Heterotypic MCTS including CSCs and noncancerous cells have

been reported (co-cultures)

*First escribed for gliomas by Mashiyama et al. (1989)

Serum-supplemented medium (FBS or FCS)

No additional growth factors

Grown in non-adherent conditions promoting aggregation of

cells

Two culture methods: liquid overlay (LOC) and spinner

cultures (SPC) (Watanabe et al., 1999). Usually by several

weeks

The use of U87 cells was described by Bell et al. MCTS size

ranges from 400 um to 1000 um after aggregation and

compaction (Bauman et al., 1999; Bell et al., 1999, 2001)

Organotypic multicellular

spheroids (OMS)

Other names:

• Organotypic spheroids

Rounding of non-dissociated ex vivo fragments directly from

surgical specimens (0.3–0.5mm for glioma tissues) (De Witt

Hamer et al., 2008)

Maintain stromal components (macrophages and tumor vessels)

Cultured with liquid overlay method until they round up (2 to 5

days)

Tumor microenvironment has been shown to be present up to

70 days of culture

Improved genomic stability when compared to

well-stablished and primary glioma cell lines

Cryopreservation of glioma OMS is well-tolerated

Tissue-derived tumor

spheres

Remodeling and compaction of partially dissociated (mechanically

or enzymatically) tumor tissue

No non-neoplastic cells reported inside the sphere

FBS-supplemented or stem cell medium

FBS, fetal bovine serum; FCS, fetal calf serum; FGF, fibroblast growth factor; EGF, epidermal growth factor; CSC, cancer stem cell; ECM, extracellular matrix; MCTS, multicellular tumor

spheroid; OMS, organotypic multicellular spheroids. Based on the classification of Weiswald et al. (2015).

ago, it is still a valuable tool to consider for high-throughput
screening of several treatments such as radiation, drugs, and
nanotherapeutics (Bauman et al., 1999; Yahyanejad et al., 2015;
Oraiopoulou et al., 2017; He et al., 2020). Different culture
methods and techniques have been developed (Watanabe et al.,
1999); but all of them involve seeding an elevated number
of cells under non-adherent conditions and promoting their
aggregation and compaction. Usually, commercial cell lines are
cultured with medium supplemented with serum (such as with
U87 or T98G cells) (Bell et al., 1999, 2001; Oraiopoulou et al.,
2019), but the use of patient-derived cell lines has also been
described in several cancers (Weiswald et al., 2015; Yahyanejad
et al., 2015). Even when amainmechanism of spheroid formation
is aggregation, these spheroids are not simple cell aggregates;
they form a very tightly packaged structure with intermediate
junction between adjacent cells, and—as in any spherical cancer
model—a differential dynamics is established from the core to the
peripheral layer of cells (Bell et al., 1999, 2001).

Organotypic multicellular spheroids (OMSs, also known as
organotypic spheroids) are the third type of spherical cancer
model. These are rounded, non-dissociated ex vivo fragments of
tumors obtained directly from surgical specimens. Theymaintain
the non-tumor components such as immune cells and ECM
for up to 70 days of culture and have demonstrated more

representative GBM genetic profile when compared to primary
cell cultures even after several weeks of culture. Although
cryopreservation of gliomaOMSs has been provenwell-tolerated,
the limited availability of GBM tissue is a highly restraining factor
to introduce this model into regular glioma research (De Witt
Hamer et al., 2008).

The last spherical cancer model described by Weiswald et al.
(2015) refers to the tissue-derived tumorspheres; however, they
have been not described for glioma. All the above mentioned
models are described in Table 1 and Figure 3.

Organoids
Organoids are self-organizing, 3D microscopic structures that
are derived from individual stem cells growing in an in vitro
environment. They can recapitulate histoarchitecture and cellular
composition, as well as physiological aspects of the mature
primary tissue they are derived from Eiraku et al. (2008),
Muguruma and Sasai (2012), Lancaster et al. (2013), and
Lancaster and Knoblich (2014). In general, organoids can be
obtained from adult stem cells (ASCs) or pluripotent stem cells
(PSCs) (Tuveson and Clevers, 2019). Although no neural tissue
can be obtained from ASCs such as neural stem cells to date,
PSC technologies have allowed for the creation of brain organoids
from induced PSCs (iPSCs) (Eiraku et al., 2008; Muguruma
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TABLE 2 | Current glioma research using 3D platforms.

