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Next-generation sequencing technologies allow to measure somatic mutations in a large

number of patients from the same cancer type: one of the main goals in their analysis

is the identification of mutations associated with clinical parameters. The identification of

such relationships is hindered by extensive genetic heterogeneity in tumors, with different

genes mutated in different patients, due, in part, to the fact that genes and mutations

act in the context of pathways: it is therefore crucial to study mutations in the context of

interactions among genes. In this work we study the problem of identifying subnetworks

of a large gene-gene interaction network with mutations associated with survival time.We

formally define the associated computational problem by using a score for subnetworks

based on the log-rank statistical test to compare the survival of two given populations.

We propose a novel approach, based on a new algorithm, called Network of Mutations

Associated with Survival (NoMAS) to find subnetworks of a large interaction network

whose mutations are associated with survival time. NoMAS is based on the color-coding

technique, that has been previously employed in other applications to find the highest

scoring subnetwork with high probability when the subnetwork score is additive. In our

case the score is not additive, so our algorithm cannot identify the optimal solution with

the same guarantees associated to additive scores. Nonetheless, we prove that, under

a reasonable model for mutations in cancer, NoMAS identifies the optimal solution with

high probability. We also design a holdout approach to identify subnetworks significantly

associated with survival time. We test NoMAS on simulated and cancer data, comparing

it to approaches based on single gene tests and to various greedy approaches. We show

that our method does indeed find the optimal solution and performs better than the other

approaches. Moreover, on three cancer datasets our method identifies subnetworks with

significant association to survival when none of the genes has significant association with

survival when considered in isolation.
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1. INTRODUCTION

Recent advances in next-generation sequencing technologies
have enabled the collection of sequence information from many
genomes and exomes, with many large human and cancer
genetic studies measuring mutations in all genes for a large
number of patients of a specific disease (Cancer Genome Atlas
Research Network, 2013, 2014; Cancer Genome Atlas Network,
2015; Cancer Genome Atlas Research Network et al., 2017;
Raphael et al., 2017). One of the main challenges in these
studies is the interpretation of such mutations, in particular
the identification of mutations that are clinically relevant.
For example, in large cancer studies one is interested in
finding somatic mutations that are associated with survival
and that can be used for prognosis and therapeutic decisions.
One of the main obstacles in finding mutations that are
clinically relevant is the large number of mutations present
in each cancer genome. Recent studies have shown that
each cancer genome harbors hundreds or thousands of
somatic mutations (Garraway and Lander, 2013), with only
a small number (e.g., ≤ 10) of driver mutations related
to the disease, while the vast majority of mutations are
passenger, random mutations that are accumulated during
the process that leads to cancer but not related to the
disease (Vogelstein et al., 2013).

In recent years, several computational and statistical methods
have been designed to identify driver mutations and distinguish
them from passenger mutations, exploiting data from large
cancer studies (Raphael et al., 2014). Many of these methods
analyze each gene in isolation, and use different single gene
scores (e.g., mutation frequency, clustering of mutations, etc.)
to identify significant genes (Dees et al., 2012; Lawrence et al.,
2013; Tamborero et al., 2013). While useful in finding driver
genes, these methods suffer from the extensive heterogeneity of
mutations in cancer, with different patients showingmutations in
different cancer genes (Kandoth et al., 2013). One of the reasons
of such mutational heterogeneity is the fact that driver mutations
do not target single genes but rather pathways (Vogelstein
et al., 2013), groups of interacting genes that perform different
functions in the cell. Several methods have been recently
proposed to identify significant groups of interacting genes in
cancer (Vandin et al., 2012b; Hofree et al., 2013; Kim et al.,
2015; Leiserson et al., 2015a,b; Shrestha et al., 2017). Many
of these methods integrate mutations with interactions from
genome-scale interaction networks, without restricting to already
known pathways, that would hinder the ability to discover new
important groups of genes.

In addition to mutation data, large cancer studies often collect
also clinical data, including survival information, regarding
the patients. An important feature of survival data is that it
often contains censoredmeasurements (Kalbfleisch and Prentice,
2002): in many studies a patient may be alive at the end of
the study or may leave the study before it ends, therefore
only a lower bound to the survival of the patient is known.
Survival information is crucial in identifying mutations that
have a clinical impact. However, the survival information is
commonly used only after candidate genes or groups of genes

have been identified using other methods, as the ones described
above, to evaluate the clinical significance of such genes or
groups of genes (Cancer Genome Atlas Research Network,
2011; Hofree et al., 2013). Overall, there is a lack of methods
that integrate mutations, interaction information, and survival
data to directly identify groups of interacting genes associated
with survival.

The field of survival analysis has produced an extensive
literature on the analysis of survival data, in particular for the
comparison of the survival of two given populations (sets of
samples) (Kalbfleisch and Prentice, 2002). The most commonly
used test for this purpose is the log-rank test (Mantel, 1966;
Peto and Peto, 1972). In genomic studies we are not given two
populations, but a single set of samples, and are required to
identify mutations that are associated with survival. The log-rank
test can be used to this end to identify single genes associated
with survival time by comparing the survival of the patients
with a mutation in the gene with the survival of the patients
with no mutation in the gene. The other commonly used test,
the Cox Proportional-Hazards model (Kalbfleisch and Prentice,
2002), is equivalent to the log-rank test when the association
of a binary feature with survival is tested, as it is in the case
of interest to genomic studies. For a given group of genes,
one can assess the association of mutations in the genes of the
group with survival by comparing the survival of the patients
having a mutation in at least one of the genes with the survival
of the patients with no mutation in the genes. However, this
approach cannot be used to discover sets of genes, since one
would have to screen all possible subsets of genes and test
their association with survival, and the number of subsets of
genes to screen is enormous even considering only groups of
genes interacting in a protein interaction network (e.g., there
are > 1015 groups of 8 interacting genes in HINT+HI2012
network; Leiserson et al., 2015b).

