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Neurogenesis begins in embryonic
development and continues at a

reduced rate into adulthood in vertebrate
species, yet the signaling cascades regulat-
ing this process remain poorly under-
stood. Plasma membrane-initiated
signaling cascades regulate neurogenesis
via downstream pathways including com-
ponents of the transcriptional machinery.
A nuclear factor that temporally regulates
neurogenesis by repressing neuronal dif-
ferentiation is the repressor element 1
(RE1) silencing transcription (REST)
factor. We have recently discovered a reg-
ulatory site on REST that serves as a
molecular switch for neuronal differenti-
ation. Specifically, C-terminal domain
small phosphatase 1, CTDSP1, present
in non-neuronal cells, maintains REST
activity by dephosphorylating this site.
Reciprocally, extracellular signal-regu-
lated kinase, ERK, activated by growth
factor signaling in neural progenitors,
and peptidylprolyl cis/trans isomerase
Pin1, decrease REST activity through
phosphorylation-dependent degradation.
Our findings further resolve the mecha-
nism for temporal regulation of REST
and terminal neuronal differentiation.
They also provide new potential thera-
peutic targets to enhance neuronal regen-
eration after injury.

New neurons are generated from neu-
ral progenitor cells (NPCs) via a process
called neurogenesis, which in vertebrates
occurs in restricted brain regions.1 Neuro-
genesis is associated with biological func-
tions such as learning, memory, and other
cognitive functions. Inhibition of neuro-
genesis via antimitotic agents, radiation,
or genetic manipulations has been demon-
strated to impair hippocampus-dependent

forms of memory in rodents.2 Studies in
songbirds have associated neurogenesis
with song learning.3 Defects in neurogen-
esis have been linked with many disease
states, with cognitive etiologies including
developmental disorders (e.g., microceph-
aly,4 megalencephaly,5 and autism)5 as
well as neurodegenerative diseases (e.g.,
dementia and Alzheimer disease).6 Ulti-
mately, resolving the signaling mecha-
nisms that regulate neurogenesis is key to
advancing our understanding of these bio-
logical processes.

Neurogenesis is orchestrated by several
signaling pathways originating at the
plasma membrane, including Wnt, EGF,
FGF, VGEF, and BMP, and terminating
in the cell nucleus. These signaling cas-
cades initiate the progressive expression of
many transcription factors, including
Pax6, Ngn2, Tbr2, NeuroD, and Tbr1.
Despite this list of implicated proteins,
many gaps remain in our knowledge
regarding the signaling mechanisms in the
nucleus that leads to transcriptional
changes that occur during neuronal differ-
entiation. These nuclear signaling compo-
nents are attractive targets for treating
neurological disorders because they
directly regulate cellular differentiation.

Our recent report provides new insight
into the signaling mechanisms regulating
the repressor element 1 (RE1) silencing
transcription factor (REST), a master reg-
ulator of neuronal differentiation. REST
acts by binding to the DNA chromatin at
the RE1 sites near the regulatory regions
of neuronal genes to repress their expres-
sion.7 Consistent with its function, REST
is present in most non-neuronal tissues
including stem cells.8,9 Many target genes
of REST repression have been identified,
including those required for the terminally
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differentiated neuronal phenotype such as
receptors, ion channels, growth factors,
and axonal-guidance proteins.7 Consistent
with this role, REST is aggressively
degraded in neural stem/progenitor cells,9

and the clearance of REST from the chro-
matin allows for the expression of neuronal
genes, enabling terminal differentiation.9

Prior studies of REST degradation
identified a mechanism that involves the
phosphorylation of 2 C-terminus sites of
REST (E1009/S1013 and S1024A/
S1027A/S1030A)10,11 by casein kinase 1,
CK1.12 Phosphorylation of these 2 sites
facilitates binding of a chaperone protein,
b-transducin repeat containing E3 ubiqui-
tin protein ligase (bTrCP),12 which then
shuttles REST to the proteasome for deg-
radation.10,11 However, both CK1 and
bTrCP are present in stem cells where
REST is abundant, and phosphorylation
of residues S1013/1024/1030 does not
explain the observed temporal regulation
of REST degradation.9,13

Our objective was to elucidate the cell
signals that are consistent with the timing
of REST degradation. Using mass-spec-
trometry, we identified 14 phosphoryla-
tion sites as putative regulatory sites.
Cycloheximide degradation assays in
HEK cells expressing REST truncations
and point mutations revealed that a pro-
line-directed phosphorylation motif at ser-
ines 861 and 864 regulates REST
stability/activity.14 Coincidentally, these
amino acids were found to be the most
frequently phosphorylated.