3D model Features Developments and applications

Spheroids Mirror glioma CSC multipotency

Maintain tumor cellular heterogeneity

3D cell-to-cell interactions

Biomimetic 3D distribution*

• Necrotic core

• Inner quiescent layer

• Outer proliferative layer

Artificial low-adhesion cell growth microenvironment (Velcro type)

Inability to organize in tissue-like structures (in case of tumorspheres)

Cost-effective/highly reproducible

Drug screening using microfluidics-based chips

Organoids Created with organoid technology

Mini brains resemble non-tumor environment

Tumor initiation in mini brains can be obtained by

• Genome edition

• Glioma CSC transplantation

Glioma organoids can derive from pure tumor tissue

Study of gliomagenesis by introducing oncogenic mutations by gene editing

strategies in brain organoids

Study of tumor progression and Invasion

Study of angiogenesis

Study of tumor non-tumor interactions (in mini brains developing tumors)

Biobank and drug screening for personalized medicine

Scaffolds

Hydrogels

3D biocompatible polymeric matrices

Structured microarchitecture (pores, groves, channels, etc.)

Can introduce ECM proteins: HA, etc.

Stiffness regulation Biodegradable

Smart materials

Study of glioma CSC-vascular niche interactions

Study of mechanisms underlying glioma migration

Study of the role of ECM stiffness on glioma behavior (simulating diseased

and healthy brain tissue)

Study of cell-cell interaction

Organ-on

a -chip

3D biomimetic system

Continue and digitally controlled flow

Flow ranges from mL to pL

Tracks and regulates different conditions

Interconnects multiple microenvironments

Study of glioma CSC-vascular niche interactions

Drug screening using microfluidics-based chips

Study of response to magnetic thermal therapy

3D, there-dimensional, mL, microliter; pL, picoliter; ECM, extracellular matrix; CSC, cancer stem cell; *under certain conditions.

and Sasai, 2012; Lancaster et al., 2013; Lancaster and Knoblich,
2014). The landmark article published by Lancaster et al. (2013)
opened the door to different avenues in developmental and
cancer research. The group created brain organoids, also known
as cerebral organoids or mini-brains, presenting various discrete
but interdependent brain regions. Complying with the definition
of organoid, these brain organoids showed a cerebral cortex
containing progenitor cells that self-organize and develop into
different mature cortical neuron subtypes, as well as a primitive
ventricular system and choroid plexus.

Furthermore, despite that developmental biology defines the
term “organoid” in this very pure manner, alternative protocols
have been described in glioma research, and the term has been
adapted to introduce glioma CSCs or even entire pieces of
glioma tissue, containing a wide variety of glioma cells, as the
origin of tumor organoids. Thus, glioma CSCs or tissue will
be treated using organoid technologies in such a way that the
newly developed “organoid” will recapitulate the glioma TME
rather than a normal brain histoarchitecture. Overall, these
different approaches have led to three groups of organoids
(Figure 4).

Glioma Organoids: From Genetic Bioengineering of

Brain Organoids
Genome engineering has been used to generate glioma
tumor models in PSC-derived brain organoids or

“mini-brains.” CRISPR/Cas9 mutagenesis and Sleeping Beauty
(SB) transposon-mediated gene insertion have served for
this purpose by introducing clinically relevant oncogenic
mutations into healthy human cerebral organoids in order to
develop glioma tumors (Bian et al., 2018; Ogawa et al., 2018)
(Figure 4–1).