In this paper we study the problem of finding sets of
interacting genes withmutations associated to survival using data
from large cancer sequencing studies and interaction information
from a genome-scale interaction network. We focus on the
widely used log-rank statistic as a measure of the association
between mutations in a group of genes and survival. Our
contribution is in five parts: first, we formally define the problem
of finding the set of k genes whose mutations show the maximum
association to survival time by using the log-rank statistic as
a score for a set of genes: we show that such problem is NP-
hard. We show that the problem remains hard when the set of
k genes is required to form a connected subnetwork in a large
graph with at least one node of large degree (hub). Second, we
propose an efficient algorithm, Network of Mutations Associated
with Survival (NoMAS), based on the color-coding technique,
to identify subnetworks associated with survival time. Color-
coding has been previously used to find high scoring graphs
for bioinformatics applications (Dao et al., 2011; Hormozdiari
et al., 2015) when the score for a subnetwork is set additive
(i.e., the score of a subnetwork is the sum of the scores of
the genes in the subnetwork). In our case the log-rank statistic
is not set additive, and we prove that there is a family of
instances for which our algorithm cannot identify the optimal
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solution. Nonetheless, we prove that, under a reasonable model
for mutations in cancer, our algorithm identifies the optimal
solution with high probability. Third, we test our algorithm
on simulated data and on data from three large cancer studies
from The Cancer Genome Atlas (TCGA). On simulated data,
we show that our algorithm does find the optimal solution
while being much more efficient than the exhaustive algorithm
that screens all sets of genes. On cancer data, we show that
our algorithm finds the optimal solution for all values of k
for which the use of the exhaustive algorithm is feasible, and
identifies better solutions (in terms of association to survival)
than a greedy algorithm similar to the one used in Reimand
and Bader (2013). Fourth, to strengthen the statistical reliability
of NoMAS’s results, we employ a holdout scheme, splitting the
patients dataset in two parts, a training set and a holdout set.
While solutions of the NoMAS are computed on the former, the
assessments of their statistical significance are performed on the
latter, thus providing a correction for the multiple hypothesis
testing performed on the training set. Finally, we show that
NoMAS identifies better solutions than using an (additive) score
(i.e., the same gene score used in Vandin et al., 2012a) for a set
of genes. For the cancer datasets, we show that our algorithm
identifies novel groups of genes associated with survival where
none of them is associated with survival when considered in
isolation. The work is organized as follows: in section 2 we
provide the description of the model and NoMAS; section 3
presents the analysis of the algorithm (section 3.1), including
the analysis under a reasonable model for mutations in cancer
and analysis of our experiments on both simulated and real
data (section 3.2); finally section 4 presents the discussion of
our results. Details for our theoretical results are given in
Supplementary Material.

2. MATERIALS AND METHODS

In this section we present the model we consider, our algorithm
NoMAS, and the tests we have designed to assess the statistical
significance of the results.

2.1. Computational Problem
In survival analysis, we are given two populations (i.e., sets of
samples) P0 and P1, and for each sample i ∈ P0 ∪ P1 we have
its survival data: i) the survival time ti and ii) the censoring
information ci, where ci = 1 if ti is the exact survival time
for sample i (i.e., sample i is not censored), and ci = 0 if ti
is a lower bound to the survival time for sample i (i.e., sample
i is censored). Let m0 be the number of samples in P0, m1

be the number of samples in P1, and m = m0 + m1 be the
total number of samples. Without loss of generality, the samples
are {1, 2, . . . ,m}, the survival times are t = 1, 2, . . . ,m, with
ti = i (i.e., the samples are sorted by increasing values of
survival), and we assume that there are no ties in survival times.
The survival data is represented by two vectors c and x, with
ci representing the censoring information for sample i, and xi
represents the population information: xi = 1 if sample i is in
population P1, and xi = 0 otherwise. Given the survival data for
two populations P0 and P1, the significance in the difference of

survival between P0 and P1 can be assessed by the widely used
log-rank test (Mantel, 1966; Peto and Peto, 1972). The log-rank
statistic is

V(x, c) =
m
∑

j=1

cj

(

xj −
m1 −

∑j−1
i=1 xi

m− j+ 1

)

(1)

Under the (null) hypothesis of no difference in survival between
P0 and P1, the log-rank statistic asymptotically follows a normal
distribution N (0, σ 2), where the standard deviation1 is given

by: σ (x, c) =
√

m0m1
m(m−1)

((

∑m
j=1 cj

)

−
∑m

j=1 ci
1

m−j+1

)

. Thus the

normalized log-rank statistic, defined as V(x,c)
σ (x,c)

, asymptotically

follows a standard normalN (0, 1) distribution, and the deviation
of V(x,c)

