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Abstract

Copy number variation is an important source of genetic variation, yet data are often lacking

due to technical limitations for detection given the current genome assemblies. Our goal is

to demonstrate the extent to which an array-based platform (aCGH) can identify genomic

loci that are collapsed in genome assemblies that were built with short-read technology.

Taking advantage of two cichlid species for which genome assemblies based on Illumina

and PacBio are available, we show that inter-species aCGH log2 hybridization ratios corre-

late more strongly with inferred copy number differences based on PacBio-built genome

assemblies than based on Illumina-built genome assemblies. With regard to inter-species

copy number differences of specific genes identified by each platform, the set identified by

aCGH intersects to a greater extent with the set identified by PacBio than with the set identi-

fied by Illumina. Gene function, according to Gene Ontology analysis, did not substantially

differ among platforms, and platforms converged on functions associated with adaptive phe-

notypes. The results of the current study further demonstrate that aCGH is an effective plat-

form for identifying copy number variable sequences, particularly those collapsed in short

read genome assemblies.

Introduction

Cichlid fishes have long been a model biological system to study evolutionary processes given

their phenotypic diversity, recent radiations, and high propensity for speciation [1, 2]. The ini-

tial sequencing of 5 cichlid genomes has paved the way for investigations on the genomic cor-

relates of adaptive radiations [3, 4], and the results highlighted the importance of both

sequence and structural variation between taxa [4, 5]. Given these genomes were assembled

using short-read sequencing technology, which is prone to collapsing repetitive genomic

regions with high shared sequence identity [6], this made it difficult to accurately quantify

copy number differences between species as well as variation within species. Limitations of

short-read read-depth approaches for quantification of copy number differences [7]
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necessitated the complementary approach of array-based comparative genomic hybridization

(aCGH) [8].

Long-read genome assemblies use single-molecule sequencing that can recover the other-

wise collapsed regions in short-read assemblies [9]. The releases of PacBio assemblies for

Metriaclima zebra and Oreochromis niloticus present an opportunity to quantify inter-species

copy number differences across multiple platforms [10–12]. aCGH has been shown to capture

recent gene duplications that can be highly repetitive (e.g. human: [13]; Drosophila: [14]; yeast:

[15]). Faber-Hammond et al. (2019) used aCGH to quantify intra-species copy number varia-

tion (CNV) as well as inter-species copy number differences between 53 species across 12

tribes of African cichlids [8]. This study showed an average of 50–100 CNVs per individual

with a high degree of intra-species variation such that only*10% of detected copy number

variable sites appeared fixed for a given species. The authors also found that 4.5 times more

CNV-related aCGH probe sequences aligned to more O. niloticus PacBio assembly loci than to

Illumina assembly loci whereas random probe sequences had a significantly lower (1.75:1)

ratio.

Here, we used two cichlid species to perform an investigation into the concordance between

copy number detection approaches, which include using aCGH data and available Illumina

and PacBio assemblies. We found a strong correlation between inter-species aCGH log-fold

ratios and PacBio sequence copy numbers, and we bioinformatically validate the gene path-

ways that were found to be copy number variable in the prior study. Although each copy num-

ber detection platform has its own strengths and weaknesses, this work presents a further

proof-of-concept for the techniques applied in aCGH studies by demonstrating that aCGH-

detected inter-species copy number differences are supported by sequencing technology as

genome assemblies improve [8, 16–18].

Methods

Inter-species aCGH log2 hybridization ratio

aCGH involves competitively hybridizing fluorescently-labeled DNA from different samples

to probes on a microarray. By measuring the relative fluorescence from each sample, one can

ascertain the relative copy numbers of the DNA segment represented by a probe. To identify

and quantify copy number differences between species we performed inter-species competitive

aCGH using the 12-plex custom Cichlid array (GEO accession GPL25405). The array was con-

structed such that each gene is represented by 3 probes, with intergenic probes roughly every 6

kb. Notably, the array has an O. niloticus bias due to the poorly assembled genomic regions

being absent in other cichlid species and probe sequences being designed primarily based on

the high-quality O. niloticus genome [8]. We used three different M. zebra samples (Mz #1, #2,

#3 wild caught; provided by Tom Kocher) derived from different fish than were used to build

the genome assembly and genomic DNA from the University of Stirling O. niloticus (On)

clonal line [19] previously used for genome assembly (see below). Genomic DNA isolated

from ethanol-preserved fin or muscle tissue was labeled with NimbleGen dual-color kits and

competitively hybridized in equal amounts in a reference design of Cy3 and Cy5 to the array

for 64 hours at 42 ˚C (NimbleGen Hybridization Station 4) prior to rinsing and scanning