Ogawa et al. (2018) used human cerebral organoids cultured
as described by Lancaster and Knoblich (2014) thus, organoids
were grown and matured for 4 months. It was at this
point, when the organoids already presented normal cortical
structures and markers, that CRISPR/Cas 9 technology was
used to mediate homologous recombination of the oncogene
HRasG12V into the TP53 tumor suppressor locus. This genomic
insertion would simultaneously represent the disruption and
truncation of the tumor suppressor gene TP53, as well as
the introduction of the oncogene HRasG12V, which codes for
the expression of RAS protein. Two weeks after this process,
transduced cells can be initially observed through tdT and
GFP signals, and by 8 weeks, almost 6% of the cells in
the organoids are cancer cells. Therefore, this methodology
allows for direct observation of tumor initiation, as well as
continuous microscopic observations of tumor development.
Consistent with other authors, the genetic alteration introduced
by Ogawa et al. (2018) led the glioma organoids to show a
molecular signature proper of gliomas of the mesenchymal
subtype (Friedmann-Morvinski et al., 2012).
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FIGURE 3 | Spherical cancer models. in vitro 3D models in cancer research can be classified in spherical cancer models, organoids, and 3D scaffolds (3D and 4D

bioprinting). Spherical cancer models are commonly use models. Created with BioRender.com. *no described for gliomas.

The group of Jürgen Knoblich, who initially published the
landmark paper on cerebral organoids together with Lancaster,
presented a similar approach. Human cerebral organoids were
developed from human embryonic stem cells or iPSCs as
previously described (Lancaster et al., 2013; Lancaster and
Knoblich, 2014). By the end of the neural induction period,
around day 11, SB transposon–mediated gene insertion for
oncogene amplification and CRISPR–Cas9 technology for
tumor-suppressor gene mutation were used to introduce 18
different single mutations or amplifications, and 15 of their most
clinically relevant combinations in neuro-oncology. One of the
newly developed clusters of organoids (containing three different
combinations of genetic aberrations: GBM-1, GBM-2, and GBM-
3) presented a glioma signature with particular upregulation of

GBM-related genes and phenotype. These organoids proved to
be viable and able to expand after heterotopic renal subcapsular
engrafting (Bian et al., 2018).

Glioma Organoids: From Inception of Tumor Material

Into Brain Organoids
In a similar manner, the development of glioma tumors has been
also proven in healthy brain organoids after coculture with GBM
CSCs or tumorspheres (da Silva et al., 2018; Ogawa et al., 2018;
Linkous et al., 2019) (Figure 4–2).

Linkous et al. (2019) developed a cerebral organoid model
of glioma called GLICO; they showed that glioma CSCs were
able to infiltrate healthy cerebral organoids of different ages by
coculturing them for 24 h. Considerable tumor growth was found
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FIGURE 4 | Glioma Organoids. in vitro 3D models in cancer research can be classified in spherical cancer models, organoids, and 3D scaffolds (3D and 4D

bioprinting). Glioma organoids are produced using protocols similar to the one published by Lancaster et al. (2013) and Lancaster and Knoblich (2014). They need to

be cultured under shaking conditions to increase diffusion of the nutrients. Created with BioRender.com.

1 week after coculture, and the resulting tumors resemble original
patient tumors genetically, functionally, and morphologically
when examined 2 weeks after CSC inception. Apart from the
already expected fact that the organoids represent radioresistance
and chemoresistance of the primary tumor in a better way
than 2D cultures, it was interesting that the non-cancerous
microenvironment of the organoids seemed to support the
maintenance, viability, and growth of the glioma CSCs (Linkous

et al., 2019). Similarly, da Silva et al. (2018) reported the use of
early-stage 12-daymouse ESC-derived brain organoids and GBM
spheres in order to develop glioma organoids. Coculture of these
two elements for 48 h resulted in a 100% rate of spontaneous
infiltration of GBM cells into the organoids. The final size ranged
from 300 to 800µm, which would make them pertinent for
medium- or high-throughput screening applications (da Silva
et al., 2018).