σ (x,c)
from 0 is a measure of the difference in survival between

P0 and P1.
In genomic studies, we are given mutation data for a set G

of n genes in a set P of m samples, represented by a mutation
matrix M with Mi,j = 1 if gene i is mutated in patient j and
Mi,j = 0 otherwise. We are also given survival data (survival time
and censoring information) for all the m samples. Given a set
S ⊂ G of genes, we can assess the association of mutations in the
set S with survival by comparing the survival of the population
PS1 of samples with a mutation in at least one gene of S and
the survival of the population PS0 of samples with no mutation
in the genes of S . That is, PS0 = {j ∈ P :

∑

i∈S Mi,j = 0} and
PS1 = {j ∈ P :

∑

i∈S Mi,j > 0}.
Given the set G of all genes for which mutations have been

measured, we are interested in finding the set S ⊂ G with
|S| = k that has maximum association with survival by finding
the set S that maximizes the absolute value of the normalized
log-rank statistic. Given a set S of genes, let xS be a 0 − 1
vector, with xSi = 1 if at least one gene of S is mutated in
patient i, and xSi = 0 otherwise. The normalized log-rank

statistic for the set S is then V(xS ,c)
σ (xS ,c)

. Note that for a given

set of patients the censoring information c is fixed, therefore
we can consider the log-rank statistic as a function V(xS ) of
xS only. Analogously, we can rewrite σ (xS , c) = σ (xS )f (c),
where σ (xS ) =

√
m1(m−m1) with m1 = |PS1 |, and f (c) =

√

1
m(m−1)

((

∑m
j=1 cj

)

−
∑m

j=1 cj
1

m−j+1

)

does not depend on xS

and is fixed given c.
To identify the set of k genes most associated with survival,

we can then consider the score |w(S)| =
∣

∣

∣

V(xS )
σ (xS )

∣

∣

∣
. For

ease of exposition in what follows we consider the score
w(S), corresponding to a one tail log-rank test for the
identification of sets of genes with mutations associated with
reduced survival; the identification of sets of genes with
mutations associated with increased survival is done in an

1In the literature two different standard deviations (corresponding to two

related but different null distributions, permutational and conditional) have been

proposed for the normal approximation of the distribution of the log-rank

statistic; we have previously shown (Vandin et al., 2015) that the one we use here

(corresponding to the permutational distribution) is more appropriate for genomic

studies.
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analogous way by maximizing the score −w(S). We define the
following problem.

The max k-set log-rank problem: Given a set G of genes, an

n × m mutation matrix M and the survival information (time
and censoring) for the m patients in M, find the set S ⊂ G of k
genes maximizing w(S).

We have the following.

Theorem 1. The max k-set log-rank problem is NP-hard.

We now define the max connected k-set log-rank problem
that is analogous to the max k-set log-rank problem but requires
feasible solutions to be connected subnetworks of a given graph
I , representing gene-gene interactions.

The max connected k-set log-rank problem: Given a set G of

genes, a graph I = (G,E) with E ⊆ G × G, an n × m mutation
matrix M and the survival information (time and censoring)
for the m patients in M, find the set S of k genes maximizing
w(S) with the constraint that the subnetwork induced by S in I

is connected.
If I is the complete graph, the max connected k-set log-rank

problem is the same as the max k-set log-rank problem. Thus, the
max connected k-set log-rank problem is NP-hard for a general
graph. However, we can prove that the problem is NP-hard for a
much more general class of graphs.

Theorem 2. The max connected k-set log-rank problem on graphs

with at least one node of degree O
(

n
1
c

)

, where c > 1 is constant,

is NP-hard.

2.2. Algorithm NoMAS
We design a new algorithm, Network of Mutations Associated
with Survival (NoMAS)2, to solve the max connected k-set log-
rank problem. The algorithm is based on an adaptation of the
color-coding technique (Alon et al., 1994). Our algorithm is
analogous to other color-coding based algorithms that have been
used before to identify subnetworks associated with phenotypes
in other applications where the score is additive (Dao et al., 2011;
Hormozdiari et al., 2015).

Figure 1 provides an overview of NoMAS. The input to
NoMAS is an undirected graph G = (V ,E), an n × m mutation
matrix M, and the survival information x, c for the m patients
in M. NoMAS first identifies a subnetwork S with high weight
w(xS )
σ (xS )

. To identify a subnetwork of high weight, the algorithm

proceeds in iterations. In each iteration NoMAS colors G with
k colors by assigning to each vertex v a color C(v) ∈ {1, . . . , k}
chosen uniformly at random. For a given coloring of G, a
subnetwork S is said to be colorful if all vertices in S have distinct
colors. The colorset of S is the set of colors of the vertices in S .
Note that the number of different colorsets (subsets of {1, . . . , k})
is 2k. In each iteration the algorithm efficiently identifies high-
scoring colorful subnetworks, and at the end the highest-scoring
subnetwork among all iterations is reported.

2The implementation of NoMAS is available at https://github.com/VandinLab/

NoMAS

Consider a given coloring of G. Let W be a (2k − 1) × |V|
table with a row for each non-empty colorset and a column for
each vertex in G. Entry W(T, u) stores the set of vertices of one
connected colorful subnetwork that has colorset T and includes
vertex u. Entries of W can be filled by dynamic programming.
For colorsets of size 1, the corresponding rows in W are filled
out trivially: W({α}, u) = {u} if α = C(u), and W({α}, u) = ∅
otherwise.