(GenPix 4000 Scanner 5 μm/pixel resolution). Dual-color signal-intensity matrices (GEO:

GSE141976) were analyzed in RStudio v3.1.3. Four different arrays were used, thus, the data

represent 3 biological replicates and one technical replicate (Mz #1 vs On, Mz #2 vs On, Mz

#3.1 vs On, and Mz#3.2 vs On). Data were processed through the DEVA v.2.1 (NimbleGen)

pipeline with q-spline normalization and exported for GC-Loess normalization in R-Studio

v3.1.3 using Ringo and limma packages [20, 21]. We calculated weighted median log2
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hybridization ratios for each probe by averaging among two replicate arrays and then finding

the median hybridization ratio of that and two other unique competitive hybridizations. We

used this inter-species aCGH log2 hybridization ratio for further analyses and set a +/-0.8

threshold for calling inter-species copy number difference. This threshold was previously vali-

dated to optimize the strength of correlation and decrease the number of discordant probes

between aCGH and independent read-depth-based data [8].

Inter-species genome assembly log2 hit ratio

To obtain a sequence-based assessment of inter-species copy number differences that could be

compared to aCGH results, we identified the number of hits in each genome assembly for the

probe sequences on the same 12-plex custom cichlid array described above (GEO accession

GPL25405). Probe sequences were aligned to O. niloticus and M. zebra and short-read Illumina

(RefSeq accession GCA_000188235.2, GCF_000238955.1) and long-read PacBio

(GCF_001858045.2, GCF_000238955.4) genome assemblies using BLASTn (e-value = 10) and

filtered conservatively for perfect alignments (100% identical full probe length) appearing at

least once in each assembly. To establish a metric comparable to the inter-species log2 aCGH

hybridization ratio, we calculated inter-species genome assembly log2 hit ratios for each probe

representing the number of perfect alignments for probes in O. niloticus assembly relative to

M. zebra for both PacBio and Illumina assemblies. While robust copy number detection meth-

ods based on read-depth are available (e.g. mrCaNaVAR; CNVnator [22]), we used exact

match sequence copy numbers for several reasons. First, the sequence match approach allowed

direct one-to-one comparison to the corresponding loci for specific probes used in aCGH as

opposed to comparing to a mean depth across a larger genomic interval. Second, sequence

matches allowed us to avoid complications with varying overall read depth between species

and this approach avoided biases of read depth algorithms optimized for specific technologies

(e.g. library preparation and asynchronous amplification [22, 23]). A 100% BLASTn alignment

threshold was selected because it allowed for nucleotide composition analysis of probes

detected by each sequencing platform (see below). Decreasing BLASTn alignment thresholds

below 100% did not appreciably improve relative copy number concordance across platforms

(S1 Fig).

Inter-platform hit bias

To quantify the number of loci that show differential copy number detection across the NGS

platforms and assemblies, we identified the subsets of probes that have positive or negative

inter-platform log2 hit ratios using the number of perfect hits in the PacBio assembly com-

pared to the number of perfect hits in the Illumina assembly within each of the two species.

Statistical analyses

We performed all statistical analysis comparing probe inter-species log2 ratios from each of the

three technologies in R-studio v1.1.383 [24]. Pearson’s R was calculated to test significance

and strength of correlations in pairwise dataset comparisons using the Stats R package v3.5.1.

Pairwise correlation analyses were run for all probes that represent putative multi-copy

sequences by having two or more hits in at least one assembly and sets of probes detected as

copy number gains in either species by each pair of platforms. Probe sequence nucleotide com-

position (nucleotide frequencies, dinucleotide frequencies, and overall G/C and A/T) was

assessed using Mesquite v3.6 [25] and pairwise permutation MANOVAs were performed on

distance matrices built from nucleotide statistics for sets of probes identified as gains by each

of the three technologies (RVAideMemoire v0.9–73 [26]). Post-hoc ANOVAs were run
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between pairs of platform-exclusive probe sets using all possible nucleotide/dinucleotide char-

acteristics to identify those that account for pairwise platform biases. We also performed prin-

cipal component analysis (PCA) to examine the relative contributions of nucleotide

frequencies across the dataset (Stats R package). aCGH log2 hybridization ratios associated

with probe sets showing inter-platform hit biases were analyzed through ANOVA and Tukey’s

HSD test (Stats R package).