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 October 2020 | Volume 14 | Article 558381

https://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Ruiz-Garcia et al. 3D-Models in Glioma CSC Research

As part of the same effort described in the previous section,
Ogawa et al. (2018) studied the oncogenic potential of the
glioma cells they had created in human brain organoids by
CRISPR/CAS9-assisted mutagenesis, as well as patient-derived
glioma CSCs. Similar to da Silva, the authors cocultured
spheroids of either of these two types of cells with intact human
mature brain organoids. Spheroids from tumor cells created by
mutagenesis were able to invade the organoids and represent 30%
of them by day 24. Spheroids from patient-derived cells presented
different invasion capacity. In general, results from these two
approaches correlated with results from in vivo experiments
using immunocompromised mice (Ogawa et al., 2018).

Recently, Goranci-Buzhala et al. (2020) described three
differentmethods to engineer the interaction between glioma and
brain organoids. The authors compared two strategies similar to
those described before by Linkous, Ogawa, and da Silva (glioma
CSCs + brain organoids as well as glioma neurospheres +

brain organoids) and an additional assay able to engineer this
interaction as well (by coculturing glioma CSCs and iPSCs to
develop organoids under conditions similar to those described
by Lancaster et al., 2013; Lancaster and Knoblich, 2014). Thus, by
using conventional and novel imaging technologies, the authors
showed that the three models allowed analyzing glioma CSC
invasion and patterns of invasion when primary and recurrent
gliomas were compared. However, they also found that the latter
model may not be the most suitable and that glioma CSCs
tend to present enhanced tropism for mature brain organoids
(Goranci-Buzhala et al., 2020).

Overall, the development of glioma tumors on cerebral
organoids, either by mutagenesis or glioma inception, has
opened a door to study brain tumor initiation, progression,
and treatment. The presence of tumor and non-tumor
microenvironments together at the same time allows for
the study of the interactions between these two important
components. Furthermore, the nature of these two approaches
diminishes the need for patient-derived tumor tissue and
animal xenotransplantation models to test patient-specific drug
responses (Gao et al., 2014; Tuveson and Clevers, 2019).

Glioma Organoids: From Tumor Material Alone
Similar to the advances in other cancers’ research, efforts in
glioma research have aimed to accurately recapitulate the TME
as much as possible. The previous models of organoids offer the
possibility to study normal tissue–tumor interactions; however,
key elements of the cellular components of the glioma tumor are
missing given that only neural and glioma cells are available.

Jacob et al. (2020) used organoid technology to develop
glioma organoids derived from tumor tissue, able to preserve
cytoarchitecture and maintain different cell–cell interactions
(Figure 4-3). They cultured the tissue in organoid medium
and put it on an orbital shaker in order to increase nutrient
and oxygen diffusion. Thus, by the end of the second
week, a rounded organoid was appreciated, many of these
organoids were able to retain their CD31+ vasculature, and
resemble hypoxic niches 300µm far from these vessels. Robust
cellular heterogeneity resembling parental tumors was confirmed
by several histological markers. By single-cell transcriptome

analysis, the authors determined that both neoplastic and non-
neoplastic cell populations (such as lymphocytes, macrophages,
and microglia) retain parenteral molecular profiles after 2 weeks
of culture. Orthotopic engraftment in an immunocompromised
murine model was proven efficient, and aggressive infiltration
was appreciated. The organoids were propagated by cutting
them into 0.5mm pieces. Cryopreservation protocols were also
developed and optimized, and successful recovery was evident
after thawing. Finally, the authors developed a biobank of
organoids that allowed for testing different types of treatment in
vitro (Jacob et al., 2020).

Hubert et al. (2016) reported the first effort to develop
organoids for glioma research. The authors developed organoids
from tumor tissue by modifying the original protocol described
by Lancaster and Knoblich (2014). The group used finely
minced patient tissue samples or their dissociated single-cell
suspensions for this purpose. As initially described by Lancaster,
they embedded the pearls of tissue in Matrigel and cultured them
under shaking conditions to develop the organoids. Different
from classical neurospheres, organoids grew until 3 to 4mm
after 2 months of culture. Similar to parenteral glioma tumors,
the organoids developed a gradient of oxygen and stem cell
density, delimiting a hypoxic core with quiescent glioma CSCs
and a more oxygenated ring with proliferating CSCs. Xenograft
tumors derived from different regions of the organoids (necrotic
core and peripheral ring) showed different growth speed. Apart
from showing a faster growth after xenotransplantation, cells in
the necrotic core demonstrated higher radioresistance (Hubert
et al., 2016). Worth to mention is that the culture methods for
organotypic spheroids described by De Witt Hamer et al. (2008)
were different from the organoid technology used by Hubert
et al., which was based on the protocol published by Lancaster
et al. (2013), Lancaster and Knoblich (2014).