For entry W(T, u) with |T| ≥ 2, NoMAS computes W(T, u)
by combining a previously computedW(Q, u) for u with another
previously computed W(R, v) where v is a neighbor of u in
G, ensuring that the resulting subnetwork is connected and
contains u. Colorfulness is ensured by selecting Q and R such
that Q ∩ R = ∅ and Q ∪ R = T, and in turn ensures that
W(T, u) contains |T| distinct vertices. Note that for a given T
the choice of Q uniquely defines R. Thus, for each neighbor v of
u there are (at most) 2|T|−1 possible combinations. Let S ′(T, u)
be the set of all colorful subnetworks that can be obtained by
combining an entry W(Q, u) for u and an appropriate entry
W(R, v) for a neighbor v of u so that Q ∪ R = T,Q ∩ R = ∅.
That is: S ′(T, u) =

⋃

v :(u,v)∈E
Q∪R=T,Q∩T=∅

{

W(Q, u) ∪W(R, v)
}

(in the

definition of S ′(T, u) we assume that the union with ∅ returns
∅). W(T, u) stores the element of S ′(T, u) with largest value of
our objective function, that is W(T, u) = argmax

S∈S ′(T,u) w(S).
At the end, the best solution is identified by finding the entry
of W of maximum weight. Analogously, NoMAS identifies sets
that minimize w(S) (sets associated to increased survival) by
maximizing the score−w(S). (See Appendix for pseudo code and
illustrations of the working of NoMAS).

Parallelization
The computation ofW is parallelized using N ≤ |V| processors.
All entries of W are kept in shared memory and |V|/N unique
columns uniformly at random are assigned to each processor.
Entries of W are computed in order of increasing colorset sizes.

We define the i-th colorset group as the set of all
(k
i

)

colorsets of
size i. We exploit the fact that the rows within the i-th colorset
group are computed by reading entries exclusively from rows
belonging to colorset groups < i. When a processor has finished
the rows of the i-th colorset group it waits for the other processors
to do the same. When the last processor completes the i-th
colorset group, allN processors can safely begin to compute rows
of colorset group i+1. In total, k synchronization steps are carried
out, one for each colorset group.

2.3. Statistical Significance
We designed two procedures to assess the statistical significance
of the results found by NoMAS: the first is based on permutation
testing, while the second uses a holdout approach.

Permutation Testing
After identifying the best solution S for the mutation matrix
M, NoMAS can assess its statistical significance by i) estimating
the p-value p(S) for the log-rank statistic (using a Monte-Carlo
estimate with 108 samples), and then ii) using a permutation
test in which S is compared to the best solution Sp for the
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FIGURE 1 | Algorithm NoMAS. Given alteration data and survival information (time and censoring status) for a set of patients, NoMAS employs a color coding

approach to identify subnetworks with mutations associated with survival time, i.e., with high log-rank statistic, and then assesses the statistical significance of the

subnetworks using (i) permutation testing and (ii) a holdout approach.

mutation matrix Mp obtained by randomly permuting the rows
of M. A total of 100 permutations are performed and the
permutation p-value is recorded as the ratio of permutations in
which w(Sp) ≥ w(S). While the p-value from the log-rank test
reflects the association between mutations in the subnetwork and
survival, the permutation p-value assesses whether a subnetwork
with association with survival at least as extreme as the one
observed in the input data can be observed when the genes
are placed randomly in the network. Note that we can identify
multiple solutions by considering different entries of W (even if
the same solution may appear in multiple entries of W), and we
obtain a permutation p-value for the i-th top scoring solution by
comparing its score with the score of the i-th top scoring solution
in the permuted datasets.

Holdout Method
We designed a holdout method to strengthen the statistical
robustness of the results produced by NoMAS. We split the
dataset in two parts, called training and holdout, and then
run NoMAS on the former, obtaining subnetworks with high
weight. The p-value of these subnetworks is then computed
with a Monte-Carlo procedure estimate with 108 samples on
the holdout dataset. More in detail, assuming that a set P of m
patients is analyzed, let v be a parameter with value in (0, 1) that
represents the proportion of data in the training set: we partition
P into two parts, Pt and Ph, sized mt = ⌊mv⌋ and mh = m − mt

respectively. In order to preserve the survival distribution in both
the training and the holdout set, the partition is performed over
each of g temporal intervals of the same length, where g is a
parameter to be passed in input by the user. The sets Pt and Ph are
obtained by the union of the corresponding sets in each interval.
Once we obtain the partition of P into Pt and Ph, NoMAS is

executed over the population Pt and p-value of the found solution
is computed over Ph.

3. RESULTS

3.1. Analysis of NoMAS
We consider the performance of NoMAS excluding the statistical
significance testing. The log-rank statistic w(S) is computed in
time O (m1) ∈ O (m). The total time complexity for computing
a single entry W(T, u) is then bounded by O

(

mdeg(u)2|T|−1
)

∈
O
(

mdeg(u)2k
)

, where deg(u) is the degree of u in G. Given a

coloring of G, the computation of the entire table can thus be

performed in time O
(

2k
∑

u∈V mdeg(u)2k
)

∈ O
(

m|E|4k
)

. If L

iterations are performed, then the complexity of the algorithm is

O
(

Lm|E|4k
)

.

Let OPT be the optimal solution. If the score w(S) was set
additive, as the scores considered in previous applications of
color-coding for optimization problems on graphs, to discover
OPT it would be sufficient that OPT be colorful, that happens
with probability k!/kk ≥ e−k for each random coloring.

Therefore O
(

ln(1/δ)ek
)

iterations would be enough to ensure

that the probability of OPT not being discovered is≤ δ, resulting

in an overall time complexity of O
(

m ln(1/δ)|E|(4e)k
)

.