Gene ontology analysis

In order to test whether any of the three copy number detection platforms (aCGH, Illumina-

seq, PacBio-seq) were biased toward certain gene types, we ran GO enrichment analysis for

subsets of genes identified as gains by all combinations of platforms using the full set of genes

detected as gains as background for each respective species. We also tested all candidate gene

gains from any platform/species against the all annotated genes as a background set for com-

parison of our full gene set with other studies. Due to the design of the array, genes were con-

sidered to show inter-species copy number differences if one or more of three representative

probes for that gene was found as a gain. Therefore, a single gene might fall into different plat-

form-specific sets due to information from different probes. Enrichment analyses were per-

formed in BLAST2GO v5.2.5 [27] and significant results are reported at FDR<0.05.

Results and discussion

Probe sequence alignments

A similar number of probe sequences had at least one perfect alignment to the Illumina-based

assemblies (O. niloticus (On): 130,956; M. zebra (Mz): 100,826) and the PacBio-based genome

assemblies (On: 130,679; Mz: 100,192). The greater number for O. niloticus likely reflects the

O. niloticus species bias in probe design based on quality and coverage differences between

assemblies. The intersection of these four sets includes 98,090 probe sequences that had at least

one perfect hit in each of the four assemblies, representing 72.9% of the total probe sequences

tested. The majority of this intersecting set, 88,871 (90.6%), had only one hit in each of the

four genome assemblies, representing putative single copy sequences. However, 9,219 (9.4%)

probe sequences had two or more perfect matches in one or more of the assemblies, thus rep-

resenting possible copy number variation. Only 88 of these probes with multiple alignments in

genome assemblies had equal numbers of hits across assemblies. The technology bias towards

more alignments in the PacBio-based assemblies (On: 2,282, Mz: 5,536) than in Illumina-

based assemblies (On: 928, Mz: 385) (Kruskal-Wallis rank sum test, P < 2.2e-16; Mz: df = 36,

X2 = 341.75; On: df = 37, X2 = 845.49) reveals loci that were “collapsed” in Illumina assemblies,

thus obscuring true inter-species structural variation. Likely due to the lower quality of the

original M. zebra Illumina assembly, more loci appear collapsed in M. zebra than in O.

niloticus.
Only 928 O. niloticus and 385 M. zebra probes had a greater number of perfect alignments

in Illumina assemblies than in PacBio assemblies, which may reflect within-species variation

given that different individuals were sequenced by each platform. Alternatively, it may also

represent missed alignments due to higher error rates in PacBio combined with our strict

threshold of requiring perfect assemblies. While O. niloticus samples for all three platforms

derive from the University of Stirling line of clones, individual samples may harbor de novo
mutations. For M. zebra, a single wild individual was used for the Illumina assembly, a pool of

individuals were used for the PacBio assembly, and three unique individuals were used for

aCGH. Thus, individual variation could contribute to the reduced overlap in copy number

detection among platforms seen for M. zebra.
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Inter-species CNV detection methods

Focusing on the 9,219 probe sequences representing possible copy number variable loci, we

calculated inter-species log2 (hybridization or hit) ratios to estimate the relative number of

copies of a particular probe sequence in O. niloticus compared to M. zebra for each platform

(aCGH, Illumina-seq, PacBio-seq). The strongest correlation was between aCGH and PacBio

log2 ratios (Pearson’s R = 0.617, t = 75.304, df = 9217) while PacBio and Illumina had the sec-

ond strongest correlation (Pearson’s R = 0.463, t = 50.212, df = 9217) and aCGH and Illumina

had the weakest correlation (Pearson’s R = 0.294, t = 29.526, df = 9217) (P< 2.2e-16 for all cor-

relations). These correlations are made more robust by removing neutral and near-neutral

probes for the two platforms compared (Fig 1, S1 File). The strong correlation between inter-

species aCGH and PacBio log2 ratios underscores the fact that PacBio technology validates a

large set of copy number variable loci missed by short-read technologies, yet these loci could

still be detected by aCGH [5, 28]. Segmentation analysis was not performed here for aCGH

results, which allowed for more accurate comparisons across platforms at a probe level. At this

fine-scale resolution, we found sets of probes showing aCGH-based inter-species differences

overlapping with sets of probes showing both inter-species differences among NGS platforms

and inter-platform differences within a species.