The contemporary use of patient-derived organoids (PDOs)
in general cancer research has led to some lessons: (1) Organoids
can be generated from patient specimens; in general, either
normal stem cells or CSCs can be used for this purpose
(Gao et al., 2014; Bian et al., 2018; Ogawa et al., 2018);
(2) organoid cultures can resemble interpatient variations and
heterogenic intratumoral profile (Weeber et al., 2015; Tuveson
and Clevers, 2019); (3) organoids represent a model to study
the initiation, evolution, and drug response of the original
brain tumor, allowing the identification of potentially targetable
therapy (Hill et al., 2018; Lee et al., 2018; Tiriac et al., 2018).
The U.S. Blue Ribbon Panel for the Cancer Moonshot has
proposed to use these PDO as a screening tool for patient
drug response (https://www.cancer.gov/research/key-initiatives/
moonshot-cancer-initiative), and this effort has already shown
initial evidence that PDO with specific genetic signature can
help to identify a sizable number of patients with improved
drug sensitivity.

However, even when PDO has been successful in
representing patient therapeutic responses, there is still
room for improvement, and as we have previously described,
cocultured PDO or in situ glioma development in cerebral
organoids has been engineered to include non-tumor TME cells
such as immune cells (Dijkstra et al., 2018; Neal et al., 2018).
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Scaffolds
Scaffolds are 3D materials that provide support and structure
to cell cultures; these biomaterials have microscale mechanical
properties such as stiffness, porosity, interconnectivity, and
structural integrity that can modulate cellular behavior (Mallick
and Cox, 2013). For instance, biomaterial stiffness has been
proven to affect stem cell differentiation through a number
of pathways already described in the literature (Park et al.,
2011; Palama et al., 2018; Xiao W. et al., 2019). In general,
these properties as well as structural patterns, textures, and
angulations can be controlled in an attempt to recapitulate
ECM characteristics proper to the specific tissue of interest
(Dijkstra et al., 2018). As the glioma TME possesses a distinct
ECM composition with a high proportion of fibrillary collagens
when compared to normal brain parenchyma (Huijbers et al.,
2010; Lv et al., 2016), 3D glioma cultures using 3D collagen
scaffolds have been studied with interest. Thus, a higher degree
of dedifferentiation was found when compared to 2D cultures
as well as a more similar morphology to in situ tumor GBM
cells was also described. Furthermore, 3D cultures also showed
greater resistance to alkylating agents with a high regulation of
MGMT (Lv et al., 2016). Different scaffolds created with other
relevant tumor ECM components such as HA as well as with
synthetic materials have also been described (Erickson et al.,
2018; Chaicharoenaudomrung et al., 2019; Xiao W. et al., 2019).

Conventional fabrication technologies used in scaffolds, such
as the previously described, involve the use of physicochemical
methods such as electrospinning (for polymers and biological
materials), temperature-induced phase separation, and others (Lv
et al., 2016; Erickson et al., 2018; Chaicharoenaudomrung et al.,
2019; Xiao W. et al., 2019). In these cases, after the scaffold has
been produced by the physicochemical procedures, the cells will
be included in a posterior step as cell suspensions aiming to
localize and home within the biocompatible scaffold.

Solid free-form (SFF) technologies, on the other hand, have
recently positioned as one of the most relevant advances made
in scaffolds fabrication. Among SFF technologies, 3D bioprinting
has become a toolbox for a more tailored fabrication, allowing for
better mimicking of the TME that now can include the tumor and
non-tumor cells, together with biological ECM components such
as macromolecules, and biomaterials.