However, our score w(S) is not set additive [e.g., if
two genes in S have a mutation in the same patient the
weight of the patient is considered only once in w(S)].
Therefore, while OPT being colorful is still a necessary
condition for the algorithm to identify OPT, the colorfulness
of OPT is not a sufficient condition. In fact, we have
the following.
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Proposition 1. For every k ≥ 3 there is a family of instances of
the max connected k-set log-rank problem and colorings for which
OPT is not found by NoMAS when it is colorful.

Even more, we prove that when mutations are placed
arbitrarily then for every subnetwork S and a given coloring of
S , any color-coding algorithm that adds subnetworks of size k
to W by merging neighboring subnetworks of size < k could be
“fooled” to not add S toW by simply adding 3 vertices to G and
assigning them a specific color.

Theorem 3. For any optimal colorful connected subnetwork S

of size k ≥ 3 and any color-coding algorithm A which
obtains subnetworks with colorsets of cardinality i by combining
2 subnetworks with colorsets of cardinality < i, by adding 3
neighbors to S we have thatAmay not discover S.

Intuitively, Proposition 1 and Theorem 3 show that if
mutations are placed adversarially (and the optimal solution
OPT has many neighbors), our algorithm may not identify
OPT. However, we prove that our algorithm identifies the
optimal solution under a generative model for mutations, that we
deem the Planted Subnetwork Model. We consider w(S) as the
unnormalized version of the log-rank statistic. In this model: i)
there is a subnetworkD, |D| = k, withw(D) ≥ cm, for a constant
c > 0; ii) each gene g ∈ D is such that w(D)− w(D \ {g}) ≥ c′m

k
,

for a constant c′ > 0; iii) for each gene g ∈ D: w({g}) > 0; iv)
for each gene ĝ /∈ D, ĝ is mutated with probability pg in each
patient, independently of all other events (and of survival time
and censoring status).

Intuitively: (3.1) above states that the subnetwork D has
mutations associated with survival; (3.1) states that each gene
g ∈ D contributes to the association of mutations in D to
survival; (3.1) states that each gene g ∈ D should have the same
association to survival (increased or decreased) as D; and (3.1)
states that all mutations outside D are independent of all other
events (including survival time and censoring of patients).

We show that when enough samples are generated from
the model above, our algorithm identifies the optimal solution
with the same probability guarantee given by the color-coding
technique for additive scores.

Theorem 4. Let M be a mutation matrix corresponding to
m samples from the Planted Subnetwork Model. If m ∈
�
(

k4(k+ ε) ln n
)

for a given constant ε > 0 and O
(

ln(1/δ)ek
)

color-coding iterations are performed, then our algorithm identifies
the optimal solution D to the max connected k-set log-rank with
probability ≥ 1− 1

nε − δ.

3.2. Experimental Results
We assessed the performance of NoMAS by using simulated and
cancer data. We compared NoMAS to the exhaustive algorithm
that identifies the subnetwork of k vertices with the highest
score w(S) for the values of k for which we could run the
exhaustive algorithm (we implemented a parallelized version of
the algorithm described in Maxwell et al., 2014 to efficiently
enumerate all connected subnetworks), to three variants of a

greedy algorithm similar to the one from Reimand and Bader
(2013), and to the use of a score given by the sum of single
gene scores. Cancer data is obtained from The Cancer Genome
Atlas (TCGA). In particular, we consider somatic mutations
(single nucleotide variants and small indels) for 268 samples
of glioblastoma multiforme (GBM), 315 samples of ovarian
adenocarcinoma (OV) and 174 samples of lung squamous cell
carcinoma (LUSC) for which survival data is available.

For all our experiments we used as interaction graph G
the graph derived from the application of a diffusion process
on the HINT+HI2012 network3, a combination of the HINT
network (Das and Yu, 2012) and the HI-2012 (Yu et al., 2011)
set of protein-protein interactions, previously used in Leiserson
et al. (2015a). The details of the diffusion process are described
in Leiserson et al. (2015a). In brief, for two genes gi, gj the
diffusion process gives the amount of heat h(gi, gj) observed on
gj when gi has one mutation, and the amount of heat h(gj, gi)
observed on gi when gj has one mutation. The graph used for
our analyses is obtained retaining an edge between gi and gj if
max{h(gi, gj), h(gj, gi)} ≥ 0.012. The resulting graph has 9, 859
vertices and 42, 480 edges, with the maximum degree of a node
being 438. In all our experiments we removed mutations in genes
mutated in < 3 of the samples. For cancer data, this resulted in
890 mutated genes removed in GBM, 780 in OV, and 2, 915 in
LUSC. The machine, on which all our experiments were carried
out, consists of two CPUs of the type Intel Xeon E5-2698 v3 (2.30
GHz), each with 16 physical cores, for a total of 64 virtual cores,
and 16 banks of 32 GB DDR4 (2,133 MHz) memory modules for
a total of 512 GB of memory.

The remaining of the section is organized as follow:
section 3.2.1 presents the results on simulated data, while
section 3.2.2 presents the results on cancer data.

3.2.1. Simulated Data
We assess the performance of NoMAS on simulated data
generated under the Planted subnetworkModel. The subnetwork
D ⊂ G, |D| = k associated with survival is generated by a random
walk on the graph G. We model the association of D to survival
bymutating with probability p one gene ofD chosen uniformly at
random in each sample among the m

4 of lowest survival. All other
genes in D are mutated independently with probability 0.01 in
all samples, to simulate passenger mutations (not associated with
survival) inD (Lawrence et al., 2013). For genes in G \D, we used
the same mutation frequencies observed in the GBM study, and
mutate each gene independently of all other events.