We also tested whether those loci that are expanded in the PacBio-based genome assemblies

are different between species according to aCGH log2 ratios (Fig 2). For O. niloticus, the Pac-

Bio-biased set of probe sequences had a higher average median aCGH log2 hybridization ratio

than the full set of probe sequences (n = 2,282; Tukey’s HSD: adj. P< 2e-16) and for M. zebra
the PacBio-biased set of probe sequences had a lower average median aCGH log2 hybridization

ratio than the full set of probe sequences (n = 5,536; Tukey’s HSD: adj. P< 2e-16). Interest-

ingly, the Illumina-biased set of probe sequences also showed the expected species bias in

aCGH for O. niloticus (n = 928; Tukey: adj. P = 1.48e-5) and, though not significantly, for M.

zebra (n = 385; Tukey: adj. P = 0.246).

While many probe sequences were detected as concordant gains across all three platforms

(On: 949, Mz: 181), each technology also identified a unique set (Fig 3) [8]. Within-species vari-

ation for M. zebra may explain a portion of these unique probe sets seen as gains in M. zebra, or

losses that would manifest as relative gains in O. niloticus despite clonal line samples for the lat-

ter species. The aCGH-specific probes likely represent copy number gains with sequence diver-

gence that are not captured by our 100% BLASTn threshold used to calculate hit ratios [5, 28]

(S1 Fig). Some of the Illumina or PacBio platform-specific probes may represent higher copy

number sequences in which the ratio between species is not dramatic and would be missed by

our conservative +/-0.8 log2 aCGH threshold. The probe-sets identified by aCGH had greater

overlap with PacBio-identified inter-species differences than with those identified by Illumina.

Overall, probes representing copy number gains in O. niloticus showed more reciprocal overlap

between platforms than those in M. zebra likely due the lower quality of the M. zebra Illumina

assembly, also contributing to underrepresentation of M. zebra sequences in array design.

The patterns of overlap for the number of gene gains was similar to, but lower than, those

for the number of probe sequences both because probe sequences can be intergenic and genes

are represented by multiple probes (S1 Table). This genic content further reinforces the notion

that many of the multicopy sequences collapsed by short-read sequencing/assembly may be

important in understanding species divergence as genomic structural variation within the spe-

cies provides the substrate for evolution. aCGH can be used to detect both the intra-species

and inter-species variation upon which selection can act leading to divergence and diversifica-

tion [29–34]. In several instances these genomic regions have been shown to underlie adaptive

phenotypes [35, 36] and reflect phylogenetic relationships [37].
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Sequence characteristics of platform biases

To examine whether nucleotide composition played a role in which probe sequences were

detected as gains by each platform, we assessed single nucleotide composition, dinucleotide

composition, and overall G/C or A/T content. We found that aCGH-, Illumina-, and PacBio-

exclusive probe sequence sets were all significantly different from each other in nucleotide

composition (pairwise permutation MANOVA FDR = 0.0099). PCA was run to determine

which nucleotide composition statistics appear to explain the most variation across groups (S2

Table, S2 Fig), and PC1 was heavily weighted by G/C vs. A/T content and explains 24.5% of

the variance in the dataset with PacBio probe hits having a slight bias towards a higher GC

content. PC2 was heavily weighted by variation in A nucleotide frequency along with related

A-containing dinucleotides, explaining 18.8% of variation, and PC3 was heavily weighted by

variation in C/A vs. G/T nucleotide frequency, explaining 16.6% of the variance. No other

Fig 1. PacBio hit ratios correlate better with aCGH hybridization ratios than Illumina hit ratios. Pearson’s

correlations and linear regressions represent all 9,219 probes with 2 or more hits in at least one genome assembly (solid

line) and those detected with different copy numbers in the two plotted platforms (dotted line). Points are jittered to

better show high density of overlapping points (particularly around 0 ratios) when log2 ratios are calculated from

discrete integers of BLAST-hit counts.

https://doi.org/10.1371/journal.pone.0258193.g001

Fig 2. Intra-species NGS platform bias and relationship to inter-species aCGH bias. aCGH log2 hybridization ratios

of probes with variable numbers of hits between sequencing technologies are significantly different from the full

distribution of aCGH ratios in the direction of PacBio biased probes. �Significance is indicated for pairwise Tukey’s

HSD tests at FDR<0.05.

https://doi.org/10.1371/journal.pone.0258193.g002
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components explained more than 6% of the variance and appear relatively unimportant in

identifying platform biases based on nucleotide composition.