3D Bioprinting
3D bioprinting requires the use of bioinks to be deposited layer
by layer, guided by a computer-aided design (Hospodiuk et al.,
2017; Matai et al., 2020). There exist two types of bioinks: the
first refers to soft biomaterials loaded with living cells (scaffold-
base bioink), and the second refers to cells bioprinted without an
exogenous biomaterial (scaffold-free bioink) (Dai et al., 2016). In
the latter type of bioink, cells are grown up to small neotissues
that are three-dimensionally distributed during the bioprinting
process and will later fuse and mature to a more complex
structure (Hospodiuk et al., 2017). Even when it is possible to
create biosimilar acellular scaffolds using 3D bioprinting and
later include a cellular component using the top-down method
(two-step fabrication), this approach carries several limitations
including inadequate reproducibility, cell density control, and

spatial distribution control. Furthermore, the possibilities for
high-throughput use are also limited (Tasoglu and Demirci,
2013). For this reason, one-step biofabrication techniques such
as inkjet-based, microextrusion, and laser-assisted bioprinting
are preferred (Asghar et al., 2015; Knowlton et al., 2015)
(Figure 5). With these techniques, cells are located inside the 3D
bioprinting while they are fabricated, thus reducing user input
errors (Knowlton et al., 2015).

In glioma research, 3D bioprinting has been developed using
one-step biofabrication techniques. Hermida et al. optimized a
3D model including alginates, ECM proteins such as collagen-1
and HA, plus U87-MG GBM cells, as well as stromal cells using
the extrusion technique, and demonstrated to better represent
therapeutic response when compared to 2D cultures (Hermida
et al., 2019). Dai et al. (2016) described a similar approach, by
using porous gelatin, alginate, and fibrinogen to simulate the
ECM, mixed with U87-MG cells, the group bioprinted a 3D
model of GBM where CSCs reach an 87% of survival and high
rates of proliferation immediately after bioprinting. Furthermore,
glioma cells were able to turn into a more differentiated neural
cell population and the vascularized component of the model.
In addition, higher chemoresistance was found in the 3D model
when compared to 2D culture of glioma cells. (Dai et al.,
2016) Wang et al. (2018a) used extrusion-based bioprinting
technology to create a 3D glioma model to investigate the
vascularization potential of patient-derived CSCs. Interestingly,
a gel of gelatin, alginate, and fibrinogen was also used, and cell
viability after impression was similar to the one reported by Dai
et al. (2016) (86.27% ± 2.41%). Compared with cells grown in
suspension, angiogenesis-related genes, in vitro vascularization
potential, and stemness properties were more demarcated in
the 3D model. Also, cellular ultrastructure in the 3D model
showed more microvilli, mitochondria, and rough endoplasmic
reticulum when compared to cells grown in suspension (Wang
et al., 2018a).

In order to use 3D bioprinting to study the interaction
between glioma CSCs and other non-tumor cells, Heinrich
et al. (2019) developed a 3D-bioprinted mini-brain consisting
of GBM cells and macrophages. The authors found that
glioma cells communicate with macrophages, and trigger TAM
polarization as described before in patients’ tissue. Furthermore,
macrophages would promote the EMT of GBM cells as evidenced
by an increased expression of vimentin (Vim) and nestin
(Nes), as well as a significant loss of E-cadherin (Cdh1).
Consequently, higher glioma cell progression and invasiveness
were noted in the mini-brains. When therapeutics target this
intercellular communication, diminished tumor growth was
recorded (Heinrich et al., 2019).