We fixed k = 5 and considered the values of p ∈
{0.5, 0.75, 0.85} and m ∈ {268, 500, 750, 1, 000}. We kept the
same ratio of censored observations as in GBM and chose the
censored samples uniformly among all samples. For every pair
(p,m) we performed 100 simulations, running NoMAS on the
dataset with L = 256 color-coding iterations, and recorded
whether NoMAS reported D as the highest scoring subnetwork.
Results are shown in Figure 2A. For sample sizes similar to the
currently available ones, NoMAS frequently reports D as the
highest scoring solutions when there is a quite strong association

3http://compbio-research.cs.brown.edu/pancancer/hotnet2/
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FIGURE 2 | Results of NoMAS on simulated data from the Planted Subnetwork Model. One hundred datasets were generated for each pair (m,p), where m is the

number of samples and for different probabilities p of mutations in the set D of genes associated with survival. (A) Probability that D is reported as the highest scoring

solution by NoMAS. (B) Ratio of genes from the set D that are in the best solution when D is not the highest scoring solution by NoMAS. (C) Probability that D is

among the top-10 solutions reported by NoMAS. All probabilities are estimated from the simulated datasets.

of D with survival (p ≥ 0.85), but for m = 1, 000 the highest
scoring subnetwork reported by NoMAS is D in > 80% of the
cases even for p = 0.5. Figure 2B shows that even when NoMAS
does not report D as the highest scoring solution, the solution
reported by NoMAS contains mostly genes that are in D, even
for current sample size (e.g., on average 74% of the genes in the
D are reported by NoMAS form = 268 and p = 0.85 even when
D is not the highest scoring solution by NoMAS). Finally, we
assessed whetherDwould be among the highest scoring solutions
in the table W computed by NoMAS: Figure 2C shows that by
considering the top-10 solutions W the chances to identify D

increase substantially even for m = 268 and p = 0.5, with
most configurations having > 0.8 probability of finding D in the
top-10 solutions by NoMAS. For a fixed p = 0.75 and for each
value of m we assessed whether NoMAS identified the optimal
solution even when it was not D (an event not excluded in the
Planted subnetwork Model) and found that form ≥ 500 NoMAS
reported the optimal solution in 10 out of 10 cases (for m = 268
NoMAS identified the optimal solution 9 out of 10 times). These
results show that NoMAS does indeed find the optimal solution
in almost all cases even for sample sizes currently available (while
the theoretical analysis of section 3.1 suggests that much larger
sample sizes are required) and it can be used to identify D or the
majority of it by considering the top-10 highest scoring solutions.

3.2.2. Cancer Data
We assessed the performance of NoMAS on the GBM, OV,
and LUSC datasets. We first assessed whether NoMAS identified
the optimal solution by comparing the highest scoring solution
reported by NoMAS with the one identified by using the
exhaustive algorithm for k = 2, 3, 4, 5. In all cases we found
that NoMAS does identify the optimal solution, while requiring
much less running time compared to the exhaustive algorithm
(Supplementary Figure 2). For k > 5 we could not run the
exhaustive algorithm, while the runtime of NoMAS is still
reasonable. The runtime of NoMAS can be greatly improved
by using the parallelization strategy described in section 2.2
(Supplementary Figure 3). We therefore used NoMAS to find
subnetworks of size k = 6 and k = 8. We also considered

two modifications of NoMAS that solve some easy cases where
NoMAS may not identify the highest scoring solution due to its
subnetworkmerging strategy (see Appendix for a description and
pseudocode of the modifications). We run both modifications on
GBM, OV, and LUSC for k = 6, 8 (using the same colorings
used by the original version of NoMAS): in all cases the modified
versions of NoMAS did not report subnetworks with higher
scores than the ones from the original version of NoMAS. We
also note that the original version of NoMAS is significantly faster
in practice than its two modifications (Supplementary Figure 3)
and, therefore, we used the original version of NoMAS in the
remaining experiments.

We also compared NoMAS with three different greedy
strategies for the max connected k-set log-rank problem. All
three algorithms build solutions starting from each node u ∈ G
and, in iterations, by adding nodes to the current solution S ,
diversifying in the way they enlarge the current subnetwork S

of size 1 ≤ i < k. (See Appendix for a description of the
three greedy strategies). We run the three greedy algorithms
on GBM, OV, and LUSC for k = 4, 5, 6, 8. For each dataset
we compared the resulting subnetworks with the ones identified
by NoMAS. Results are shown in Figure 3. In almost all cases
we found that NoMAS discovered subnetworks with higher
score than the subnetworks found by using greedy strategies,
even if in some cases there is a greedy strategy that identifies
the same subnetworks for all values of k. The difference in
score increases as k increases, showing the ability of NoMAS
to discover better solutions for larger values of k, with the
main expense being the running time of NoMAS as opposed
to the greedy strategies (Supplementary Figure 4). We also
assessed whether the fact that greedy strategies discover lower
scoring solutions than NoMAS has an impact on the estimate
of the p-value in the permutational test. We considered the
top-10 scoring solutions (corresponding to 10 different starting
nodes u ∈ G) discovered by the best greedy strategy in
the GBM dataset and computed the permutational p-value
for each solution by generating 100 permuted datasets either
using the (same) greedy strategy or NoMAS for (with only
32 iterations on the permuted data). Supplementary Figure 1
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shows a comparison of the distribution of the p-values. As
we can see, the greedy strategy incorrectly underestimate the
permutational p-values for the solutions, due to the greedy
algorithm not being able to identify solutions of score as high
as NoMAS in the permuted datasets. The use of the greedy
algorithms would then lead to both 1. identify solutions in real
data with lower association to survival compared to NoMAS
and 2. wrongly estimate their permutational p-value as more
significant than it is.