In light of the previously identified
REST degradation sites,10,11 we investi-
gated the possibility that the mechanisms
governing REST degradation were related.
Accordingly, we mutated serines 861 and
864 and assessed bTrCP binding at the
previously identified down stream REST
degradation sites.10,11 We found mutating
serines 861 and 864 indirectly regulated
binding of bTrCP to the downstream
REST degradation sites.14 We hypothe-
sized that the mechanism governing
bTrCP binding was through either a
change in protein-protein interactions
or conformation. Consistent with this
hypothesis, we identified serines 861 and
864 as a Pin1 binding motif.14,15 Pin1 is a
well-established modulator of protein-
protein interactions (including bTrCP),16

and phosphorylation dependent confor-
mational changes.15 Importantly, Pin1 is
implicated in neuronal differentiation.16

We found Pin1 recognized phosphory-
lated serines 861 and 864, and that inhib-
iting Pin1 activity inhibited the binding
of bTrCP.14 Our data show that serines
861 and 864 shared the same mechanism
for regulating REST stability as the previ-
ously identified downstream sites.10,11,14

Given that Pin1 binding requires a
phosphorylated serine or threonine adja-
cent to a proline,15 we sought to identify
the kinase that phosphorylates these resi-
dues. Both serine 861 and 864 are highly
predicted for recognition by the extracel-
lular signal-regulated kinases, ERK, 1 and
2. We hypothesized that ERK and its
canonical upstream activators, epidermal
growth factor (EGF) and the small
GTPase Harvey rat sarcoma viral onco-
gene homolog (H-Ras) would promote
phosphorylation at these serines in REST.
We demonstrated that serine 861 and 864
are terminal targets of EGF-Ras-ERK sig-
naling and that ERK2 can directly phos-
phorylate REST.

The EGF-Ras-ERK pathway is impli-
cated in both embryonic and adult neuro-
genesis.17,18 In embryonic culture models
of neuronal differentiation, EGF treat-
ment correlates with REST degradation.19

Accordingly, our work demonstrates that
inhibiting ERK stabilizes REST. There-
fore, our findings implicate phosphory-
lated serines 861 and 864 as an early
biomarker for neurogenesis.

In differentiating neural progenitor
cells, targeting REST for degradation leads
to the removal of REST from the chroma-
tin, allowing for the expression of neuro-
nal genes.19 In non-neuronal cell types,
REST protein is more stable - likely a crit-
ical factor contributing to its retention
time on the chromatin.9 We were inter-
ested in identifying how REST stability is
maintained. A balance between kinase and
phosphatase activities often regulates pro-
tein stability. Because we found that
kinase activity at serines 861 and 864 to
mediate REST degradation, we hypothe-
sized that phosphatase activity may protect
REST from degradation. Consistent with
this hypothesis, REST has been detected
colocalized on neuronal gene chromatin
with the protein phosphatase CTDSP1.20

Additionally, it is known that the expres-
sion of CTDSP1 decreases dramatically as
neural progenitor cells differentiate into
mature neurons,20 while knockdown of
CTDSP1 in a neural progenitor cell line
accelerates neuronal differentiation.21 We
found that CTDSP1 dephosphorylates
seines 861 and 864, resulting in stabiliza-
tion of REST.

One of the unresolved questions in
mammalian neurogenesis is how neural
progenitors switch from a proliferation to
differentiation state. Relevant to this ques-
tion is the observation that Wnt/b-catenin
signaling has different effects on neural
progenitor cells depending on when it is
expressed during development.22,23 In the
expansion phase of early neural progeni-
tors, Wnt/b-catenin signaling promotes
proliferation.24-26 In the neurogenic
phase, Wnt/b-catenin induces neuronal
differentiation.27

Our results offer a model to resolve this
paradox. In the expansion phase, REST is
protected from degradation by CTDSP1,
and remains bound to the chromatin to
repress the expression of neuronal genes
that would have otherwise been induced
by Wnt/b-catenin signaling.7,28,29 In sub-
sequent neurogenic phases, an increase in
ERK and Pin1 signaling levels30 promotes
bTrCP degradation of REST.14 This
results in the removal of REST from the
chromatin and the derepression of neuro-
nal genes induced by late Wnt/b-catenin
signaling.7,28,29 Future investigation of
this model will provide additional resolu-
tion of the early and late stage mechanics
of coordinated neurogenesis.

Implications for Advancing
Regenerative Medicine in the

Central Nervous System

Neural stem cells in the adult brain
have the ability to generate and integrate
new neurons.31 The rate at which neurons
are produced can be regulated by many
factors. Exercise and mental simulation
are correlated with increased neurogene-
sis;32 while advanced age, stress, and
diseases associated with cognitive
impairment are correlated with an arrest
or decrease in neurogenesis.33 Given the
flexibility in the rate at which stem cells
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can generate new neurons, researchers
have attempted to harness this potential to
repair brain damage.34-36 Current thera-
peutic approaches have identified strate-
gies to generate new neurons in uninjured
brains, including infusing or transplanting
exogenous stem cells,36 coaxing endoge-
nous stem cells to become neurons by
using blood transfusion, and supplement-
ing growth/neurotrophic factor.34,35,37

Unfortunately, none of these approaches
have been successful in producing new
integrated neurons after traumatic brain
injury in humans.