Similar approaches studying cell–cell and cell–ECM
interactions in glioma CSC behavior and therapeutic response
have also been reported (Dai et al., 2016; van Pel et al., 2018;
Wang et al., 2018a,b, 2019; Haring et al., 2019; Heinrich
et al., 2019; Mirani et al., 2019). Thus, current efforts in 3D
printing for glioma research have focused on generating a better
understanding of glioma biology, tumor angiogenesis, invasion,
malignant transformation, drug susceptibility, and screening.
These models are very promising in glioma research as they
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FIGURE 5 | Three-dimensional scaffolds—one-step biofabrication techniques. Bioprinting is a highly promising tool to generate 3D microenvironments combining

different biomaterial and cell lines to evaluate tumor growth and progression to generate new therapies. Current glioblastoma research has been developed using

one-step fabrication techniques. (A) Thermal and piezoelectric inkjet printing. (B) Microextrussion printing. (C) Laser-assisted direct cell printing. Adapted with

permission from Tasoglu and Demirci (2013). Created with BioRender.com.

offer the possibility to manipulate and select specific factors
to be studied according to any particular research question.
The work of Heinrich et al. (2019) shows that it is possible
to include more than one cell type within the gels, which
allow for studying cell–cell interactions. We envision that this
technology will help to dissect and understand in much more
detail the very complex network of communications between
different cell types. Additionally, as the manipulation of the
physical properties of the gels is feasible, this will allow inquiring
how the physical properties of the ECM affect glioma biology
and test processes such as mechanotransduction. Overall, the
development and refinement of this technology are highly
relevant in the understanding of glioma CSC biology.

ADVANCES IN GLIOMA RESEARCH USING
3D MODELS

The use of 3D biomaterials used to simulate ECM mechanical
properties and cell–ECM interactions has led to a deeper
understanding of the mechanobiology underlying tumor
malignancy, cancer cell migrations, and resistance to therapies.
Furthermore, the previously described developments have

allowed generating even more complex technologies to better
study the relationship between not only the TME but also the
interaction with the whole human body.

Organ-On-a-Chip
Organ-on-a-chip is a new technology that combines tissue
engineering technologies with microfluidics to develop artificial
systems that can recreate organ functions, organ interactions, and
human physiology (Zhang et al., 2018). Yi et al. (2019) showed
that an organ-on-a-chip GBM model that matched the clinical
outcome after concurrent chemoradiation with temozolomide
exhibited patient-specific sensitivity against specific drugs
combinations. The interaction within the perivascular niche has
also been studied using this technology, suggesting that glioma
CSCs located around the vasculature and presenting with the
lowest motility are most probably of the proneural subtype, and
those with the highest invasiveness are most probably classified
in the mesenchymal subtype; which further supports the role of
the tumor niche on intratumor heterogeneity and consequent
treatment response (Xiao Y. et al., 2019). Studies regarding GBM
response to magnetic hyperthermia have been also carried out in
a similar way (Mamani et al., 2020).
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Four-Dimensional Bioprinting
Four-dimensional (4D) bioprinting is emerging as the next
generation for biofabrication technology. Different from 3D
bioprinting, which is static, 4D bioprintings introduce the
use of stimuli-responsive biomaterials that can be modified in
a time-depended manner (fourth dimension) in an attempt
to mimic the physiological activities proper of any living
microenvironment (Ashammakhi et al., 2018; Truong et al.,
2019; Yang et al., 2019). 4D bioprinting has been used for drug
screening, drug delivery, and vascularization models; therefore,
this technology could help in the comprehension of glioma
progression and therapy (Gao et al., 2016; Ruskowitz and
DeForest, 2018).

CONCLUSIONS AND FUTURE
PERSPECTIVES

The use of preclinical 3D models represents an opportunity
to better understand glioma biology, as well as to perform
high-throughput screening able to accelerate the selection of
the most effective and personalized therapy for individual
patients. To maximize the advantages of these models, they
should rigorously represent most factors characterizing the
TME, having in mind not only its cellular and non-cellular

components but also the biomechanics underlying their
interactions. Thus, it will be important to differentiate the
characteristics we must represent in order to simulate the
different tumor regions such as the core, the external layers,
and even the surrounding healthy tissue that gliomas CSCs will
inevitably infiltrate. Modeling each of these different regions
will be fundamental to better study the heterogeneous CSC
phenotypes, behaviors, and treatment responses; which in
turn will be crucial to find a clinically relevant alternative for

glioma patients.
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