Finally, we compared NoMAS with the use of an (additive)
score that sums single gene scores (similar to the ones used
in Vandin et al. (2012a). For each gene g ∈ G we computed the p-
value p(g) for the association of g with survival using the log-rank
test and defined a(S) =

∑

g∈S − log10 p(g). We then partitioned

the genes according to their association with increased survival
or with decreased survival and modified our algorithm to look
for high scoring solutions in a partition using score a(S). Results
are in Figure 3. We found that NoMAS outperforms the use of a

FIGURE 3 | Comparison of the normalized log-rank statistic of the best solution reported by NoMAS, by greedy algorithms (see Appendix for the description), and by

the algorithm that uses an additive scoring function a(S ) (denote by “additive” in the plots). To maintain readability we omit values above −4.0 when considering

mutations associated with increased survival. For each datasets the results for the maximization of w(S ) (top panel) and the maximization of −w(S ) (bottom panel) are

shown separately. (A) Results for GBM dataset. (B) Results for OV dataset. (C) Results for LUSC dataset.

FIGURE 4 | Subnetworks identified by NoMAS on GBM data. Subnetwork S associated with survival in GBM, Kaplan–Meier plot for the samples with mutations in S

vs. samples with no mutation in S. The bottom panel shows the mutations in patients for the genes and the entire subnetwork (last row); patients with censored

survival are in gray, other patients are in light blue; mutations in patients are show in dark color.
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single gene score, with a very large difference for certain values of
parameters.

We then used the holdout approach to identify significant
subnetworks for GBM, LUSC, and OV, considering the top-
10 highest scoring subnetworks found in the training set and
compute their p-value in the holdout set. We test all datasets
using k = 3, 4, 8, 256 iterations of the color coding algorithm.
As before, as pre-processing, genes mutated in < 3 samples
were eliminated. NoMAS identified several subnetworks with
significant association to survival. In GBM, for k = 8, NoMAS
found the subnetwork including COL5A3, DCN, EGFR, IGF1R,
LAMA2, MYLK, PIK3R1, and PIK3CA (p ≤ 0.05; Figure 4).
None of the genes is associated with survival when considered
in isolation. DCN, EGFR, IGF1R, PIK3R1 recur in various
metabolic functions related to lipids and enzymes signaling
and reception. These genes, together with PIK3CA, MYLK,
and LAMA2, are involved in formation and maintenance of
biological tissues, in cell movement and migration and cell
protection organization. Moreover, EGFR, PIK3R1, and PIK3CA
are well-known cancer genes. EGFR, IGF1R, LAMA2, MYLK,
PIK3CA, PIK3R1, and MYLK are members of the focal adhesion
pathway, whose dynamics are highly altered in cancer cells.
In LUSC, NoMAS found the subnetwork including MAD1L1,
USP15, and ZNF434 (p ≤ 0.03; Figure 5). None of the genes
is associated with survival when considered in isolation. USP15
stabilizes MDM2, a well-known cancer gene, to regulate cancer-
cell survival and mediates antitumor T cell responses (Zou et al.,
2014), while increased expression of MAD1L1 is associated with
poor prognosis in breast cancer (Sun et al., 2013). In OV, NoMAS
identified the subnetwork including EP300, NCOA3, NOTCH1,
andNOTCH4 (p ≤ 0.1; Figure 6). None of the genes is associated
with survival when considered in isolation. These genes are part
of a pathway related to RNA metabolic processes and have a role
in regulation of epidermis development and cell differentiation
within its layers. All genes are also linked to the thyroid hormone
signaling pathway, that is related to cell death and DNA damage
in ovarian cancer (Shinderman-Maman et al., 2017).

4. DISCUSSION

In this work, we study the problem of identifying subnetworks
of a large gene-gene interaction network that are associated with
survival using mutations from large cancer genomic studies.
Few methods have been proposed to identify groups of genes
with mutations associated with survival in genomic studies.
The work of Vandin et al. (2012a) combines mutations and
survival data with interaction information using a diffusion
process on graphs starting from gene scores derived from p-
values of individual genes, but did not consider the problem
of directly identifying groups of genes associated with survival.
The work of Reimand and Bader (2013) combines mutation
information and patient survival to identify subnetworks of a
kinase-substrate interaction network associated with survival.
It only focuses on phosphorylation-associated mutations, and
the approach is based on a local search algorithm that builds
a subnetwork by starting from one seed vertex and then

FIGURE 5 | Subnetworks identified by NoMAS on LUSC data. Subnetwork S

associated with survival in LUSC, Kaplan–Meier plot for the samples with

mutations in S vs. samples with no mutation in S. The bottom panel shows the

mutations in patients for the genes and the entire subnetwork (last row);

patients with censored survival are in gray, other patients are in light blue;

mutations in patients are show in dark color.

greedily adding neighbors (at distance at most 2) from the
seed, extending the approach used in different types of network
analyses (Chuang et al., 2007). A similar greedy approach is used
by Wu and Stein (2012) to identify groups of genes significantly
associated with survival in cancer from gene expression data.
For gene expression studies, Chowdhury et al. (2011) proposes
an approach to enumerate dysregulated subnetworks in cancer
based on an efficient search space pruning strategy, inspired
by previous work on the identification of association rules in
databases (Smyth and Goodman, 1992). Patel et al. (2013) uses
the general approach described in Chowdhury et al. (2011) to
identify subnetworks of genes with expression status associated
to survival.