Post-hoc univariate ANOVAs were performed for each sequence characteristic in a pair-

wise comparison of platform-specific species-biased probes. These results confirmed the

nucleotide/dinucleotide characteristics seen in PCAs (S2 Table). After performing Bonferroni

correction, 2 sequence characteristics differentiate aCGH from Illumina, 14 sequence charac-

teristics differentiate aCGH from PacBio, and 6 differentiate Illumina from PacBio. The most

prominent pattern shows PacBio is significantly differentiated from both aCGH and Illumina

probes by G/C and inversely A/T content, which are the terms responsible for variation along

PC1. PacBio detected probes are most differentiated from aCGH detected probes by A content,

but this signal is less significant in the comparison of PacBio vs. Illumina making G/C varia-

tion the strongest pattern overall. This pattern in aCGH probes reflects PCA loadings, which

Fig 3. Euler Diagram showing counts of probes and genes detected as copy number variable for each technology. (A) and (B) are counts of probes and the

genes they represent, respectively, that appear to have O. niloticus bias by at least one of the three platforms, while (C) and (D) are counts of probes and genes,

respectively, that appear to have M. zebra bias by at least one platform. Probe counts listed in (A) and (C) include both intergenic and genic probes while counts

in parentheses include genic probes only. For a probe to be biased towards a species in NGS assemblies, there must be more exact sequence matches in one

assembly than the other. To account for noise in aCGH results, probes must be species biased after filtering of near-neutral log2 hybridization ratios (+/-0.8).

https://doi.org/10.1371/journal.pone.0258193.g003
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indicate that A content is responsible for the most variation along PC2. aCGH and Illumina

probes are differentiated by the fewest nucleotide/dinucleotide identities, but vary most in

their GC dinucleotide content. GC content is more specific in its nucleotide arrangement and

is separate from overall G/C content found to differentiate PacBio from both other platforms.

There have been a number of studies showing that G/C content can influence hybridization

efficiency of arrays or library preparation and assembly steps for NGS sequencing technologies

[38, 39]. The variation found in A content is interesting in that it parallels results from previ-

ous studies showing deficits in adenine content in next-gen sequencing libraries built with

both blunt-end or AT overhang ligation [40]. Given the array probes compared here were

built using the Illumina assemblies as templates, these results suggest aCGH technologies may

be better suited to detect real copy number variation in A-rich regions that are underrepre-

sented in short read sequencing libraries.

Function of copy number variable genes

To determine whether the different platforms might lead to different functional inference (e.g.

be biased toward detection of specific gene families) we ran Gene Ontology enrichment analy-

ses on the sets of copy number variable genes identified by all combinations of platforms in

either species. Enrichment results for the full set of gene gains from any platform in either spe-

cies (using all annotated genes as background) closely parallel earlier aCGH studies [8, 41–46]

in identifying GO terms associated with adaptation to diverse environments and categories of

genes known to proliferate. These terms include G-protein coupled receptor pathways, detec-

tion of chemical stimulus, olfactory receptor activity, monooxygenase activity, olfactory recep-

tor activity, integral component of membrane, iron ion binding, and oxidoreductase activity

(Table 1), with the first four GO terms also detected in our previous broader aCGH study [8].

Enrichment analyses performed on full sets of genes detected as gains by each technology for

Table 1. Gene Ontology (GO) enrichment for gene subsets.

GO ID GO Name GO Cat FDR % Test Set % BG Set

All candidate copy number variable genes vs. full genome annotation
GO:0004930 G protein-coupled receptor activity MF 3.31E-11 6.8% 3.0%

GO:0007186 G protein-coupled receptor signaling pathway BP 8.52E-09 7.1% 3.6%

GO:0050911 detection of chemical stimulus involved in sensory perception of smell BP 1.77E-03 0.9% 0.2%

GO:0004497 monooxygenase activity MF 1.77E-03 1.2% 0.4%

GO:0004984 olfactory receptor activity MF 1.77E-03 0.9% 0.2%

GO:0016021 integral component of membrane CC 2.56E-03 30.6% 25.8%

GO:0005506 iron ion binding MF 4.48E-03 1.6% 0.6%

GO:0016705 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen MF 4.77E-02 1.3% 0.5%

aCGH-only O. niloticus gene gains vs. all predicted O. niloticus gene gains
GO:0006355 regulation of transcription, DNA-templated BP 9.74E-03 4.2% 0.4%

GO:0043565 sequence-specific DNA binding MF 1.56E-02 2.8% 0.0%

GO:0005634 nucleus CC 4.00E-02 6.7% 1.9%

aCGH-only M. zebra gene gains vs. all predicted M. zebra gene gains
GO:0035556 intracellular signal transduction BP 3.91E-02 5.1% 1.5%