Brain injury induces NPCs to generate
astrocytes preferentially over neurons,38

and these astrocytes migrate to the site of
injury forming an astrocytic scar.39 The
scar protects the brain from further
injury.39 However, it also prevents neuro-
nal regeneration at the site of injury.40

The development of strategies directing
NPC fate is an appealing approach to
enhance neuronal regeneration after brain
injury.

Astrocytes must maintain repression of
neuronal genes. Accordingly, during astro-
genesis REST is not degraded. This sug-
gests that brain injury induces signaling
cascades that promote the repression of
neuronal genes. Consistent with this
hypothesis, studies have found that condi-
tions that damage the brain such as a
stroke or seizure can result in derepression

of REST.41-44 The predicted outcome of
this effect is the inhibition of neuronal dif-
ferentiation. In fact, brain injury induces
NPCs to generate astrocytes instead of
neurons. An attractive and yet untested
approach to promoting neuronal regener-
ation in brain injury is to remove this neu-
ronal gene repression (e.g. inhibit REST).

There are many ways that inhibiting
REST activity would improve neuronal
regeneration therapy after CNS injury.
First, it would promote the differentiation
of neural progenitor cells toward neurons
instead of astrocytes.45 Second, inhibiting
REST would likely reduce the risk of
brain cancer associated with transplanted
stem cells, according to a leading hypothe-
sis that cancer arises from such neural
stem cells.46 In fact, insuring against
tumorogenesis by transplanted cells has
been a major hindrance for the adoption
of brain injury-targeted stem cell therapies
(FDA, http://www.fda.gov/NewsEvents/
PublicHealthFocus/ucm286218.htm).
Relevant to this discussion of REST regu-
lation is the fact that many brain cancers,
including glioblastoma,47 meduloblas-
toma,48,49 and neuroblastoma50 have
overexpressed REST which is implicated
in oncogenic transformation.47-49 Thus,
inhibiting REST activity or expression
would promote the differentiation of stem
cells into neurons, reducing the risk of
them transforming into tumorigenic cells.

Third, there is evidence that derepression
of REST in neurons promotes their
death.43 This observation indicates that
inhibiting/degrading REST could protect
neurons from death,12,43 improving CNS
recovery after injury.

Our Findings Establish REST As a
Rational Therapeutic Target

Serines 861 and 864 determine
whether REST is targeted for degradation,
a critical step in neurogenesis. In the phos-
phorylated state serines 861 and 864 are a
predicted biomarker for neurogenesis, and
may help to determine the potential of
neural stem cells to differentiate into neu-
rons after brain injury. In situations where
neurogenesis is repressed, it could then be
reversed. In our model, we identify 2
opposing signals that regulate REST activ-
ity/stability. First, CTDSP1 protects
REST from degradation by dephosphory-
lating serines 861 and 864 (Fig., left
panel). Inhibiting CTDSP1 should there-
fore promote REST degradation. Second,
EGF-Ras-ERK signaling phosphorylates
REST at serines 861 and 864 (Fig., right
panel). Thus, augmenting EGF signaling
should offer a synergistic effect on
neuronal regeneration.

In our study we, demonstrate the feasi-
bility of using a peptidomimetic (decoy)

Figure 1. A model for reciprocal regulation of REST through post-translational modifications on serines 861 and 864. In stem cells, REST sits on the chro-
matin and represses neuronal gene expression (left panel). Here, REST is protected from degradation, because CTDSP1 dephosphorylates serines 861
and 864 on REST. During neuronal differentiation, growth factor signaling (e.g., EGF) increases activation of H-Ras and ERK, resulting in phosphorylation
of serines 861 and 864. Pin1 binds to phosphorylated REST, and recruits bTrCP binding as well. bTrCP binding leads to REST degradation, allowing for
expression of neuronal genes (right panel).
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containing the ERK and Pin1 sites to sta-
bilizes REST and inhibit neurogenesis. It
then follows that a phosphomimetic
(decoy) version of this peptide could be
used to block CTDSP1 activity on REST
to promote its degradation resulting in
neurogenesis. As proof-of-concept, we
have shown that CTDSP1 recognizes
S861/864E (phosphomimetic REST).
Alternatively, small molecule inhibitors of
CTDSP1 activity on REST could be
developed.

In sum, the mechanisms and reagents
we have discovered for REST regulation
reveal new elements regulating cell differ-
entiation and provide us with new tools to
influence the process of neurogenesis.
Using this exciting new strategy, it may be
possible to enhance neuronal regeneration
after injury and interrupt the events lead-
ing to oncogenic transformation, - 2 pro-
cesses that are in dire need of novel
therapeutic strategies.
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