Color-coding is a probabilistic method that was originally
described for finding simple paths, cycles and other small
subnetworks of size k within a given network (Alon et al., 1994).
The core of the color-coding technique is the assignment of
random colors to the vertices, as a result of which the search
space can be reduced, by restricting the subnetworks under
consideration to colorful ones, those in which each vertex has
a distinct color. For the identification of colorful subnetworks,
dynamic programming is employed. The process is repeated until
the desired subnetwork has been identified, that is having been
colorful at least once, with high probability. When the dynamic
programming algorithm is polynomial in n and the subnetworks
being screened are of size k ∈ O(log n), the overall running
time of the color-coding method too remains polynomial in
n. Color-coding has been previously used to count or search
for subgraphs of large interaction networks (Alon et al., 2008;
Bruckner et al., 2010). Color-coding has also been used to
identify groups of interacting genes in an interaction network
that are associated with a phenotype of interest, but restricted
to additive scores for sets of genes (i.e., the score of a set is
the sum of the scores of the single genes); for example, Dao
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FIGURE 6 | Subnetworks identified by NoMAS on OV data. Subnetwork S associated with survival in OV, Kaplan-Meier plot for the samples with mutations in S vs.

samples with no mutation in S. The bottom panel shows the mutations in patients for the genes and the entire subnetwork (last row); patients with censored survival

are in gray, other patients are in light blue; mutations in patients are show in dark color.

et al. (2011) uses color-coding to find optimally discriminative
subnetwork markers that predict response to chemotherapy from
a large interaction network by defining a single gene score as
− log10 d(g), where d(g) is the discriminative score for gene g
(i.e., a measure of the ability of g to discriminate two classes
of patients); similarly, Hormozdiari et al. (2015) uses color-
coding to find groups of interacting genes with discriminative
mutations in case-control studies, using as gene score the
− log10 of the p-value from the binomial test of recurrence of
mutations in the cases (while limiting the number of mutations
in the controls).

In this work we formally define the associated computational
problem, that we call the max connected k-set log-rank problem,
by using as score for a subnetwork the test statistic of the
log-rank test, one of the most widely used statistical tests
to assess the significance in the difference in survival among
two populations. We prove that the max connected k-set log-
rank problem is NP-hard in general, and is NP-hard even
when restricted to graphs with at least one node of large
degree. We develop a new algorithm, NoMAS, based on
the color-coding technique, to efficiently identify high-scoring
subnetworks associated with survival. We prove that even
if our algorithm is not guaranteed to identify the optimal
solution with the probability given by the color-coding technique
(due the non-additivity of our scoring function), it does
identify the optimal solution with the same guarantees given
by the color-coding technique when the data comes from
a reasonable model for mutations and independently of the
survival data. Using simulated data, we show that NoMAS
is more efficient than the exhaustive algorithm while still
identifying the optimal solution, and that our algorithm will
identify subnetworks associated with survival when sample sizes
larger than most currently available ones, but still reasonable,
are available.

We use cancer data from three cancer studies from TCGA
to compare NoMAS to approaches based on single gene
scores and to greedy methods similar to ones proposed in

the literature for the identification of subnetworks associated
with survival and for other problems on graphs. Our results
show that NoMAS identifies subnetworks with stronger
association to survival compared to other approaches, and
allows the correct estimation of p-values using a permutation
test. Moreover, in two datasets NoMAS identifies two
subnetworks associated with survival containing genes
previously reported to be important for prognosis in the
same cancer type as well as novel genes, while no gene
is significantly associated with survival when considered
in isolation.

There aremany directions in which this work can be extended.
First, we only considered single nucleotide variants and indels
in our analysis; we plan to extend our method to consider more
complex variants (e.g., copy number aberrations and differential
methylation) in the analysis. Second, we believe that our
algorithm and its analysis could be extended to the identification
of subnetworks associated with clinical parameters other than
survival time and to case-control studies, but substantial
modifications to the algorithm and to its analysis will be required.
Third, this work considers the log-rank statistic as a measure of
association with survival; another popular test in survival analysis
is the use of Cox’s regression model (Kalbfleisch and Prentice,
2002). The two tests are identical in the case of two populations,
therefore our algorithm identifies subnetworks with high score
w.r.t. Cox’s regression model as well. However, Cox’s regression
model allows for the correction for covariates (e.g., gender, age,
etc.) in the analysis of survival data. A similar approach could be
obtained by stratifying the patients in the log-rank test, but how
to efficiently identify subnetworks, and in general combinations
of genomic features, associated with survival while correcting for
covariates remains a challenging open problem. Fourth, genomic
regions other than genes (e.g., regulatory regions) or even other
regulatory elements (e.g., microRNAs regulating the expression
of driver genes) may be important for survival: the incorporation
in our method of alterations in such regions and elements is an
interesting direction for future research. Finally, in some studies
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the information regarding tumor (sub)clones and theirmutations
may be available: how to properly integrate such information in
our analyses is a challenging direction for further investigation.
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