GO:0005634 nucleus CC 4.48E-02 7.9% 3.4%

GO:0006355 regulation of transcription, DNA-templated BP 4.57E-02 6.1% 2.2%

GO category abbreviations are MF for Molecular Function, BP for Biological Process, and CC for Cellular Component. Percentage columns report the percentage of the

genes for each GO term within test and background (BG) gene sets.

https://doi.org/10.1371/journal.pone.0258193.t001
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each species (using all species-specific candidate gene gains as background) yielded no signifi-

cantly enriched GO terms, revealing no obvious functional biases. For genes detected exclu-

sively by a single technology (i.e. no overlap with other platforms), aCGH showed only modest

enrichment (FDR < 0.05) for only four overlapping terms: regulation of transcription and

nucleus in both species, and sequence-specific DNA binding in O. niloticus and intracellular

signal transduction in M. zebra, with only one significant at FDR< 0.01 (regulation of tran-

scription in O. niloticus). This result could either reflect sequence hybridization bias on the

array or the gene-centric bias of the array design, but lack of enrichment results for full gene

sets from each platform suggests that the platforms largely coalesce around the detection of

similar sets of genes.

Conclusion

The primary goal of our study was to demonstrate the extent to which an array-based platform

(aCGH) can identify genomic loci that are collapsed in short-read genome assemblies by tak-

ing advantage of two cichlid species for which both Illumina and PacBio genome assemblies

are available for comparison to inter-species aCGH data. Our study shows that relative

sequence copy numbers from PacBio genome assemblies correlate better with aCGH results

than either technology does with estimates from the Illumina-based assemblies. Due to the

design of our microarray, our results are biased toward loci that are present in ten or fewer

copies in Illumina assemblies rather than highly repetitive elements. The larger number of

sequence gains detected in M. zebra compared to O. niloticus is also likely impacted by the

array probe design based on the different levels of completeness of the Illumina cichlid

genomes. We assessed platform biases further and found them to be minimal at a functional

and sequence characteristic level, although we identify nucleotide characteristics that poten-

tially underlie such biases. Overall, these results demonstrate that aCGH remains a valid and

effective approach for between-species [30, 31] or within-species [29] CNV studies that could

be applied for population level studies [47, 48]. A complete understanding of the molecular

basis for adaptive natural selection, speciation, and population level structural variation greatly

benefits from detection of copy number differences within and between species utilizing the

multiple platforms explored here.

Supporting information

S1 Fig. Impact of BLASTn percent identity threshold on detection of species-biased probes

between platforms. Figures show reciprocal proportional overlap of probes detected as gains

between aCGH and sequencing platforms for (A) M. zebra and (B) O. niloticus. The x-axis rep-

resents BLASTn hit % identity cutoffs used to generate probe sequence counts for both

sequencing platforms. All probes were required to have at least one 100% identity hit in each

of the four genome assemblies considered. For M. zebra, the reciprocal overlaps do not appre-

ciably change as the threshold is lowered. For O. nilocitus, the overlaps of aCGH with sequenc-

ing platforms increase as we lower the BLASTn threshold while the overlaps of sequencing

platforms with aCGH decrease. This pattern is due to the expansion of the Illumina and Pac-

Bio sets adding more non-concordant than concordant hits. There is a slight increase in both

reciprocal overlaps with a slight reduction in threshold (98%), however these results show that

choosing 100% as a conservative threshold to generate BLASTn hit counts provided sufficient

concordance between datasets while still allowing for accurate downstream assessment of plat-

form biases based on known nucleotide composition of probes.

(TIF)
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S2 Fig. Nucleotide composition PCA for platform-exclusive probes. Principal component

analysis (PCA) plots representing distributions of probes detected as gains in either M. zebra
or O. niloticus by only one of three platforms. Panel (A) shows PCs 1 and 2 and panel (B)

shows PCs 2 and 3. Contribution of all nucleotide composition statistics are superimposed on

each plot to visualize potential platform biases. While all platform-exclusive probe sets largely

overlap, probes with higher G/C content appear more likely to be detected as gains in PacBio

assemblies than by Illumina or aCGH along PC1. Additionally, aCGH-exclusive probe sets

have slightly higher A-content than either sequencing platform exclusive set as represented by

PC2 and PC3.

(TIF)

S1 File. Linear regression output.

(TXT)

S1 Table. Gene probe information.

(XLSX)

S2 Table. Nucleotide composition PCA output & pairwise MANOVA results.

(XLSX)
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